首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The so called revolute margins of the corona in the genus Hoya (Marsdenieae) are homologous to the anther skirt. The anther skirt is primarily formed of two latero-basal lobes of the anther. In Hoya these lobes are fused with the underside of the basal process of the staminal corona and have evolved into a dominant structure of the gynostegium. Embedded in the anther skirt is the nectar tube, formed by the basal elongation of the guide rail. In many species, however, the function of nectar secretion for pollinator reward has been transferred to the anther skirt beneath the basal process of the corona. A survey of the Marsdenieae shows that the potential for developing an anther skirt is present in several other genera as well, though nowhere has it evolved into such elaborated structures as in Hoya.  相似文献   

2.
Expression of many proteinases has been documented during anther development. Although their roles are not completely understood, their inhibition could possibly result in impairment of anther development leading to male sterility. We proposed that such an impairment of anther development can be engineered in plants resulting in male sterile plants that can be used for hybrid seed production. Here, we report that anther-specific expression of Aprotinin gene (serine proteinase inhibitor) in tobacco has resulted in male sterility. Southern analysis and zymogram analysis confirmed the integration and expression of Aprotinin gene in the anthers of the transgenic plants. Transverse sections of anthers of transgenic male sterile plants showed damaged tapetum. The pollen germination in the transgenic plants ranged between 2% and 65% that confirmed the impairment in pollen production leading to male sterility and low seed yield. Thus, inhibition of serine proteinases that are expressed during anther development has resulted in impaired pollen production and male sterility, though the exact role of these proteinases in anther development still has to be elucidated.  相似文献   

3.
The impact of infectious diseases in natural ecosystems is strongly influenced by the degree of pathogen specialization and by the local assemblies of potential host species. This study investigated anther‐smut disease, caused by fungi in the genus Microbotryum, among natural populations of plants in the Caryophyllaceae. A broad geographic survey focused on sites of the disease on multiple host species in sympatry. Analysis of molecular identities for the pathogens revealed that sympatric disease was most often due to co‐occurrence of distinct, host‐specific anther‐smut fungi, rather than localized cross‐species disease transmission. Flowers from sympatric populations showed that the Microbotryum spores were frequently moved between host species. Experimental inoculations to simulate cross‐species exposure to the pathogens in these plant communities showed that the anther‐smut pathogen was less able to cause disease on its regular host when following exposure of the plants to incompatible pathogens from another host species. These results indicate that multi‐host/multi‐pathogen communities are common in this system and they involve a previously hidden mechanism of interference between Microbotryum fungi, which likely affects both pathogen and host distributions.  相似文献   

4.
Study of the congruence of population genetic structure between hosts and pathogens gives important insights into their shared phylogeographical and coevolutionary histories. We studied the population genetic structure of castrating anther‐smut fungi (genus Microbotryum) and of their host plants, the Silene nutans species complex, and the morphologically and genetically closely related Silene italica, which can be found in sympatry. Phylogeographical population genetic structure related to persistence in separate glacial refugia has been recently revealed in the S. nutans plant species complex across Western Europe, identifying several distinct lineages. We genotyped 171 associated plant–pathogen pairs of anther‐smut fungi and their host plant individuals using microsatellite markers and plant chloroplastic single nucleotide polymorphisms. We found clear differentiation between fungal populations parasitizing S. nutans and S. italica plants. The population genetic structure of fungal strains parasitizing the S. nutans plant species complex mirrored the host plant genetic structure, suggesting that the pathogen was isolated in glacial refugia together with its host and/or that it has specialized on the plant genetic lineages. Using random forest approximate Bayesian computation (ABC‐RF), we found that the divergence history of the fungal lineages on S. nutans was congruent with that previously inferred for the host plant and probably occurred with ancient but no recent gene flow. Genome sequences confirmed the genetic structure and the absence of recent gene flow between fungal genetic lineages. Our analyses of individual host–pathogen pairs contribute to a better understanding of co‐evolutionary histories between hosts and pathogens in natural ecosystems, in which such studies remain scarce.  相似文献   

