首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiplication of banana cvs. Grand Naine (Musa AAA, Cavendish-sub group) and Rasthali (Musa AAB, Silk-sub group) were attempted through somatic embryogenesis. The influence of position of male flower buds, amino acid supplements in the induction of somatic embryogenesis and field performance of embryogenic cell suspension (ECS) derived banana plants were studied. Differentiated immature male flower buds positioned at 6–8?th bract whorl as explants showed better callus induction and somatic embryogenesis. Supplementation with glutamine at 400?mg?L?1 along with 20:20?g?L?1sucrose: maltose in maturation media induced a 10-fold increase in somatic embryo formation compared to control. Cotyledonary stage somatic embryos desiccated for 2?h showed higher germination compared to non-desiccated embryos. The plantlets generated were hardened, and the genetic fidelity of the plantlets was confirmed using ISSR marker. To check the field performance of ECS derived plants, plantlets were hardened and planted in the field along with meristem and sucker. During the field growth, these ECS derived plants were morphologically similar to those of control plants. In this experiment, it was observed that ECS derived banana plants displayed normal phenotype as that of plants grown from meristem and sucker. The protocol developed could be useful highly for large-scale micropropagation or genetic manipulation studies in these commercially important banana cultivars.  相似文献   

2.
从香蕉胚性细胞悬浮系获得再生植株   总被引:5,自引:0,他引:5  
2个主栽香蕉品种的未成熟雄花诱导产生的胚性愈伤组织接种至液体培养基中,经3~4个月的继代培养后长成质地均匀的胚性细胞悬浮系(ECS),悬浮系中60%~80%是胚性细胞团.ECS接种至体胚再生培养基上约4~5周后开始出现再生体胚,萌发的体胚以MS培养基培养后可获得再生植株.  相似文献   

3.
Somatic embryogenesis (SE) was induced in female flower buds from mature Schisandra chinensis cultivar ‘Hongzhenzhu’. Somatic embryo structures were induced at a low frequency from unopened female flower buds and excised unopened on Murashige and Skoog (MS) agar medium containing 4.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Friable embryogenic calli were induced from somatic embryo structures after three to four subcultures on initiation medium. The frequencies of mature somatic embryo germination and plantlet conversion were low, but increased in the presence of gibberellic acid (GA3). Some germinated somatic embryos could form friable embryogenic calli on medium without plant growth regulators (PGRs). The germination and conversion frequencies of somatic embryos from embryogenic calli induced using PGR-free medium were higher than for somatic embryos from embryogenic calli induced on medium containing 2,4-D. Most somatic embryos from 2,4-D-induced embryogenic calli had trumpet-shaped embryos, and most somatic embryos from PGR-free medium–induced embryogenic calli had two or three cotyledons. Histological observation indicated that two- and three-cotyledon embryos had defined shoot primordia, but most of the trumpet-shaped embryos yielded plantlets that lacked or had poorly developed meristem tissue. Cytological and random amplification of polymorphic DNA (RAPD) analyses indicated no evidence of genetic variation in the plantlets of somatic embryo origin.  相似文献   

4.
5.
The effects of exogenous polyamines (PAs) on enhancement of somatic embryogenic calli was investigated in Momordica charantia L. in vitro. Induction of somatic embryogenesis (SE) in leaf explants of M. charantia after 21 days of culture in Murashige and Skoog (MS) medium was determined using scanning electron microscopy. During induction of SE there were high titers of Putrescine (Put) as compared to Spermidine (Spd) and Spermine (Spm), a prerequisite for cell division. Addition of PAs to the embryogenic media resulted in an increase in fresh weights and number of somatic embryos of 21-day old embryogenic calli. Put at a concentration of 1 mM showed maximum increase in fresh weights of embryogenic calli (5 fold) and number of somatic embryos produced per 0.2 g of callus (2.5 fold). Moreover addition of PAs to the embryogenic media resulted in lowering of endogenous free PA level of 21-day old embryogenic calli. Thus, when the media was supplemented with exogenous PAs a positive correlation was found to exist between Somatic Embryogenesis enhancement and decrease in endogenous free PA levels.  相似文献   

