首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antagonistic co‐evolution between hosts and parasites (reciprocal selection for resistance and infectivity) is hypothesized to play an important role in host range expansion by selecting for novel infectivity alleles, but tests are lacking. Here, we determine whether experimental co‐evolution between a bacterium (Pseudomonas fluorescens SBW25) and a phage (SBW25Φ2) affects interstrain host range: the ability to infect different strains of P. fluorescens other than SBW25. We identified and tested a genetically and phenotypically diverse suite of co‐evolved phage variants of SBW25Φ2 against both sympatric and allopatric co‐evolving hosts (P. fluorescens SBW25) and a large set of other P. fluorescens strains. Although all co‐evolved phage had a greater host range than the ancestral phage and could differentially infect co‐evolved variants of P. fluorescens SBW25, none could infect any of the alternative P. fluorescens strains. Thus, parasite generalism at one genetic scale does not appear to affect generalism at other scales, suggesting fundamental genetic constraints on parasite adaptation for this virus.  相似文献   

2.
Anthropogenic nitrogen deposition has shifted many ecosystems from nitrogen (N) limitation to phosphorus (P) limitation. Although well documented in plants, no study to date has explored whether N deposition exacerbates P limitation at higher trophic levels, or focused on the effects of induced plant P limitation on trophic interactions. Insect herbivores exhibit strict N : P homeostasis, and should therefore be very sensitive to variations in plant N : P stoichiometry and prone to experiencing deposition‐induced P limitation. In the current study, we investigated the effects of N deposition and P availability on a plant‐herbivorous insect system. Using common milkweed (Asclepias syriaca) and two of its specialist herbivores, the monarch caterpillar (Danaus plexippus) and milkweed aphid (Aphis asclepiadis) as our study system, we found that experimental N deposition caused P limitation in milkweed plants, but not in either insect species. However, the mechanisms for the lack of P limitation were different for each insect species. The body tissues of A. asclepiadis always exhibited higher N : P ratios than that of the host plant, suggesting that the N demand of this species exceeds P demand, even under high N deposition levels. For D. plexippus, P addition increased the production of latex, which is an important defense negatively affecting D. plexippus growth rate. As a result, we illustrate that P limitation of herbivores is not an inevitable consequence of anthropogenic N deposition in terrestrial systems. Rather, species‐specific demands for nutrients and the defensive responses of plants combine to determine the responses of herbivores to P availability under N deposition.  相似文献   

3.
Highly variable phenotypic responses in mycorrhizal plants challenge our functional understanding of plant‐fungal mutualisms. Using non‐invasive high‐throughput phenotyping, we observed that arbuscular mycorrhizal (AM) fungi relieved phosphorus (P) limitation and enhanced growth of Brachypodium distachyon under P‐limited conditions, while photosynthetic limitation under low nitrogen (N) was exacerbated by the fungus. However, these responses were strongly dependent on host genotype: only the faster growing genotype (Bd3‐1) utilised P transferred from the fungus to achieve improved growth under P‐limited conditions. Under low N, the slower growing genotype (Bd21) had a carbon and N surplus that was linked to a less negative growth response compared with the faster growing genotype. These responses were linked to the regulation of N : P stoichiometry, couples resource allocation to growth or luxury consumption in diverse plant lineages. Our results attest strongly to a mechanism in plants by which plant genotype‐specific resource economics drive phenotypic outcomes during AM symbioses.  相似文献   

4.
The evolution of exploitative specificity can be influenced by environmental variability in space and time and the intensity of trade-offs. Coevolution, the process of reciprocal adaptation in two or more species, can produce variability in host exploitation and as such potentially drive patterns in host and parasite specificity. We employed the bacterium Pseudomonas fluorescens SBW25 and its DNA phage Phi2 to investigate the role of coevolution in the evolution of phage infectivity range and its relation with phage growth rate. At the phage population level, coevolution led to the evolution of broader infectivity range, but without an associated decrease in phage growth rate relative to the ancestor, whereas phage evolution in the absence of bacterial evolution led to an increased growth rate but no increase in infectivity range. In contrast, both selection regimes led to phage adaptation (in terms of growth rates) to their respective bacterial hosts. At the level of individual phage genotypes, coevolution resulted in within-population diversification in generalist and specialist infectivity range types. This pattern was consistent with a multilocus gene-for-gene interaction, further confirmed by an observed cost of broad infectivity range for individual phage. Moreover, coevolution led to the emergence of bacterial genotype by phage genotype interactions in the reduction of bacterial growth rate by phage. Our study demonstrates that the strong reciprocal selective pressures underlying the process of coevolution lead to the emergence and coexistence of different strategies within populations and to specialization between selective environments.  相似文献   