5.
Herbivore arthropods benefit from vectoring plant viruses   总被引:5,自引:0,他引:5  
Plants infected with pathogens often attract the pathogens’ vectors, but it is not clear if this is advantageous to the vectors. We therefore quantified the direct and indirect (through the host plant) effects of a pathogen on its vector. A positive direct effect of the plant‐pathogenic Tomato spotted wilt virus on its thrips vector (Frankliniella occidentalis) was found, but the main effect was indirect; juvenile survival and developmental rate of thrips was lower on pepper plants that were damaged by virus‐free thrips than on unattacked plants, but such negative effects were absent on plants that were damaged and inoculated by infected thrips or were mechanically inoculated with the virus. Hence, potential vectors benefit from attacking plants with virus because virus‐infected plants are of higher quality for the vector's offspring. We propose that plant pathogens in general have evolved mechanisms to overcome plant defences against their vectors, thus promoting pathogen spread.  相似文献   

6.
Summary We present a strategy for establishing a transgenic doubled haploid maize line from heterozygous transgenic material by means of anther culture. Compared to conventional inbreeding, the in vitro androgenesis technique enables a faster generation of virtually fully homozygous lines. Since the androgenic response is highly genotype-dependent, we crossed transgenic, non-androgenic plants carrying a herbicide resistance marker gene (pat, encoding for phosphinothricin acetyl transferase) with a highly androgenic genotype. The transgenic progenies were used as donor plants for anther culture. One transgenic and three non-transgenic doubled haploid lines have been established within approximately 1 yr. The homozygosity of all four doubled haploid lines was tested by analysis of simple sequence repeat (SSR) markers at 19 different loci. Polymorphisms were found between the lines but not within the lines indicating the homozygous nature of the entire plant genome gained by anther culture. Southern blot analysis revealed that the transgenic donor plants and their doubled haploid progeny exhibited the same integration pattern of the pat gene. No segregation of the herbicide resistance trait has been observed among the progeny of the transgenic doubled haploid line.  相似文献   

7.
Numerous genes in diverse organisms have been shown to be under positive selection, especially genes involved in reproduction, adaptation to contrasting environments, hybrid inviability, and host‐pathogen interactions. Looking for genes under positive selection in pathogens has been a priority in efforts to investigate coevolution dynamics and to develop vaccines or drugs. To elucidate the functions involved in host specialization, here we aimed at identifying candidate sequences that could have evolved under positive selection among closely related pathogens specialized on different hosts. For this goal, we sequenced c. 17 000–32 000 ESTs from each of four Microbotryum species, which are fungal pathogens responsible for anther smut disease on host plants in the Caryophyllaceae. Forty‐two of the 372 predicted orthologous genes showed significant signal of positive selection, which represents a good number of candidate genes for further investigation. Sequencing 16 of these genes in 9 additional Microbotryum species confirmed that they have indeed been rapidly evolving in the pathogen species specialized on different hosts. The genes showing significant signals of positive selection were putatively involved in nutrient uptake from the host, secondary metabolite synthesis and secretion, respiration under stressful conditions and stress response, hyphal growth and differentiation, and regulation of expression by other genes. Many of these genes had transmembrane domains and may therefore also be involved in pathogen recognition by the host. Our approach thus revealed fruitful and should be feasible for many non‐model organisms for which candidate genes for diversifying selection are needed.  相似文献   

8.
Anther culture has been developed in the winter wheat cultivar Florida to achieve accelerated production and identification of homozygous transgenic lines. With untransformed, seed-derived plants to develop the culture system, it was shown that cold pre-treatment of spikes excised from donor plants and addition of 2,4-dichlorophenoxyacetic acid together with either kinetin or 6-benzylaminopurine in the callus induction medium improves the anther culture response. The procedure developed allowed production of fertile homozygous lines within 8–9 months, which includes an 8-week vernalisation period. With transgenic wheat plants produced by particle bombardment as donors, we show that the system can be used to produce homozygous transgenics, requiring one generation cycle. Both T0 tissue culture-derived plants and their T1 seed-derived descendents serve as suitable donors. We show that an anther culture response comparable to that of untransformed, seed-derived plants can be achieved with T0 tissue culture-derived plants. PCR and Southern molecular analyses of anther culture-derived transgenics show that the transgenes are stably inherited; there are no perturbations at the chromosomal level around the sites of transgene integration as a result of in vitro chromosome manipulation during anther culture.  相似文献   