6.
The somatic embryogenesis (SE) capacity of megagametophytes belonging to Continental and Mediterranean Spanish provenances of maritime pine (Pinus pinaster Aiton) was studied, noting factors (megagametophyte developmental stage and culture medium) that enhanced the induction and establishment of SE lines. In both provenances, initiation and establishment of embryogenic calli was higher on megagametophytes in which the dominant zygotic embryo had begun to develop. In the Mediterranean provenance, however, SE lines were also established from megagametophytes enclosing zygotic embryos with well-developed cotyledons. A modified Litvay medium (mLV) containing 9.9???M 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4???M 6-benzyladenine (BA) was superior to DCR medium containing 13.6???M 2,4-D and 4.4???M BA for SE induction, but there were no differences between media in terms of the number of SE lines established after 4?months in culture (153 vs. 155 established SE lines, for mLV and DCR media respectively). Of the 26 embryogenic lines tested for maturation, 15 (58?%) produced cotyledonary somatic embryos and 75?% of these gave rise to plants on germination medium. SE-like cultures from adult maritime pine trees were also initiated, but embryogenic lines could not be established. This is the first report on the production of SE in maritime pine of Continental and Mediterranean origin. The micropropagation protocols presented here provide an important tool for the vegetative multiplication of selected families and breeding programs for maritime pines from Spain.  相似文献   

7.
Summary Immature embryos, inflorescences, and anthers of eight commercial cultivars of Triticum aestivum (wheat) formed embryogenic callus on a variety of media. Immature embryos (1.0–1.5 mm long) were found to be most suitable for embryogenic callus formation while anthers responded poorly; inflorescences gave intermediate values. Immature embryos of various cultivars showed significant differences in callus formation in response to 11 of the 12 media tested. No significant differences were observed when the embryos were cultred under similar conditions on MS medium with twice the concentration of inorganic salts, supplemented with 2,4-D, casein hydrolysate and glutamine. Furthermore, with inflorescences also no significant differences were observed. Explants on callus formation media formed two types of embryogenic calli: an off-white, compact, and nodular callus and a white compact callus. Upon successive subcultures (approximately 5 months), the nodular embryogenic callus became more prominent and was identified as aged callus. The aged callus upon further subculture, formed an off-white, soft, and friable embryogenic callus. Both the aged and friable calli maintained their embryogenic capacity over many subculture passages (to date up to 19 months). All embryogenic calli (1 month old) from the different callus-forming media, irrespective of expiant source, formed only green shoots on regeneration media that developed to maturity in the greenhouse. There were no significant differences in the response of calli derived from embryos and inflorescences cultured on the different initiation media. Also, the shoot-forming capacity of the cultivars was not significantly different. Anther-derived calli formed the least shoots. Aged and friable calli on regeneration media also formed green shoots but at lower frequencies. Plants from long-term culture have also been grown to maturity in soil.Florida Agricultural Experiment Station Journal Series No. R-00494  相似文献   

8.
An efficient protocol was developed using cell suspensions for somatic embryogenesis and plantlet regeneration in a most popular diploid AB banana (M.accuminata X M.bulbisiana hybrid) cv. Elakki Bale (syn Neypoovan) known for its taste and keeping quality in southern India. Floral primodia from position 8–16 of male inflorescence which were more responsive for embryogenesis were used as explants for the embryogenic callus production in MS media supplemented with different concentration of 2,4-D. A concentration of 18.1 μM 2, 4-D produced maximum embryogenic calli in 1 % of the explants inoculated. Embryogenic calli on repeated sub culturing on MA2 media produced good embryogenic cell suspensions (ECS). Microscopic examination of ECS showed globular, smaller with dense cytoplasm filled with starchy granules characteristic of embryogenic cells. Highest number of somatic embryos (189) was produced on modified MA3 media. A germination percentage of 31 % were observed in BAP 22.19 μM concentration. Regenerated plants with normal shoot and root were hardened in soilrite. Direct somatic embryogenesis and plant regeneration was also noticed in embryogenic calli which did not pass through the ECS stage. The protocol optimized for somatic embryogenesis through cell suspension and also direct embryogenesis leading to plantlet regeneration can be used for the micropropagation and genetic manipulation.  相似文献   

