首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Speciation is the process that generates biodiversity, but recent empirical findings show that it can also fail, leading to the collapse of two incipient species into one. Here, we elucidate the mechanisms behind speciation collapse using a stochastic individual‐based model with explicit genetics. We investigate the impact of two types of environmental disturbance: deteriorated visual conditions, which reduce foraging ability and impede mate choice, and environmental homogenization, which restructures ecological niches. We find that: (1) Species pairs can collapse into a variety of forms including new species pairs, monomorphic or polymorphic generalists, or single specialists. Notably, polymorphic generalist forms may be a transient stage to a monomorphic population; (2) Environmental restoration enables species pairs to reemerge from single generalist forms, but not from single specialist forms; (3) Speciation collapse is up to four orders of magnitude faster than speciation, while the reemergence of species pairs can be as slow as de novo speciation; (4) Although speciation collapse can be predicted from either demographic, phenotypic, or genetic signals, observations of phenotypic changes allow the most general and robust warning signal of speciation collapse. We conclude that factors altering ecological niches can reduce biodiversity by reshaping the ecosystem's evolutionary attractors.  相似文献   

2.
Background and Aims There is still debate regarding the direction and strength of plant interactions under intermediate to high levels of stress. Furthermore, little is known on how disturbance may interact with physical stress in unproductive environments, although recent theory and models have shown that this interplay may induce a collapse of plant interactions and diversity. The few studies assessing such questions have considered the intensity of biotic interactions but not their importance, although this latter concept has been shown to be very useful for understanding the role of interactions in plant communities. The objective of this study was to assess the interplay between stress and disturbance for plant interactions in dry calcareous grasslands. Methods A field experiment was set up in the Dordogne, southern France, where the importance and intensity of biotic interactions undergone by four species were measured along a water stress gradient, and with and without mowing disturbance. Key Results The importance and intensity of interactions varied in a very similar way along treatments. Under undisturbed conditions, plant interactions switched from competition to neutral with increasing water stress for three of the four species, whereas the fourth species was not subject to any significant biotic interaction along the gradient. Responses to disturbance were more species-specific; for two species, competition disappeared with mowing in the wettest conditions, whereas for the two other species, competition switched to facilitation with mowing. Finally, there were no significant interactions for any species in the disturbed and driest conditions. Conclusions At very high levels of stress, plant performances become too weak to allow either competition or facilitation and disturbance may accelerate the collapse of interactions in dry conditions. The results suggest that the importance and direction of interactions are more likely to be positively related in stressful environments.  相似文献   

3.
Ecosystems worldwide depend on habitat‐forming foundation species that often facilitate themselves with increasing density and patch size, while also engaging in facultative mutualisms. Anthropogenic global change (e.g., climate change, eutrophication, overharvest, land‐use change), however, is causing rapid declines of foundation species‐structured ecosystems, often typified by sudden collapse. Although disruption of obligate mutualisms involving foundation species is known to precipitate collapse (e.g., coral bleaching), how facultative mutualisms (i.e., context‐dependent, nonbinding reciprocal interactions) affect ecosystem resilience is uncertain. Here, we synthesize recent advancements and combine these with model analyses supported by real‐world examples, to propose that facultative mutualisms may pose a double‐edged sword for foundation species. We suggest that by amplifying self‐facilitative feedbacks by foundation species, facultative mutualisms can increase foundation species’ resistance to stress from anthropogenic impact. Simultaneously, however, mutualism dependency can generate or exacerbate bistability, implying a potential for sudden collapse when the mutualism's buffering capacity is exceeded, while recovery requires conditions to improve beyond the initial collapse point (hysteresis). Thus, our work emphasizes the importance of acknowledging facultative mutualisms for conservation and restoration of foundation species‐structured ecosystems, but highlights the potential risk of relying on mutualisms in the face of global change. We argue that significant caveats remain regarding the determination of these feedbacks, and suggest empirical manipulation across stress gradients as a way forward to identify related nonlinear responses.  相似文献   

