首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mammalian vasculature, and the analogous tracheal system in Drosophila, can respond dynamically to hypoxic conditions to maintain a constant supply of oxygen to peripheral tissues. In a recent study published in Cell, Linneweber et al ( 2014 ) reveal that tracheal plasticity can also be regulated by nutrient availability, through both systemic and local insulin signaling. They also show that specific neurons ennervating the intestine can respond to nutrient cues and direct long‐lasting changes in tracheal morphology that provide metabolic benefits for the organism.  相似文献   

3.
The roles of photosynthesis‐related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient‐poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light‐saturated photosynthetic rate (Pmax) between 22 invasive and native plants in a nutrient‐poor habitat in northeast China. The invasive plants had significantly higher Pmax, photosynthetic nitrogen‐ (PNUE), phosphorus‐ (PPUE), potassium‐ (PKUE) and energy‐use efficiencies (PEUE) than the co‐occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher Pmax for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as Pmax, PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource‐use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat.  相似文献   

4.
Predator-mediated habitat use: some consequences for species interactions   总被引:6,自引:0,他引:6  
Synopsis Behavioral responses to predators can have a major impact on a fishes' diet and habitat choice. Studies with the bluegill sunfish, Lepomis macrochirus, demonstrate that bluegills undergo pronounced shifts in diet and habitat use as they grow in response to changes in their vulnerability to predators. Other species of fish exhibit similar habitat shifts with body size, presumably also in response to changing predation risks and/or foraging gains. An important but little appreciated consequence of this type of predator-mediated habitat use is that predation risk, by structuring size and/or age-specific resource use, may also indirectly affect species interactions. This paper discusses some of the ways in which behavioral responses to predators may affect intra- and interspecific competition in fish. Observational and experimental studies with sunfish (Centrarchidae) provide most of the examples. These studies suggest that the nonlethal effects of predators may be as important as the actual killing of prey.  相似文献   

5.
Abstract 1. Variables affecting species at the ends of trophic chains may modify the success of members with which they do not directly interact. The majority of such examples involve three trophic levels, but hyperparasitoids provide an excellent opportunity to examine four‐level relationships. 2. The gregarious hyperparasitoid Aprostocetus sp. (Hymenoptera: Eulophidae) commonly attacks the primary parasitoid Alabagrus texanus (Hymenoptera: Braconidae), by far the commonest parasitoid of the moth Herpetogramma theseusalis (Lepidoptera: Crambidae). 3. Larvae of this moth feed on ferns of two families, sensitive fern Onoclea sensibilis (Dryopteridaceae) and marsh fern Thelypteris palustris (Thelypteridaceae), in the study area, an old field in Maine, U.S.A. 4. I test the hypotheses that the ferns indirectly affect the reproductive success of the hyperparasitoids and that the ferns produce similar effects at intermediate links. 5. The moths experienced similar success on the two ferns, and the primary parasitoid performed similarly on moths reared from both ferns. The hyperparasitoid parasitized similar proportions of the primary parasitoid from moths that fed on sensitive fern and marsh fern. 6. However, hyperparasitoid broods on primary parasitoids from moths feeding on marsh fern contained approximately one‐third more offspring, whose individuals were significantly larger than those from sensitive fern, even though their hosts’ sizes did not differ significantly. 7. An indirect effect, related to the primary producers, thus strongly affected Trophic Level 4 in the absence of a significant effect at intermediate levels. To the best of my knowledge, this relationship has not been previously reported in a multi‐year or field‐based study of a natural system.  相似文献   

6.
Microglia express three isoforms of the NADPH oxidase, Nox1, Nox2 and Nox4, with the potential to produce superoxide (O(2) ˙(-) ). Microglia also express neurotransmitter receptors, which can modulate microglial responses. In this study, microglial activity of Nox1, Nox2 and Nox4 in primary rat cultured microglia or the rodent BV2 cell line were altered by microglial neurotransmitter receptor modulation. Glutamate, GABA or ATP triggered microglial O(2) ˙(-) production via Nox activation. Nox activation was elicited by agonists of metabotropic mGlu3 receptors and by group III receptors, by GABA(A) but not GABA(B) receptors, and by purinergic P2X(7) or P2Y(2/4) receptors but not P2Y(1) receptors, and inhibited by metabotropic glutamate receptor 5 antagonists. The neurotransmitters also modulated Nox mRNA expression and NADPH activity. The activation of Nox by BzATP or GABA promoted a neuroprotective phenotype whilst the activation of Nox by glutamate promoted a neurotoxic phenotype. Taken together, these data indicate that microglial neurotransmitter receptors can signal via Nox to promote neuroprotection or neurotoxicity. This has implications for the subsequent neurotoxic profile of microglia when neurotransmitter levels may become skewed in neurodegeneration.  相似文献   