5.
The dynamics and consequences of host–parasite coevolution depend on the nature of host genotype‐by‐parasite genotype interactions (G × G) for host and parasite fitness. G × G with crossing reaction norms can yield cyclic dynamics of allele frequencies (“Red Queen” dynamics) while G × G where the variance among host genotypes differs between parasite genotypes results in selective sweeps (“arms race” dynamics). Here, we investigate the relative potential for arms race and Red Queen coevolution in a protist host–parasite system, the dinoflagellate Alexandrium minutum and its parasite Parvilucifera sinerae. We challenged nine different clones of A. minutum with 10 clones of P. sinerae in a fully factorial design and measured infection success and host and parasite fitness. Each host genotype was successfully infected by four to ten of the parasite genotypes. There were strong G × Gs for infection success, as well as both host and parasite fitness. About three quarters of the G × G variance components for host and parasite fitness were due to crossing reaction norms. There were no general costs of resistance or infectivity. We conclude that there is high potential for Red Queen dynamics in this host–parasite system.  相似文献   

6.
Since fungi and bacteria are the dominant decomposers in soil, their distinct physiologies are likely to differentially influence rates of ecosystem carbon (C) and nitrogen (N) cycling. We used meta‐analysis and an enzyme‐driven biogeochemical model to explore the drivers and biogeochemical consequences of changes in the fungal‐to‐bacterial ratio (F : B). In our meta‐analysis data set, F : B increased with soil C : N ratio (R2 = 0.224, < 0.001), a relationship predicted by our model. We found that differences in biomass turnover rates influenced F : B under conditions of C limitation, while differences in biomass stoichiometry set the upper bounds on F : B once a nutrient limitation threshold was reached. Ecological interactions between the two groups shifted along a gradient of resource stoichiometry. At intermediate substrate C : N, fungal N mineralisation fuelled bacterial growth, increasing total microbial biomass and decreasing net N mineralisation. Therefore, we conclude that differences in bacterial and fungal physiology may have large consequences for ecosystem‐scale C and N cycling.  相似文献   

7.
Abstract.— Models of host‐parasite coevolution assume the presence of genetic variation for host resistance and parasite infectivity, as well as genotype‐specific interactions. We used the freshwater crustacean Daphnia magna and its bacterial microparasite Pasteuria ramosa to study genetic variation for host susceptibility and parasite infectivity within each of two populations. We sought to answer the following questions: Do host clones differ in their susceptibility to parasite isolates? Do parasite isolates differ in their ability to infect different host clones? Are there host clone‐parasite isolate interactions? The analysis revealed considerable variation in both host resistance and parasite infectivity. There were significant host clone‐parasite isolate interactions, such that there was no single host clone that was superior to all other clones in the resistance to every parasite isolate. Likewise, there was no parasite isolate that was superior to all other isolates in infectivity to every host clone. This form of host clone‐parasite isolate interaction indicates the potential for coevolution based on frequency‐dependent selection. Infection success of original host clone‐parasite isolate combinations (i.e., those combinations that were isolated together) was significantly higher than infection success of novel host clone‐parasite isolate combinations (i.e., those combinations that were created in the laboratory). This finding is consistent with the idea that parasites track specific host genotypes under natural conditions. In addition, correspondence analysis revealed that some host clones, although distinguishable with neutral genetic markers, were susceptible to the same set of parasite isolates and thus probably shared resistance genes.  相似文献   