4.
Grime's CSR species life‐strategy theory (competition–stress–ruderality) provides a conceptual framework to classify species into competitive (growing under high productivity, low disturbance), stress‐tolerant (low productivity, low disturbance) and ruderal (high productivity, high disturbance). Importantly, this classification is based on the assumption that the niche space of disturbance and productivity is filled unevenly: while in productive habitats species can adapt to different disturbance regimes, species of low‐productivity and disturbed habitats do not exist, resulting in a triangular distribution of species optima along axes of disturbance and productivity. This assumption has often been criticised, but it has not yet been put under a rigorous test. Here we use existing data on niche positions of central European plant species to test this hypothesis, namely its prediction that species adapted to jointly stressed (low‐productive) and disturbed habitats do not exist. We use Ellenberg indicator values and newly developed indicator values for disturbance as proxies of species positions in the space of productivity and disturbance. We found that positions of species optima along the gradients of productivity and disturbance severity are not independent of each other, with very few species adapted to low‐productive and severely disturbed habitats. In contrast, there is no relationship between productivity and disturbance frequency; a number of species occur in low‐productive and frequently disturbed habitats. The relationship between productivity and disturbance severity can be either due to tradeoffs between life history traits responsible for response to disturbance and productivity (as originally assumed by Grime) or due to historical rarity of severely disturbed habitats in unproductive conditions and consequent absence of evolution of species adapted to them. Our data are based on one specific flora, shaped by glaciations and early introduction of agriculture, but the question of what causes this pattern can be resolved by future analyses of floras with different evolutionary and ecological histories.  相似文献   

5.
New evidence demonstrates that facilitation plays a crucial role even at the edge of life in Maritime Antarctica. These findings are interpreted as support for the stress‐gradient hypothesis (SGH) – a dominant theory in plant community ecology that predicts that the frequency of facilitation directly increases with stress. A recent development to this theory, however, proposed that facilitation often collapses at the extreme end of stress and physical disturbance gradients. In this paper, we clarify the current debate on the importance of plant interactions at the edge of life by illustrating the necessity of separating the two alternatives to the SGH, namely the collapse of facilitation, and the switch from facilitation to competition occurring in water‐stressed ecosystems. These two different alternatives to the SGH are currently often amalgamated with each other, which has led to confusion in recent literature. We propose that the collapse of facilitation is generally due to a decrease in the effect of the nurse plant species, whilst the switch from facilitation to competition is driven by environmental conditions and strategy of the response species. A clear separation between those two alternatives is particularly crucial for predicting the role of plant–plant interactions in mediating species responses to global change.  相似文献   

6.
Interspecific interactions are important structuring forces in ecological communities. Interactions can be disturbed when species are lost from a community. When interactions result in fitness gains for at least one participating organism, that organism may experience reduced fitness as a result of interaction disturbance. However, many species exhibit traits that enable individuals to persist and reproduce in spite of such disruptions, resulting in resilience to interaction disturbance. Such traits can result in interaction generalization, phenotypic and behavioral plasticity, and adaptive capacity. We discuss examples of these traits and use case studies to illustrate how restoration practitioners can use a trait‐based approach to examine species of concern, identify traits that are associated with interspecific interactions and are relevant to resilience, and target such traits in restoration. Restoration activities that bolster interaction resilience could include, for example, reintroducing or supporting specific functional groups or managing abiotic conditions to reduce interaction dependence by at‐risk species (e.g. providing structural complexity offering shelter and cover). Resilience may also be an important consideration in species selection for restoration. Establishment of resilient species, able to persist after interaction disturbance, may be essential to restoring to a functioning ecological community. Once such species are present, they could help support more specialized species that lack resilience traits, such as many species of concern. Understanding the conditions under which processes linked to resilience may enable species to persist and communities to reform following interaction disturbance is a key application of community ecology to ecological restoration.  相似文献   