9.
Biotic stress has a major impact on the process of natural selection in plants. As plants have evolved under variable environmental conditions, they have acquired a diverse spectrum of defensive strategies against pathogens and herbivores. Genetic variation in the expression of plant defence offers valuable insights into the evolution of these strategies. The 'zigzag' model, which describes an ongoing arms race between inducible plant defences and their suppression by pathogens, is now a commonly accepted model of plant defence evolution. This review explores additional strategies by which plants have evolved to cope with biotic stress under different selective circumstances. Apart from interactions with plant-beneficial micro-organisms that can antagonize pathogens directly, plants have the ability to prime their immune system in response to selected environmental signals. This defence priming offers disease protection that is effective against a broad spectrum of virulent pathogens, as long as the augmented defence reaction is expressed before the invading pathogen has the opportunity to suppress host defences. Furthermore, priming has been shown to be a cost-efficient defence strategy under relatively hostile environmental conditions. Accordingly, it is possible that selected plant varieties have evolved a constitutively primed immune system to adapt to levels of disease pressure. Here, we examine this hypothesis further by evaluating the evidence for natural variation in the responsiveness of basal defence mechanisms, and discuss how this genetic variation can be exploited in breeding programmes to provide sustainable crop protection against pests and diseases.  相似文献   

10.
Summary Studies of the chromosomal composition of pollen plants regenerated from the F1 of hybrids produced from Triticum-Agropyron intermediate type and common wheat demonstrated that various gametic types of the F1 could be fully expressed at the whole plant level via anther culture. The observed frequency of each of the eight types of pollen plants (based on their chromosome numbers) was in good agreement with the theoretical probabilities as shown by X2 analysis. Comparative studies of the chromosome composition of somatic cells and pollen mother cells (PMC's) of selected pollen plants permitted classification of the plants into four distinct classes. The majority of these regenerated pollen plants had identical chromosome numbers in both root tip cells and PMC's. An alien disomic addition line, which was cytologically stable for two generations, was obtained directly from anther culture. Moreover, the addition line exhibits resistance to stripe rust disease, a trait which is conferred by the Agropyron chromosome. We suggest that anther culture techniques provide a unique and expeditious route for the introduction of alien genes or chromosomes into wheat cultivars.  相似文献   

11.
The Genetic and Molecular Basis of Plant Resistance to Pathogens   总被引:1,自引:0,他引:1  
Plant pathogens have evolved numerous strategies to obtain nutritive materials from their host,and plants in turn have evolved the preformed physical and chemical barriers as well as sophisticated two-tiered immune system to combat pathogen attacks.Genetically, plant resistance to pathogens can be divided into qualitative and quantitative disease resistance,conditioned by major gene(s) and multiple genes with minor effects,respectively.Qualitative disease resistance has been mostly detected in plant defense against biotrophic pathogens,whereas quantitative disease resistance is involved in defense response to all plant pathogens,from biotrophs,hemibiotrophs to necrotrophs.Plant resistance is achieved through interception of pathogen-derived effectors and elicitation of defense response.In recent years,great progress has been made related to the molecular basis underlying host-pathogen interactions.In this review,we would like to provide an update on genetic and molecular aspects of plant resistance to pathogens.  相似文献   

12.
 Little is known about the breeding systems of tropical perennial ginger species. In this paper, we provide information about the breeding system of Alpinia kwangsiensis in Yunnan, Southwest China, specifically self-compatibility, mechanisms promoting outcrossing, and the visitation characteristics of pollinators. Populations of A. kwangsiensis have two specific phenotypes that differ in flowering behaviour: 1) “cataflexistyle” individuals in which the stigma is held erect above the dehiscent anther when anthesis begins in the morning and becomes decurved under the anther at noon and 2) “anaflexistyle” individuals in which the receptive stigma is decurved under the indehiscent anther first and moves into a reflexed superior position above the anther as it begins to shed pollen at mid-day. The stigmatic movements in the two floral phenotypes, which occur in a ratio of 1:1 in natural populations, are synchronous and correlate with the foraging behaviour of floral visitors; pollination is effected only between floral forms. Field experiments indicate that A. kwangsiensis is self-compatible and dependent upon insects for fertilization. This newly reported floral mechanism, which we have named “flexistyly,” adds to the repertoire of devices that have evolved in flowering plants to insure outcrossing. Received November 29, 2001 Accepted January 8, 2002  相似文献   