7.
Plants adopt a variety of life history strategies to succeed in the Earth's diverse environments. Using functional traits which are defined as “morphological, biochemical, physiological, or phonological” characteristics measurable at the individual level, plants are classified according to their species’ adaptative strategies, more than their taxonomy, from fast growing plant species to slower‐growing conservative species. These different strategies probably influence the input and output of carbon (C)‐resources, from the assimilation of carbon by photosynthesis to its release in the rhizosphere soil via root exudation. However, while root exudation was known to mediate plant‐microbe interactions in the rhizosphere, it was not used as functional trait until recently. Here, we assess whether root exudate levels are useful plant functional traits in the classification of plant nutrient‐use strategies and classical trait syndromes? For this purpose, we conducted an experiment with six grass species representing along a gradient of plant resource‐use strategies, from conservative species, characterized by low biomass nitrogen (N) concentrations and a long lifespans, to exploitative species, characterized by high rates of photosynthesis and rapid rates of N acquisition. Leaf and root traits were measured for each grass and root exudate rate for each planted soil sample. Classical trait syndromes in plant ecology were found for leaf and root traits, with negative relationships observed between specific leaf area and leaf dry matter content or between specific root length and root dry matter content. However, a new root trait syndrome was also found with root exudation levels correlating with plant resource‐use strategy patterns, specifically, between root exudation rate and root dry matter content. We therefore propose root exudation rate can be used as a key functional trait in plant ecology studies and plant strategy classification.  相似文献   

8.
We introduced the Escherichia coli glycolate catabolic pathway into Arabidopsis thaliana chloroplasts to reduce the loss of fixed carbon and nitrogen that occurs in C(3) plants when phosphoglycolate, an inevitable by-product of photosynthesis, is recycled by photorespiration. Using step-wise nuclear transformation with five chloroplast-targeted bacterial genes encoding glycolate dehydrogenase, glyoxylate carboligase and tartronic semialdehyde reductase, we generated plants in which chloroplastic glycolate is converted directly to glycerate. This reduces, but does not eliminate, flux of photorespiratory metabolites through peroxisomes and mitochondria. Transgenic plants grew faster, produced more shoot and root biomass, and contained more soluble sugars, reflecting reduced photorespiration and enhanced photosynthesis that correlated with an increased chloroplastic CO(2) concentration in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase. These effects are evident after overexpression of the three subunits of glycolate dehydrogenase, but enhanced by introducing the complete bacterial glycolate catabolic pathway. Diverting chloroplastic glycolate from photorespiration may improve the productivity of crops with C(3) photosynthesis.  相似文献   

9.
Regulation of stomatal (gs) and mesophyll conductance (gm) is an efficient means for optimizing the relationship between water loss and carbon uptake in plants. We assessed water‐use efficiency (WUE)‐based drought adaptation strategies with respect to mesophyll conductance of different functional plant groups of the forest understory. Moreover we aimed at assessing the mechanisms of and interactions between water and CO2 conductance in the mesophyll. The facts that an increase in WUE was observed only in the two species that increased gm in response to moderate drought, and that over all five species examined, changes in mesophyll conductance were significantly correlated with the drought‐induced change in WUE, proves the importance of gm in optimizing resource use under water restriction. There was no clear correlation of mesophyll CO2 conductance and the tortuosity of water movement in the leaf across the five species in the control and drought treatments. This points either to different main pathways for CO2 and water in the mesophyll either to different regulation of a common pathway.  相似文献   

10.
A major challenge in ecology is to understand broadscale trends in the impact of environmental change. We provide the first integrative analysis of the effects of eutrophication on plants, herbivores, and their interactions in coastal wetlands across latitudes. We show that fertilisation strongly increases herbivory in salt marshes, but not in mangroves, and that this effect increases with increasing latitude in salt marshes. We further show that stronger nutrient effects on plant nitrogen concentration at higher latitudes is the mechanism likely underlying this pattern. This biogeographic variation in nutrient effects on plant–herbivore interactions has consequences for vegetation, with those at higher latitudes being more vulnerable to consumer pressure fuelled by eutrophication. Our work provides a novel, mechanistic understanding of how eutrophication affects plant–herbivore systems predictably across broad latitudinal gradients, and highlights the power of incorporating biogeography into understanding large‐scale variability in the impacts of environmental change.  相似文献   