7.
It has been recently proposed that the decrease in diversity towards the severe end of the humped-back diversity–biomass model of Grime was driven by a collapse of facilitation due to extreme conditions of either stress or physical disturbance. In order to test the hypothesis that disturbance is the primary direct factor driving the collapse of interactions occurring along environmental severity gradients, we conducted a removal experiment in the highly stressed French coastal dunes along a gradient of disturbance due to sand burial. Four dune species were used as targets and transplanted with and without neighbours in four communities along the gradient. The experiment was conducted twice, a dry and an average year. Results of the experiment showed that during the dry year the effect of the environment was prominent and only one species was facilitated for survival in the least disturbed community. During the average year, interactions for growth were important only in the same community, with positive or negative responses depending on the natural position of the target species within the coastal dune gradient. In accordance with our hypothesis, most interactions for both survival and growth were observed in the least disturbed community exhibiting the highest diversity. There were no interactions in the most disturbed community with the lowest diversity.  相似文献   

8.
Abstract Multiple disturbance regimes are increasingly common as novel anthropogenic disturbances are added to existing natural disturbances. However, it is generally unknown whether simultaneous or sequential effects of different forms of disturbance are predictable from the independent effects of each disturbance. This study examines the short‐term effects of sequential disturbance by mineral sand‐mining followed by fire in a forest community in south‐eastern Australia. Four combinations of disturbance were sampled: unburned mined, burned mined, unburned forest (unmined) and burned forest (unmined, with between‐fire interval matching the disturbance interval between mining and fire of the burned mined treatment). All combinations were sampled approximately 12 months following fire on the burned sites. The impact of fire after mining depended on disturbance interval. Sites burned 0.5–2.4 years since mining had fewer native vascular plant species than unburned mined sites of the same mined age, whereas sites with 10–16 years or 20–26 years between mining and fire had greater native species richness than unburned mined sites of the same age. Burning 20–26 years after mining brought native species richness within the range of burned forest. For both unmined and mined sites native seedling densities increased with burning, and with longer disturbance intervals. Weed species richness and weed seedling densities were greater on mined sites than in forest, and burning mined sites elevated weed seedling densities further, particularly for short intervals. Both disturbance interval and fire intensity are likely to have contributed to these results, as intensity on mined areas increased with interval, and at 20–26 years post‐mining was equivalent to unmined forest. These results suggest that fire could be used to promote rehabilitation of these mined areas after at least 10 years, but should be excluded from earlier stages of post‐mining regeneration. However, other sources of spatial and temporal variability should be considered in addition to interval and intensity, as variation among mined areas was correlated with post‐fire weather conditions and available weed sources. Finally, the combined effects of mining and fire could not be predicted from knowledge of the disturbances operating separately, indicating that effects of multiple disturbance may be synergistic rather than additive.  相似文献   

9.
Invasive plants are often regarded as drivers that actively reduce diversity and alter ecosystem processes such as succession. Alternatively, invaders may be passengers that simply colonize openings produced by anthropogenic disturbance and are present only temporarily. Here we test whether the behaviour of invasive species as drivers or passengers is contingent on disturbance and nutrient availability. We created twelve experimental environments (three levels of annual disturbance × four levels of nitrogen availability) for 18 years in a grassland at the northern edge of the North American Great Plains. Out of 19 invasive species initially present, two perennials (Bromus inermis, a grass, and Cirsium arvense, a forb) acted as drivers, maintaining or increasing dominance, maintaining low species richness, and forming an invader‐ dominated successional sequence. Behaviour as drivers was environmentally contingent: Bromus behaved as a driver only in less disturbed environments, and the tendency of Cirsium to behave as a driver increased significantly with both disturbance and nitrogen availability. Most invasive species (90%), however, consistently behaved as passengers, disappearing or becoming rare. The importance of disturbance and fertility for starting invasions is well‐known, but our study shows that these factors also contribute to the behaviour of some invaders as drivers. The emergence of drivers and invader‐dominated successional sequences suggests that, as rates of invasion, disturbance and eutrophication continue to increase with human activity, invasive species that act as drivers may form low‐diversity communities that persist for decades.  相似文献   