9.
Young ovules from 3 cultivars and undeveloped ovules in mature fruits from 8 cultivars of loose skin mandarin of Citrus were cultured on 4 different media respectively to induce embryogenic calli. Results showed that the combination of EME(MT + 500 mg/L malt extract) and MKT (EME + 10 mg/L KT) media performed well in the induction of embryogenic calli from young ovules; MGS(EME + 1 mg/L GA3 + 40 mg/L sulfate adenine) medium was better than MDB (MT + 0.01 mg/L 2,4-D + 0.1 mg/L BA) medium in inducing calli from the undeveloped ovules, and the darkness was conducive to the induction of embryogenic calli. There was no chromosome number variation in the induced calli. All of the examined cells were diploid with 2n = 2x = 18 chromosomes.  相似文献   

10.
贡蕉胚性细胞悬浮系的建立和植株再生   总被引:21,自引:0,他引:21  
鲜食蕉品种的高度不育性和多倍性制约了用传统育种方法培育生产实践中所需的新品种 ,建立稳定的胚性细胞悬浮系是香蕉生物技术育种的前提。以目前国内尚未建立该体系的鲜食蕉品种贡蕉 (AA)未成熟雄花序的第 1~ 15位花梳为外植体 ,对胚性细胞悬浮系的建立和植株再生体系进行了优化。结果表明 ,5~ 6个月的培养后可获得分生小球体和浅黄色、松散易碎的胚性愈伤组织。 9μmol/L 2,4 D对外植体愈伤组织的诱导效果最好 ,诱导率为 40.96 % ,胚性愈伤组织诱导率可达7.45 % ,其中5.79%的胚性愈伤组织来源于第 6~12号位置的花梳。胚性愈伤组织悬浮培养后 ,通过 3个月的筛选和继代培养 ,可得到均质的胚性细胞悬浮系。该培养体系合适继代周期为 15d ,继代时合适的起始接种量为每 30mL培养基加 2mLPCVECS。培养 6个月的胚性细胞在体细胞胚诱导培养基中培养15d后可见到白色半透明体细胞胚的发生 ,体细胞胚诱导率为 2 80× 103个 mLPCV。成熟体细胞胚的萌发率为 17 2 8% ,其中发育成正常的再生植株的百分率为 14 16 %。  相似文献   

11.
Caliskan M  Turet M  Cuming AC 《Planta》2004,219(1):132-140
In wheat ( Triticum aestivum L.), embryogenic callus formation comprises suppression of precocious germination by the zygotic embryo and the initiation of dedifferentiated cellular proliferation within it. Embryogenic calli are induced by treating immature embryos with 2,4-dichlorophenoxyacetic acid (2,4-D). Upon withdrawal from 2,4-D, somatic embryos develop from the periphery of the callus. Prior to visible callus formation, there is a striking induction of "germin-like" oxalate oxidase ("gl-OXO": EC 1.2.3.4) gene expression. Accumulation of gl-OXO mRNA is rapidly stimulated upon auxin treatment, with a consequent development of apoplastic enzyme activity producing H(2)O(2) within the cell wall. Within the dedifferentiated calli, gl-OXO enzyme activity becomes widespread over the surface of embryogenic calli. Differentiation of somatic embryos is initiated in regions of densely cytoplasmic, meristematic cells that are marked by highly localised expression of gl-OXO activity within these embryogenic cell masses. We suggest that this localised generation of H(2)O(2) by gl-OXO promotes peroxidative cross-linking of cell wall components, thereby preventing cellular expansion and maintaining these cell masses in an embryogenically competent condition.  相似文献   