13.
The long‐term contamination that followed the nuclear disaster at Chernobyl provides a case study for the effects of chronic ionizing radiation on living organisms and on their ability to tolerate or evolve resistance to such radiation. Previously, we studied the fertility and viability of early developmental stages of a castrating plant pathogen, the anther‐smut fungus Microbotryum lychnidis‐dioicae, isolated from field sites varying over 700‐fold in degree of radioactive contamination. Neither the budding rate of haploid spores following meiosis nor the karyotype structure varied with increasing radiation levels at sampling sites. Here, we assessed the ability of the same M. lychnidis‐dioicae strains to perform their whole life cycle, up to the production of symptoms in the plants, that is, the development of anthers full of fungal spores; we also assessed their viability under experimental radiation. Fungal strains from more contaminated sites had no lower spore numbers in anthers or viability, but infected host plants less well, indicating lower overall fitness due to radioactivity exposure. These findings improve our understanding of the previous field data, in which the anther‐smut disease prevalence on Silene latifolia plants caused by M. lychnidis‐dioicae was lower at more contaminated sites. Although the fungus showed relatively high resistance to experimental radiation, we found no evidence that increased resistance to radiation has evolved in populations from contaminated sites. Fungal strains from more contaminated sites even tolerated or repaired damage from a brief acute exposure to γ radiation less well than those from non‐ or less contaminated sites. Our results more generally concur with previous studies in showing that the fitness of living organisms is affected by radiation after nuclear disasters, but that they do not rapidly evolve higher tolerance.  相似文献   

14.
Ultrastructural differences were detected between a cytoplasmic male sterile tobacco cybrid (Nicotiana sp.) formed by protoplast fusion and normal, fertile tobacco. Cell structure was compared between anther primordia from normal, fertile tobacco and anther primordia from the cybrid using stereological methods. Particular emphasis was placed on the ultrastructure of mitochondria because of their known relationship to cytoplasmic male sterility in this cybrid and other plants. The volume density of mitochondria in cybrid anther primordia (6.3%) was significantly lower than in normal, fertile anther primordia (10.1%), although mitochondria from both plants contained similar amounts of cristae and profiles were of similar relative area. Dictyosomes and vacuoles also differed in volume density but not at a statistically significant level. Although the volume density of plastids did not differ, a larger amount of starch was stored within plastids in cybrid anther primordia than in normal, fertile anther primordia. These results are compatible with the hypothesis that an abnormally low rate of mitchondrial replication, and the resultant limit on adenosine triphosphate production, could contribute to cytoplasmic male sterility in the cybrid.  相似文献   

15.
左泽远  刘琬琳  许杰 《植物学报》2020,55(2):147-162
在植物基因组中, 除了同源基因成簇现象外, 近年来还发现一些具有共表达特性的异源基因也能够以基因簇形式存在, 但这些异源基因簇的进化和生物学功能尚不清楚。花药发育和花粉形成是植物进化出的特有的生殖生物学过程, 同时产生了一些在花药绒毡层中特异表达和特定功能的基因簇基因。该研究通过筛选和分析花药绒毡层中基因簇基因的分子特性、表达调控、基因年龄和基因重复进化等信息, 探讨花药基因簇基因与植物开花功能进化之间的关系。结果表明, 在拟南芥(Arabidopsis thaliana)中共筛选到84个(13个基因簇)花药绒毡层特异高表达的基因簇基因, 它们主要产生于串联重复事件, 76%的基因出现在开花植物分化后的阶段, 主要参与生殖发育、花粉鞘组成和脂代谢等生物学过程。研究初步解析了拟南芥花药绒毡层中基因簇基因的基本特征、生物学功能和基因进化机制, 为深入揭示植物基因簇基因的遗传学功能奠定了基础。  相似文献   

16.
Chen L  Zhu X  Gu L  Wu J 《Plant cell reports》2005,24(7):401-407
Callus culture has, to date, been reported only in a few species of Narcissus. We used anthers of Chinese narcissus (Narcissus tazetta L. var. chinensis Roem) as explants for callus induction and plant regeneration. A high percentage of anthers at the early- to mid-uninucleate microspore stage were responsive on the basal MS medium supplemented with 0.5–1 mg l–1 2,4-dichlorophenoxyacetic acid and 0.5–2 mg l–1 6-benzyladenine under dark conditions. Calli were initiated from anther connective tissue or anther wall tissue, and no division of microspores occurred during callus formation, as determined by histological observation. Using 20 random amplified polymorphic DNA primers, we verified the genetic integrity of the anther-derived plants of Chinese narcissus with respect to the donor plants. These results suggest that anther culture in vitro can provide an efficient new micropropagation technique for Chinese narcissus as well as a new strategy for in vitro mass propagation of other daffodils.  相似文献   