10.
Plants bearing extrafloral nectaries (EFNs) often have traits typical of pioneer species, and may be expected to proliferate in disturbed habitats. However, a negative effect of disturbance on visitation by attendant ants could prevent EFN‐bearing plants from acting as disturbance winners. Here, we address the effects of chronic anthropogenic disturbance on the abundance of EFN‐bearing plants and their interactions with attendant ants in Caatinga vegetation of northeastern Brazil. We recorded the abundance of EFN‐bearing plants, proportion of plants visited by ants and composition of ant attendant species at 24 sites varying in levels of disturbance. EFN‐bearing plants as a whole did not behave as a disturbance winner group. The responses of the 13 species to increasing disturbance were highly variable, with three species declining in abundance (loser species). The richness of ant species attending EFNs did not vary with disturbance, but species composition did. The overall proportion of EFN‐bearing plants attended by ants per 5‐min period was not affected by disturbance. However, for the three loser species, attendance decreased from about 50 percent with low and moderate disturbance to half that with very high disturbance. We hypothesize that disturbed sites are more stressful for loser species compared with other EFN‐bearing plants, with physiological stress resulting in lower production of EFN secretions and reduced attraction of ants. This would make such species double losers, with physiological stress at disturbed sites not only directly influencing their performance but also indirectly affecting it through the disruption of a key mutualism.  相似文献   

11.
Invasive species and bottom‐water hypoxia both constitute major global threats to the diversity and integrity of marine ecosystems. These stressors may interact with unexpected consequences, as invasive species that require an initial environmental disturbance to become established can subsequently become important drivers of ecological change. There is recent evidence that improved bottom‐water oxygen conditions in coastal areas of the northern Baltic Sea coincide with increased abundances of the invasive polychaetes Marenzelleria spp. Using a reactive‐transport model, we demonstrate that the long‐term bioirrigation activities of dense Marenzelleria populations have a major impact on sedimentary phosphorus dynamics. This may facilitate the switch from a seasonally hypoxic system back to a normoxic system by reducing the potential for sediment‐induced eutrophication in the upper water column. In contrast to short‐term laboratory experiments, our simulations, which cover a 10‐year period, show that Marenzelleria has the potential to enhance long‐term phosphorus retention in muddy sediments. Over time bioirrigation leads to a substantial increase in the iron‐bound phosphorus content of sediments while reducing the concentration of labile organic carbon. As surface sediments are maintained oxic, iron oxyhydroxides are able to persist and age into more refractory forms. The model illustrates mechanisms through which Marenzelleria can act as a driver of ecological change, although hypoxic disturbance or natural population declines in native species may be needed for them to initially become established. Invasive species are generally considered to have a negative impact; however, we show here that one of the main recent invaders in the Baltic Sea may provide important ecosystem services. This may be of particular importance in low‐diversity systems, where disturbances may dramatically alter ecosystem services due to low functional redundancy. Thus, an environmental problem in one region may be either exacerbated or alleviated by a single species from another region, with potentially ecosystem‐wide consequences.  相似文献   

12.
Question: As it has been found that stress promotes positive interactions mediated by physical amelioration of the environment, is it possible that interactions may turn positive with increasing chronic anthropogenic disturbance (CAD) intensity? Also, is it possible that species that do not tolerate disturbance may require environmental amelioration by their neighbours in disturbed areas, whereas tolerant species may not? Location: The semi‐arid grassland in Concepción Buenavista, Oaxaca, southern Mexico. Methods: We assessed interaction intensity and importance through a neighbour removal experiment along a CAD gradient for three species differing in disturbance tolerance. Water potential was monitored on vegetated and bare soil. Results: A shift from competitive effects in low CAD sites to positive interactions in degraded sites was found. The disturbance‐tolerant species did not respond to CAD, whereas the less tolerant species changed its interactions drastically in terms of growth and reproduction. The species with medium tolerance had an intermediate response. Neighbours promoted germination in all species. Vegetation removal reduced soil humidity. Conclusions: Positive interactions seemingly resulted from the amelioration of the abiotic stresses induced by vegetation removal. The dependence on neighbours to germinate, grow, or reproduce suggests that if CAD eliminates the plant cover, vegetation will hardly recover. Irreversible changes are known to occur in communities where positive interactions predominate, but CAD may set the conditions for irreversible shifts even in communities where interactions are normally competitive.  相似文献   