12.
Efficient regeneration via somatic embryogenesis (SE) would be a valuable system for the micropropagation and genetic transformation of sugar beet. This study evaluated the effects of basic culture media (MS and PGo), plant growth regulators, sugars and the starting plant material on somatic embryogenesis in nine sugar beet breeding lines. Somatic embryos were induced from seedlings of several genotypes via an intervening callus phase on PGo medium containing N6-benzylaminopurine (BAP). Calli were mainly induced from cotyledons. Maltose was more effective for the induction of somatic embryogenesis than was sucrose. There were significant differences between genotypes. HB 526 and SDM 3, which produced embryogenic calli at frequencies of 25–50%, performed better than SDM 2, 8, 9 and 11. The embryogenic calli and embryos produced by this method were multiplied by repeated subculture. Histological analysis of embryogenic callus cultures indicated that somatic embryos were derived from single- or a small number of cells. 2,4-dichlorophenoxyacetic acid (2,4-D) was ineffective for the induction of somatic embryogenesis from seedlings but induced direct somatic embryogenesis from immature zygotic embryos (IEs). Somatic embryos were mainly initiated from hypocotyls derived from the cultured IEs in line HB 526. Rapid and efficient regeneration of plants via somatic embryogenesis may provide a system for studying the molecular mechanism of SE and a route for the genetic transformation of sugar beet.  相似文献   

13.
14.
The embryogenic calli (EC) were obtained from hypocotyl explants of groundnut (Arachis hypogaea L.) cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) in combination with 0.5 mg dm−3 6-benzylaminopurine (BAP). The EC were exposed to γ-radiation (10–50 Gy) or treated with 1–5 mM of ethyl methane sulphonate (EMS) or sodium azide (SA). The mutated EC were subcultured on embryo induction medium containing 20 mg dm−3 2,4-D. Somatic embryos (SE) developed from these calli were transferred to MS medium supplemented with BAP (2.0 mg dm−3) and 0.5 mg dm−3 2,4-D for maturation. The well-developed embryos were cultured on germination medium consisting of MS salts with 2.0 mg dm−3 BAP and 0.25 mg dm−3 naphthaleneacetic acid (NAA). Well-developed plantlets were transferred for hardening and hardened plants produced normal flowers and set viable seeds. The fresh mass of the EC, mean number of SE per explant and regeneration percentage were higher at lower concentrations of mutagens (up to 30 Gy/3 mM). Some abnormalities in regenerated plants were observed, especially variations in leaf shape.  相似文献   

15.
以宽皮橘3个品种的幼嫩胚珠和8个品种成熟果实中未发育胚珠为试材,采用EME(MT 500mg/L麦芽浸出物)、MKT(EME 10mg/L KT)、MGS(EME 1mg/L GA3 40mg/L硫酸腺嘌呤)和MDB (EME 0.01mg/L 2,4-D 0.1mg/L BA)4种培养基进行胚性愈伤组织诱导,结果表明EME与MKT培养基配合使用有利于从幼嫩胚珠获得胚性愈伤组织;MGS比MDB更有利于成熟果未发育胚珠胚性愈伤组织的诱导;暗培养有利于此诱导过程。经两种途径获得的胚性愈伤组织,染色体数目稳定,均为二倍体2n=2x=18。  相似文献   

16.
Protocol for Callus Induction and Somatic Embryogenesis in Moso Bamboo   总被引:2,自引:0,他引:2  
Moso bamboo [Phyllostachys heterocycla var. pubescens (Mazel ex J. Houz.) Ohwi] is one of the most important forest crops in China and the rest of Asia. Although many sympodial bamboo tissue culture protocols have been established, there is no protocol available for plantlet regeneration as indicated by callus induction for monopodial bamboos, such as Moso bamboo. In the present report, embryogenic callus induction, embryoid development, and germination were established for Moso bamboo from zygotic seed embryos. Callus was initiated from zygotic embryos after 10–20 d culture on MS media supplemented with 4.0 mg/L 2, 4-D and 0.1 mg/L zeatin (ZT). About 50% of the explants produced calli, and nearly 15% of the calli were found to be embryogenic in nature. These embryogenic calli can be subcultured for proliferation in the Murashige and Skoog media (MS) supplemented with 0.5–2.0 mg/L 2, 4-D. These calli were found to have maintained their capacity for regeneration even after one year of subculture. The viable somatic embryoids regenerated in medium containing 5.0–7.0 mg/L ZT. Nearly 5% of the calli were found capable of regenerating into plantlets directly in MS medium containing 5.0–7.0 mg/L ZT. Root growth was more pronounced when the plantlets were transferred to medium containing 2.0 mg/L NAA. After 30 days of subculture, the plantlets were transferred to a greenhouse.  相似文献   