11.
Abstract Exotic plant invasions are a significant problem in urban bushland in Sydney, Australia. In low‐nutrient Hawkesbury Sandstone communities, invasive plants are often associated with urban run‐off and subsequent increases in soil nutrients, particularly phosphorus. Fire is an important aspect of community dynamics in Sydney vegetation, and is sometimes used in bush regeneration projects as a tool for weed control. This study addressed the question: ‘Are there differences in post‐fire resprouting and germination of native and exotic species in nutrient‐enriched communities, compared with communities not disturbed by nutrient enrichment?’ We found that in non‐enriched areas, few exotic species emerged, and those that did were unable to achieve the rapid growth that was seen in exotic plants in the nutrient‐enriched areas. Therefore, fire did not promote the invasion of exotic plants into areas that were not nutrient‐enriched. In nutrient‐enriched areas after fire, the diversity of native species was lower than in the non‐enriched areas. Some native species were able to survive and compete with the exotic species in terms of abundance, per cent cover and plant height. However, these successful species were a different suite of natives to those commonly found in the non‐enriched areas. We suggest that although fire can be a useful tool for short‐term removal of exotic plant biomass from nutrient‐enriched areas, it does not promote establishment of native species that were not already present.  相似文献   

12.
Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle its impacts on plant–soil nutrient concentrations. We conducted a meta‐analysis of 215 peer‐reviewed articles and 1233 observations. Invasive plant species had globally higher N and P concentrations in photosynthetic tissues but not in foliar litter, in comparison with their native competitors. Invasive plants were also associated with higher soil C and N stocks and N, P, and K availabilities. The differences in N and P concentrations in photosynthetic tissues and in soil total C and N, soil N, P, and K availabilities between invasive and native species decreased when the environment was richer in nutrient resources. The results thus suggested higher nutrient resorption efficiencies in invasive than in native species in nutrient‐poor environments. There were differences in soil total N concentrations but not in total P concentrations, indicating that the differences associated to invasive plants were related with biological processes, not with geochemical processes. The results suggest that invasiveness is not only a driver of changes in ecosystem species composition but that it is also associated with significant changes in plant–soil elemental composition and stoichiometry.  相似文献   

13.
14.
15.
Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short‐time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre‐defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re‐watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re‐watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long‐term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water‐use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.  相似文献   

16.
For long‐distance migrants, territoriality and prey biomass during the non‐breeding season have been linked to body condition that can carry over to affect spring migration and breeding events. For Ovenbirds (Seiurus aurocapilla), studies in Jamaica showed that body condition in mid‐season depended on leaf litter prey biomass and declined seasonally as conditions became drier, and that individuals with sedentary (territorial) and wandering space‐use strategies did not differ in age or body condition. During October and November 2010–2011, we radio‐tracked Ovenbirds in Belize to determine if space‐use patterns differed with age and sex, if space‐use strategy influenced foraging behavior or body condition, and if areas used by wanderers and territory owners differed in food abundance or habitat characteristics. Most Ovenbirds (41 of 51, 80.4%) possessed small (1‐ha) territories with largely non‐overlapping cores, but 22.5% (10 of 51) of birds were wanderers (~7‐ha home range). Early season space use was predicted by age class, with most wanderers (90%, 9 of 10) being first‐year birds and most territory owners (63%) being older birds. Sex ratios of wanderers and territory owners did not differ. We found that wanderers may have been at a disadvantage because they had significantly lower foraging rates and lower relative body masses than territorial birds, although baseline corticosterone levels did not differ. Habitat characteristics of areas used by wanderers and territory owners did not differ nor did biomass of ground‐surface arthropods, likely because ranges of most wanderers overlapped those of territory owners. Using stable hydrogen isotopes in feathers, we found that first‐year Ovenbirds that were wanderers tended to have a more northern natal origins than sedentary birds, though the difference was not significant. Longer migration distances could delay arrival and reduce competitive ability. Our results suggest that wandering may not be an alternative and equally successful strategy, at least early in the season, and instead young birds may be competitively excluded from territory ownership.  相似文献   