13.
The disturbance activities of many small mammals, including building burrows, mounds, trails and tunnels, and herbivory, can have significant impacts on their ecosystems, both through trophic and non‐trophic interactions. Some species have large enough impacts through their disturbances to be classed as ecosystem engineers and/or keystone species. Others have negative or null effects. However, at present it is difficult to predict whether the disturbances created by a given species will have significant effects on common measures of ecosystem response such as species richness, diversity and biomass. We ask whether variables characterizing disturbance type, responding species, disturbance‐making species and the environment can predict changes in magnitude and direction of effects on biomass, richness and diversity. We test these predictions with a meta‐analysis of 106 data entries in a database derived from 63 papers, representing 40 small mammal species. We find that small mammal disturbances in general increase biomass, and both increase and decrease richness and diversity. We also identify individual environmental, disturbance‐related, and species‐related variables associated with these changes in magnitude and direction. We discuss the likely interactions between these variables, and how current proxy measures of disturbance impact could be replaced by more accurate direct measures. We recommend that future studies focus on conditions characterized by combinations of variables we identify as significant, in order to understand how these variable interactions (which cannot be analysed through meta‐analysis) affect disturbance outcomes. Based on the gaps in our database and results, we also recommend that future studies directly measure disturbance impact, measure disturbance effects on animal and well as plant taxa, and take measurements on multiple scales.  相似文献   

14.
Predicting forest composition change through time is a key challenge in forest management. While multiple successional pathways are theorized for boreal forests, empirical evidence is lacking, largely because succession has been inferred from chronosequence and dendrochronological methods. We tested the hypotheses that stands of compositionally similar overstory may follow multiple successional pathways depending on time since last stand‐replacing fire (TSF), edaphic conditions, and presence of intermediate disturbances. We used repeated measurements from combining sequential aerial photography and ground surveys for 361 boreal stands in central Canada. Stands were measured in 8–15 yr intervals over a ~ 60 yr period, covering a wide range of initial stand conditions. Multinomial logistic regression was used to analyze stand type transitions. With increasing TSF, stands dominated by shade‐intolerant Pinus banksiana, Populus sp., and Betula papyrifera demonstrated multiple pathways to stands dominated by shade‐tolerant Picea sp., Abies balsamea, and Thuja occidentalis. Their pathways seemed largely explained by neighborhood effects. Succession of stands dominated by shade‐tolerant species, with an exception of stands dominated by Picea sp., was not related to TSF, but rather dependent on edaphic conditions and presence of intermediate disturbances. Varying edaphic conditions caused divergent pathways with resource limited sites being dominated by nutrient‐poor tolerant species, and richer sites permitting invasion of early successional species and promoting species mixtures during succession. Intermediate disturbances promoted deciduous persistence and species diversity in A. balsamea and mixed‐conifer stands, but no evidence was detected to support “disturbance accelerated succession”. Our results demonstrate that in the prolonged absence of stand‐replacing disturbance boreal forest stands undergo multiple succession pathways. These pathways are regulated by neighborhood effects, resource availability, and presence of intermediate disturbance, but the relative importance of these regulators depends on initial stand type. The observed divergence of successional pathways supports the resource‐ratio hypothesis of plant succession.  相似文献   