17.
Successful sexual reproduction depends on normal cell differentiation during early anther development in flowering plants. The anther typically has four lobes, each of which contains highly specialized reproductive (microsporocyte) and somatic cells (epidermis, endothecium, middle layer, and tapetum). To date, six leucine-rich repeat receptor-like protein kinases (LRR-RLK) have been identified to have roles in regulation of anther cell patterning in Arabidopsis thaliana. EXCESS MICROSPOROCYTES1 (EMS1)/EXTRA SPOROGENOUS CELLS (EXS) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1/2 (SERK1/2) signal the differentiation of the tapetum. BARELY ANY MERISTEM1/2 (BAM1/2) defines anther somatic cell layers, including the endothecium, middle layer, and tapetum. Moreover, RECEPTOR-LIKE PROTEIN KINASE2 (RPK2) is required for the differentiation of middle layer cells. In addition to process of anther cell differentiation, conserved regulation of anther cell differentiation in different plant species, this review mainly discusses how these receptor-like kinases and other regulators work together to control anther cell fate determination in Arabidopsis.  相似文献   

18.
Over 250 dihaploid lines derived from a disomic tetraploid genotype of Solanum acaule ssp. acaule Bitt. (acc. PI 472655) were produced via androgenesis. The anther donor plant had previously shown immunity to bacterial ring rot caused by Clavibacter michiganensis ssp. sepedonicus (Spieck. and Kotth.) Davis et al., and has now been shown to have high embryogenic capacity in anther culture. In total, 370 shoots were regenerated from 4,011 anthers cultured. The ploidy level of the 287 regenerants was determined from greenhouse-grown plants using flow cytometry. Of these plants, 274 (95%) were dihaploids with an average DNA content of 1.68 pg, approximately half that of the tetraploid anther donor (2.95 pg). The remainder of the anther-derived regenerants (5%) were tetraploid, hexaploid or mixoploid. Chromosome counts confirmed the results obtained by flow cytometry. In the greenhouse, none of the 33 dihaploid lines analysed produced berries but showed low (2%) male fertility. This contrasted with five greenhouse-grown tetraploid anther-derived plants which produced berries and seeds. Comparison of the general leaf morphology and floral characteristics of the tetraploid anther donor, S. acaule, and the dihaploids indicated that little variation exists in this species. Received: 28 August 1997 / Revision received: 22 December 1997 / Accepted: 27 July 1998  相似文献   

19.
Nonhost resistance (NHR) is a robust plant immune response against non-adapted pathogens. A number of nucleotide-binding leucine-rich repeat (NLR) proteins that recognize non-adapted pathogens have been identified, although the underlying molecular mechanisms driving robustness of NHR are still unknown. Here, we screened 57 effectors of the potato late blight pathogen Phytophthora infestans in nonhost pepper (Capsicum annuum) to identify avirulence effector candidates. Selected effectors were tested against 436 genome-wide cloned pepper NLRs, and we identified multiple functional NLRs that recognize P. infestans effectors and confer disease resistance in the Nicotiana benthamiana as a surrogate system. The identified NLRs were homologous to known NLRs derived from wild potatoes that recognize P. infestans effectors such as Avr2, Avrblb1, Avrblb2, and Avrvnt1. The identified CaRpi-blb2 is a homologue of Rpi-blb2, recognizes Avrblb2 family effectors, exhibits feature of lineage-specifically evolved gene in microsynteny and phylogenetic analyses, and requires pepper-specific NRC (NLR required for cell death)-type helper NLR for proper function. Moreover, CaRpi-blb2–mediated hypersensitive response and blight resistance were more tolerant to suppression by the PITG_15 278 than those mediated by Rpi-blb2. Combined results indicate that pepper has stacked multiple NLRs recognizing effectors of non-adapted P. infestans, and these NLRs could be more tolerant to pathogen-mediated immune suppression than NLRs derived from the host plants. Our study suggests that NLRs derived from nonhost plants have potential as untapped resources to develop crops with durable resistance against fast-evolving pathogens by stacking the network of nonhost NLRs into susceptible host plants.  相似文献   

20.
Both plants and humans have inducible defense mechanisms. This passive defense strategy leaves the host unprotected for a period of time until resistance is activated. Moreover, many bacterial pathogens have evolved cell-cell communication (quorum-sensing) mechanisms to mount population-density-dependent attacks to overwhelm the host's defense responses. Several chemicals and enzymes have been investigated for years for their potential to target the key components of bacterial quorum-sensing systems. These quorum-quenching reagents, which block bacterial cell-cell communications, can disintegrate a bacterial population-density-dependent attack. It has now been shown that a quorum-quenching mechanism can be engineered in plants and might be used as a strategy in controlling bacterial pathogens and to build up a proactive defense barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号