8.
Antagonistic coevolution between hosts and parasites is believed to play a pivotal role in host and parasite population dynamics, the evolutionary maintenance of sex and the evolution of parasite virulence. Furthermore, antagonistic coevolution is believed to be responsible for rapid differentiation of both hosts and parasites between geographically structured populations. Yet empirical evidence for host-parasite antagonistic coevolution, and its impact on between-population genetic divergence, is limited. Here we demonstrate a long-term arms race between the infectivity of a viral parasite (bacteriophage; phage) and the resistance of its bacterial host. Coevolution was largely driven by directional selection, with hosts becoming resistant to a wider range of parasite genotypes and parasites infective to a wider range of host genotypes. Coevolution followed divergent trajectories between replicate communities despite establishment with isogenic bacteria and phage, and resulted in bacteria adapted to their own, compared with other, phage populations.  相似文献   

9.
Antagonistic coevolution between hosts and parasites is probably ubiquitous. However, very little is known of the genetic changes associated with parasite infectivity evolution during adaptation to a coevolving host. We followed the phenotypic and genetic changes in a lytic virus population (bacteriophage; phage Φ2) that coevolved with its bacterial host, Pseudomonas fluorescens SBW25. First, we show the rapid evolution of numerous unique phage infectivity phenotypes, and that both phage host range and bacterial resistance to individual phage increased over coevolutionary time. Second, each of the distinct phage phenotypes in our study had a unique genotype, and molecular evolution did not act uniformly across the phage genome during coevolution. In particular, we detected numerous substitutions on the tail fibre gene, which is involved in the first step of the host-parasite interaction: host adsorption. None of the observed mutations could be directly linked with infection against a particular host, suggesting that the phenotypic effects of infectivity mutations are probably epistatic. However, phage genotypes with the broadest host ranges had the largest number of nonsynonymous amino acid changes on genes implicated in infectivity evolution. An understanding of the molecular genetics of phage infectivity has helped to explain the complex phenotypic coevolutionary dynamics in this system.  相似文献   

10.
Antagonistic coevolution between hosts and parasites is a key process in the genesis and maintenance of biological diversity. Whereas coevolutionary dynamics show distinct patterns under favourable environmental conditions, the effects of more realistic, variable conditions are largely unknown. We investigated the impact of a fluctuating environment on antagonistic coevolution in experimental microcosms of Pseudomonas fluorescens SBW25 and lytic phage SBWΦ2. High‐frequency temperature fluctuations caused no deviations from typical coevolutionary arms race dynamics. However, coevolution was stalled during periods of high temperature under intermediate‐ and low‐frequency fluctuations, generating temporary coevolutionary cold spots. Temperature variation affected population density, providing evidence that eco‐evolutionary feedbacks act through variable bacteria–phage encounter rates. Our study shows that environmental fluctuations can drive antagonistic species interactions into and out of coevolutionary cold and hot spots. Whether coevolution persists or stalls depends on the frequency of change and the environmental optima of both interacting players.  相似文献   

11.
12.
Coevolution with bacteriophages is a major selective force shaping bacterial populations and communities. A variety of both environmental and genetic factors has been shown to influence the mode and tempo of bacteria–phage coevolution. Here, we test the effects that carriage of a large conjugative plasmid, pQBR103, had on antagonistic coevolution between the bacterium Pseudomonas fluorescens and its phage, SBW25ϕ2. Plasmid carriage limited bacteria–phage coevolution; bacteria evolved lower phage-resistance and phages evolved lower infectivity in plasmid-carrying compared with plasmid-free populations. These differences were not explained by effects of plasmid carriage on the costs of phage resistance mutations. Surprisingly, in the presence of phages, plasmid carriage resulted in the evolution of high frequencies of mucoid bacterial colonies. Mucoidy can provide weak partial resistance against SBW25ϕ2, which may have limited selection for qualitative resistance mutations in our experiments. Taken together, our results suggest that plasmids can have evolutionary consequences for bacteria that go beyond the direct phenotypic effects of their accessory gene cargo.  相似文献   