17.
Currently, fossil materials form the majority of our energy and chemical source. Many global concerns force us to rethink about our current dependence on the fossil energy. Limiting the use of these energy sources is a key priority for most countries that pledge to reduce greenhouse gas emissions. The application of biomass, as substitute fossil resources for producing biofuels, plastics and chemicals, is a widely accepted strategy for sustainable development. Aquatic plants including algae possess competitive advantages as biomass resources compared to the terrestrial plants in this current global situation. Bio‐oil production from algal biomass is technically and economically viable, cost competitive, requires no capacious lands and minimal water use and reduces atmospheric carbon dioxide. The aim of this paper is to review the potential of converting algal biomass, as an aquatic plant, into high‐quality crude bio‐oil through applicable processes in Malaysia. In particular, bio‐based materials and fuels from algal biomass are considered as one of the reliable alternatives for clean energy. Currently, pyrolysis and hydrothermal liquefaction (HTL) are two foremost processes for bio‐oil production from biomass. HTL can directly convert high‐moisture algal biomass into bio‐oil, whereas pyrolysis requires feedstock drying to reduce the energy consumption during the process. Microwave‐assisted HTL, which can be conducted in aqueous environment, is suitable for aquatic plants and wet biomass such as algae.  相似文献   

18.
Carbon dots have been recognized as one of the most promising candidates for the oxygen reduction reaction (ORR) in alkaline media. However, the desired ORR performance in metal–air batteries is often limited by the moderate electrocatalytic activity and the lack of a method to realize good dispersion. To address these issues, herein a biomass‐deriving method is reported to achieve the in situ phosphorus doping (P‐doping) of carbon dots and their simultaneous decoration onto graphene matrix. The resultant product, namely P‐doped carbon dot/graphene (P‐CD/G) nanocomposites, can reach an ultrahigh P‐doping level for carbon nanomaterials. The P‐CD/G nanocomposites are found to exhibit excellent ORR activity, which is highly comparable to the commercial Pt/C catalysts. When used as the cathode materials for a primary liquid Al–air battery, the device shows an impressive power density of 157.3 mW cm?2 (comparing to 151.5 mW cm?2 of a similar Pt/C battery). Finally, an all‐solid‐state flexible Al–air battery is designed and fabricated based on our new nanocomposites. The device exhibits a stable discharge voltage of ≈1.2 V upon different bending states. This study introduces a unique biomass‐derived material system to replace the noble metal catalysts for future portable and wearable electronic devices.  相似文献   

19.
High‐performance and lost‐cost lithium‐ion and sodium‐ion batteries are highly desirable for a wide range of applications including portable electronic devices, transportation (e.g., electric vehicles, hybrid vehicles, etc.), and renewable energy storage systems. Great research efforts have been devoted to developing alternative anode materials with superior electrochemical properties since the anode materials used are closely related to the capacity and safety characteristics of the batteries. With the theoretical capacity of 2596 mA h g?1, phosphorus is considered to be the highest capacity anode material for sodium‐ion batteries and one of the most attractive anode materials for lithium‐ion batteries. This work provides a comprehensive study on the most recent advancements in the rational design of phosphorus‐based anode materials for both lithium‐ion and sodium‐ion batteries. The currently available approaches to phosphorus‐based composites along with their merits and challenges are summarized and discussed. Furthermore, some present underpinning issues and future prospects for the further development of advanced phosphorus‐based materials for energy storage/conversion systems are discussed.  相似文献   

20.
High‐throughput screening (HTS) technology is gaining increasing importance in downstream process development of cell‐based products. The development of such HTS‐technologies, however, is highly dependent on the availability of robust, accurate, and sensitive high‐throughput cell quantification methods. In this article, we compare state‐of‐the‐art cell quantification methods with focus on their applicability in HTS‐platforms for downstream processing of cell‐based products. Sensitivity, dynamic range, and precision were evaluated for four methods that differ in their respective mechanism. In addition, we evaluated the performance of these methods over a range of buffer compositions, medium densities, and viscosities, representing conditions found in many downstream processing methods. We found that CellTiter‐Glo? and flow cytometry are excellent tools for high‐throughput cell quantification. Both methods have broad working ranges (3–4 log) and performed well over a wide range of buffer compositions. In comparison, CyQuant® Direct and CellTracker? had smaller working ranges and were more sensitive to changes in buffer composition. For fast and sensitive quantification of a single cell type, CellTiter‐Glo? performed best, while for more complex cell mixtures flow cytometry is the method of choice. Our analysis will facilitate the selection of the most suitable method for a specific application and provides a benchmark for future HTS development in downstream processing of cell‐based products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号