15.
Abstract Aim Tropical rain forests are often regarded as pristine and undisturbed by humans. In Central Africa, community‐wide disturbances by natural causes are rare and therefore current theory predicts that natural gap phase dynamics structure tree species composition and diversity. However, the dominant tree species in many African forests recruit poorly, despite the presence of gaps. To explain this, we studied the disturbance history of a species‐rich and structurally complex rain forest. Location Lowland rain forest in Southern Cameroon. Methods We identified the recruitment conditions of trees in different diameter classes in 16 ha of species‐rich and structurally complex ‘old growth’ rain forest. For the identification of recruitment preference we used independent data on the species composition along a disturbance gradient, ranging from shifting cultivation fields (representing large‐scale disturbance), to canopy gaps and old growth forest. Results In nine of sixteen 1‐ha forest plots the older trees preferred shifting cultivation fields for recruitment while younger trees preferred gaps and closed forest conditions. This indicates that these nine sites once experienced large‐scale disturbances. Three lines of evidence suggest that historical agricultural use is the most likely disturbance factor: (1) size of disturbed and undisturbed patches, (2) distribution of charcoal and (3) historical accounts of human population densities. Main conclusions Present‐day tree species composition of a structurally complex and species‐rich Central African rain forest still echoes historical disturbances, most probably caused by human land use between three to four centuries ago. Human impact on African rain forest is therefore, contrary to common belief, an issue not of the last decades only. Insights in historical use will help to get a more balanced view of the ‘pristine rain forest’, acknowledging that the dualism between ‘old growth’ and ‘secondary’ forest may be less clear than previously thought.  相似文献   

16.
Disproportionately large numbers of threatened and endangered species and unusually high biodiversity occur on active and former military training areas. Although this may seem paradoxical given the apparently destructive nature of military training, an evaluation of the nature and extent of the disturbances is enlightening. Military training frequently produces heterogeneous landscapes. Large portions of military training areas remain virtually untouched, favoring disturbance‐averse species; other portions are heavily disturbed, favoring disturbance‐dependent species. The rich habitat mosaics include the two extremes as well as the continua of disturbance and succession between them, thus providing suitable habitat for a very large number of species with widely varying habitat requirements. To explain the phenomenon, a heterogeneous disturbance hypothesis is proposed which suggests that biodiversity is maximized where multiple kinds, frequencies, severities, periodicities, sizes, shapes, and/or durations of disturbance occur concomitantly on a landscape in a spatially and temporally distributed fashion. The enhanced biodiversity occurring on active and former military training areas illustrates the need for restoration ecologists to restore or maintain an appropriate heterogeneous disturbance regime when attempting to restore ecosystem function and biodiversity.  相似文献   

17.
Theory suggests that communities should be more open to the establishment of regional species following disturbance because disturbance may make more resources available to dispersers. However, after an initial period of high invasibility, growth of the resident community may lead to the monopolization of local resources and decreased probability of successful colonist establishment. During press disturbances (i.e., directional environmental change), it remains unclear what effect regional dispersal will have on local community structure if the establishment of later arriving species is affected by early arriving species (i.e., if priority effects are important). To determine the relationship between time‐since‐disturbance and invasibility, we conducted a fully factorial field mesocosm experiment that exposed tundra zooplankton communities to two emerging stressors – nutrient and salt addition, and manipulated the arrival timing of regional dispersers. Our results demonstrate that invasibility decreases with increasing time‐since‐disturbance as abundance (nutrient treatments) or species richness (salt treatments) increases in the resident community. Results suggest that the relative timing of dispersal and environmental change will modify the importance of priority effects in determining species composition after a press disturbance.  相似文献   