13.
The soil‐borne potato pathogen Spongospora subterranea persists in soil as sporosori, which are aggregates of resting spores. Resting spores may germinate in the presence of plant or environmental stimuli, but direct evidence for resting spore dormancy is limited. A soilless tomato bait plant bioassay and microscopic examination were used to examine features of S. subterranea resting spore dormancy and infectivity. Dried sporosori inocula prepared from tuber lesions and root galls were infective after both short‐ and long‐term storage (1 week to 5 years for tuber lesions and 1 week to 1 year for root galls) with both young and mature root galls inocula showing infectivity. This demonstrated that a proportion of all S. subterranea resting spores regardless of maturity exhibit characteristics of stimuli‐responsive dormancy, germinating under the stimulatory conditions of the bait host plant bioassay. However, evidence for constitutive dormancy within the resting spore population was also provided as incubation of sporosorus inoculum in a germination‐stimulating environment did not fully exhaust germination potential even after 2.4 years. We conclude that S. subterranea sporosori contain both exogenous (stimuli‐responsive) and constitutively dormant resting spores, which enables successful host infection by germination in response to plant stimuli and long‐term persistence in the soil.  相似文献   

14.
While mowing‐induced changes in plant traits and their effects on ecosystem functioning in semi‐arid grassland are well studied, the relations between plant size and nutrient strategies are largely unknown. Mowing may drive the shifts of plant nutrient limitation and allocation. Here, we evaluated the changes in nutrient stoichiometry and allocation with variations in sizes of Leymus chinensis, the dominant plant species in Inner Mongolia grassland, to various mowing frequencies in a 17‐yr controlled experiment. Affected by mowing, the concentrations of nitrogen (N), phosphorus (P), and carbon (C) in leaves and stems were significantly increased, negatively correlating with plant sizes. Moreover, we found significant trade‐offs between the concentrations and accumulation of N, P, and C in plant tissues. The N:P ratios of L. chinensis aboveground biomass, linearly correlating with plant size, significantly decreased with increased mowing frequencies. The ratios of C:N and C:P of L. chinensis individuals were positively correlated with plant size, showing an exponential pattern. With increased mowing frequencies, L. chinensis size was correlated with the allocation ratios of leaves to stems of N, P, and C by the tendencies of negative parabola, positive, and negative linear. The results of structure equation modeling showed that the N, P, and C allocations were co‐regulated by biomass allocation and nutrient concentration ratios of leaves to stems. In summary, we found a significant decoupling effect between plant traits and nutrient strategies along mowing frequencies. Our results reveal a mechanism for how long‐term mowing‐induced changes in concentrations, accumulations, ecological stoichiometry, and allocations of key elements are mediated by the variations in plant sizes of perennial rhizome grass.  相似文献   

15.
16.
Changes in soil nutrient availability during long‐term ecosystem development influence the relative abundances of plant species with different nutrient‐acquisition strategies. These changes in strategies are observed at the community level, but whether they also occur within individual species remains unknown. Plant species forming multiple root symbioses with arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (ECM) fungi, and nitrogen‐(N) fixing microorganisms provide valuable model systems to examine edaphic controls on symbioses related to nutrient acquisition, while simultaneously controlling for plant host identity. We grew two co‐occurring species, Acacia rostellifera (N2‐fixing and dual AM and ECM symbioses) and Melaleuca systena (AM and ECM dual symbioses), in three soils of contrasting ages (c. 0.1, 1, and 120 ka) collected along a long‐term dune chronosequence in southwestern Australia. The soils differ in the type and strength of nutrient limitation, with primary productivity being limited by N (0.1 ka), co‐limited by N and phosphorus (P) (1 ka), and by P (120 ka). We hypothesized that (i) within‐species root colonization shifts from AM to ECM with increasing soil age, and that (ii) nodulation declines with increasing soil age, reflecting the shift from N to P limitation along the chronosequence. In both species, we observed a shift from AM to ECM root colonization with increasing soil age. In addition, nodulation in A. rostellifera declined with increasing soil age, consistent with a shift from N to P limitation. Shifts from AM to ECM root colonization reflect strengthening P limitation and an increasing proportion of total soil P in organic forms in older soils. This might occur because ECM fungi can access organic P via extracellular phosphatases, while AM fungi do not use organic P. Our results show that plants can shift their resource allocation to different root symbionts depending on nutrient availability during ecosystem development.  相似文献   