17.
An efficient protocol for plant regeneration through somatic embryogenesis was established from in vivo leaf explants of Swertia chirayita, a critically endangered medicinal herb. The highest frequency (76%) of embryogenic callus was induced on Murashige & Skoog (MS) medium supplemented with 0.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L kinetin (Kn) from in vivo leaf explants. Globular somatic embryos were induced and further matured from such embryogenic calli by subsequent culture on the same medium. The highest number of somatic embryos (48.83 ± 4.6) was recovered from embryogenic calli derived from leaf explants after 6 weeks of culture. Synthetic seeds were produced by encapsulating of torpedo stage embryos in sodium alginate (4% W/V) gel, dropped into 100 mM calcium chloride (CaCl2 · 2H2O) solution. The synthetic seeds were germinated on MS medium. The highest frequency of synthetic seed germination (84%) was observed on MS medium supplemented with 1.0 mg/L BA and 0.5 mg/L NAA. Regenerants were successfully acclimatized under ex vitro condition. This is the first report on synthetic seed production of S. chirayita. Application of these protocols would be helpful in reducing stress in natural habitat, and in long-term storage of elite genotypes through synthetic seed production.  相似文献   

18.
Hypocotyl segments (HS) of flax seedlings germinated in vitro, were used to induce indirect somatic embryogenesis on solid medium. The composition and distribution of n-alkanes in flax tissues collected at different developmental stages were studied by capillary gas chromatography (GC) and capillary gas chromatography-mass spectrometry (GC-MS). During induction and development of callus from hypocotyl tissues a decrease in the percentage of total lipids was observed. In all types of tissue sampled – HS used as primary explants, HS with differentiating calli at the cut ends (HSC), embryogenic (EC) and non-embryogenic calli (NEC) and somatic embryos (SE) – a skewed-normal distribution of n-alkanes with a low mass range (C13C21) were found. The highest content of n-alkanes occurred in the primary hypocotyl explants and in the early stages of callus development. Longer carbon chain n-alkanes were observed only in the mature or differentiated tissues of hypocotyls and SE. Although the n-alkane contents decreased with time, in SE and calli, a significantly lower n-alkane content was observed in EC when compared to NEC independent of the time in culture. These results suggest the utilisation of n-alkanes for heterotrophic cellular growth as well as its mobilisation from EC to developing SE.  相似文献   

19.
Efficient plant regeneration through somatic embryogenesis was established for safflower (Carthamus tinctorius L.) cv. NARI-6. Embryogenic calli were induced from 10 to 17-d-old cotyledon and leaf explants from in vitro seedlings. High frequency (94.3 %) embryogenic callus was obtained from cotyledon explants cultured on Murashige and Skoog’s germination (MSG) basal medium supplemented with thidiazuron, 2-isopentenyladenine and indole-3-butyric acid. Primary, secondary and cyclic somatic embryos were formed from embryogenic calli in a different media free of plant growth regulators, however, 100 % cyclic somatic embryogenesis was obtained from cotyledon derived embryogenic calli cultured on MSG. Somatic embryos matured and germinated in quarter-strength MSG medium supplemented with gibberellic acid. Cotyledons with root poles or non root poles were converted to normal plantlets and produced adventitious roots in rooting medium. Rooted plants were acclimatized and successfully transferred to the field.  相似文献   

20.
Summary Seventeen cultivars of cotton (Gossypium hirsutum L.) were evaluated for callus initiation and maintenance using 3 initiation media and 3 maintenance media. After a series of transfers of a 3% glucose media, calli were placed on a 3% sucrose medium. After several weeks calli were observed for the presence of embryo-like structures. Cultivars Coker 201 and Coker 315 were identified as embryogenic. Embryogenic callus has since been routinely obtained within 6 weeks by initiating callus on glucose media for 3–4 weeks followed by transfer to sucrose media. Histological examination has shown that embryos are derived from isodiametric, densely cytoplasmic cells and follow predictable patterns of development. Upon maturity, transfer to auxin-free media with reduced sucrose levels results in embryo germination. Regenerated plants can be transferred to greenhouse within 90 days of callus initiation.The senior author is presently a Research Geneticist, USDA-ARS, and Assistant Professor Present address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号