18.
Questions: In a system of five annual plant species restricted to nest‐mounds of the ant Lasiusflavus in a perennial grassland: 1. Are the population dynamics influenced by ant disturbance? 2. Is the survival of the annuals at the scale of the whole grassland possible under the observed conditions of disturbance dynamics? 3. Which phases in the annuals’ life cycle and patch types contribute most to population growth? Location: Borec hill, northern Czechia, 50°31’ N, 13°59’ E, 446 m a.s.l. Methods: Local population dynamics of the annuals were analysed separately for five patch types that differed in the proportion of bare soil. Vitality rates were assessed directly in the field, but also in a garden experiment, during 2000–2001 and 2001–2002. Population dynamics at the scale of the whole grassland was analysed with a megamatrix approach, combining patch dynamics of the nest‐mounds with patch‐specific population dynamics. Contributions of different phases and patch types to growth rate were estimated by elasticity analysis. Results: Nest‐mounds differed in the percentage of bare soil. Increasing moss cover significantly reduced germination and seed production of all studied annuals and decreased their population growth rates (λ). Although successional processes dominated over ant disturbance, populations of all species could survive well (λ? 1) in the grassland according to the 2000–2001 megamatrix dynamics. Based on the dynamics from the following period, two species would not survive in a long‐term perspective due to random environmental variation. Whereas the A‐A transition (adult plants originating from adults of the previous year) had the highest elasticity under open conditions and ‘good period’ demography, the importance of persistent seeds increased under reverse conditions. This, however, differed among species. Conclusions: Ant‐disturbance was shown to be critical for the population survival of five annual species in the studied grassland. The fate of the annual populations in the grassland system also depends on random environmental variation, which may override the effect of ant activity.  相似文献   

19.
Water is crucial for plant productivity and survival as a fundamental resource, but water conditions can also cause physiological stress and mechanical disturbance to vegetation. However, these different influences of water on vegetation patterns have not been evaluated simultaneously. Here, we demonstrate the importance of three water aspects (spatial and temporal variation of soil moisture and fluvial disturbance) for three ecologically and evolutionary distinct taxonomical groups (vascular plants, mosses and lichens) in Fennoscandian mountain tundra. Fine‐scale plant occurrence data for 271 species were collected from 378 × 1 m2 plots sampled over broad environmental gradients (water, temperature, radiation, soil pH, cryogenic processes and the dominant allelopathic plant species). While controlling all other key environmental variables, water in its different aspects proved to be a crucial environmental driver, acting on individual species and on community characteristics. The inclusion of the water variables significantly improved our models. In this high‐latitude system, the importance of spatial variability of water exceeds the importance of temperature for the fine‐scale distribution of species from the three taxonomical groups. We found differing responses to the three water variables between and within the taxonomical groups. Water as a resource was the most important water‐related variable in species distribution models across all taxonomical groups. Both water resource and disturbance were strongly related to vascular plant species richness, whereas for moss species richness, water resources had the highest influence. For lichen species richness, water disturbance was the most influential water‐related variable. These findings demonstrate that water variables are not only independent properties of tundra hydrology, but also that water is truly a multifaceted driver of vegetation patterns at high‐latitudes.  相似文献   

20.
Changing environmental conditions are affecting diversity and ecosystem function globally. Theory suggests that dispersal from a regional species pool may buffer against changes in local community diversity and ecosystem function after a disturbance through the establishment of functionally redundant tolerant species. The spatial insurance provided by dispersal may decrease through time after environmental change as the local community monopolizes resources and reduces community invasibility. To test for evidence of the spatial insurance hypothesis and to determine the role dispersal timing plays in this response we conducted a field experiment using crustacean zooplankton communities in a subarctic region that is expected to be highly impacted by climate change – Churchill, Canada. Three experiments were conducted where nutrients, salt, and dispersal were manipulated. The three experiments differed in time‐since‐disturbance that the dispersers were added. We found that coarse measures of diversity (i.e. species richness, evenness, and Shannon–Weiner diversity) were generally resistant to large magnitude disturbances, and that dispersal had the most impact on diversity when dispersers were added shortly after disturbance. Ecosystem functioning (chl‐a) was degraded in disturbed communities, but dispersal recovered ecosystem function to undisturbed levels. This spatial insurance for ecosystem function was mediated through changes in community composition and the relative abundance of functional groups. Results suggest that regional diversity and habitat connectivity will be important in the future to maintain ecosystem function by introducing functionally redundant species to promote compensatory dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号