17.
The elemental composition of marine microorganisms (their C:N:P ratio, or stoichiometry) is central to understanding the biotic and biogeochemical processes underlying key marine ecosystem functions. Phytoplankton C:N:P is species specific and flexible to changing environmental conditions. However, bulk or fixed phytoplankton stoichiometry is usually assumed in biogeochemical and ecological models because more realistic, environmentally responsive C:N:P ratios have yet to be defined for key functional groups. Here, a comprehensive meta-analysis of experimental laboratory data reveals the variable C:N:P stoichiometry of Emiliania huxleyi, a globally significant calcifying phytoplankton species. Mean C:N:P of E. huxleyi is 124C:16N:1P under control conditions (i.e. growth not limited by one or more environmental stressors) and shows a range of responses to changes in nutrient and light availability, temperature and pCO2. Macronutrient limitation caused strong shifts in stoichiometry, increasing N:P and C:P under P deficiency (by 305% and 493% respectively) and doubling C:N under N deficiency. Responses to light, temperature and pCO2 were mixed but typically shifted cellular elemental content and C:N:P stoichiometry by ca. 30% or less. Besides these independent effects, the interactive effects of multiple environmental changes on E. huxleyi stoichiometry under future ocean conditions could be additive, synergistic or antagonistic. To synthesise our meta-analysis results, we explored how the cellular elemental content and C:N:P stoichiometry of E. huxleyi may respond to two hypothetical future ocean scenarios (increased temperature, irradiance and pCO2 combined with either N deficiency or P deficiency) if an additive effect is assumed. Both future scenarios indicate decreased calcification (which is predominantly sensitive to elevated pCO2), increased C:N, and up to fourfold shifts in C:P and N:P. Our results strongly suggest that climate change will significantly alter the role of E. huxleyi (and potentially other calcifying phytoplankton species) in marine biogeochemical processes.  相似文献   

18.
1. Ponto‐Caspian peracaridans, and mysids and amphipods in particular, are among the most successful aquatic invaders. However, species differ in the trophic‐status range of ecosystems they can invade while establishment rates and impacts can vary substantially between habitats. There is limited knowledge of the environmental factors and species characteristics that drive such variation in invasion success. 2. Here we test how trophic level and body stoichiometry vary among peracaridan species and in relation to body size. The amphipod Pontogammarus robustoides and the mysids Limnomysis benedeni and Paramysis lacustris were investigated in ecosystems differing considerably in productivity and nutrient supply, namely an N‐limited eutrophic lagoon and P‐limited mesotrophic lakes. 3. As revealed by stable isotope (15N/14N) analysis, herbivory was inferred to be the main feeding mode of L. benedeni. In contrast, the mysid P. lacustris and the amphipod P. robustoides displayed a higher propensity for predatory feeding at larger body sizes, a pattern that was more pronounced in the eutrophic lagoon than in the mesotrophic lakes. 4. Their mean stoichiometric composition (P. robustoides C:N:P 108:20:1, L. benedeni 92:21:1 and P. lacustris 93:22:1) demonstrates that these peracaridans are rich in nutrients, especially nitrogen. They all exhibited the same ontogenetic pattern of reduced stoichiometric regulation during juvenile stages and stricter homoeostasis at older stages. 5. The higher P content in juveniles of all peracaridan species from the lagoon indicates higher potential somatic and population growth rates than those in the mesotrophic lakes. Such a difference may explain the substantially faster rates of invader establishment observed in the lagoon in comparison with lakes of low trophy. 6. Due to differences in ontogenetic and habitat‐induced variation, the study species differed significantly in stoichiometric variability, which was lowest in L. benedeni and highest in P. robustoides. The ranges of species‐specific variation in stoichiometric ratios corresponded to the trophic (by chlorophyll a) and nutrient stoichiometry (N:P) ranges of lentic waters successfully invaded by these species in Lithuania. 7. Stoichiometric plasticity, which should be associated with flexibility of feeding strategy, may enhance the potential of peracaridan species to successfully invade habitats with differing trophy and nutrient supply. The optimal feeding strategy should be omnivory with a propensity for predatory feeding, which can be adjusted with respect to ontogenetic nutrient demands and resource availability. Invading species may have a stronger effect on the local biota in ecosystems with high P levels, which promote growth, and N limitation that should favour predation.  相似文献   

19.
Reciprocal co‐evolving interactions between hosts and parasites are a primary source of strong selection that can promote rapid and often population‐ or genotype‐specific evolutionary change. These host–parasite interactions are also a major source of disease. Despite their importance, very little is known about the genomic basis of co‐evolving host–parasite interactions in natural populations, especially in animals. Here, we use gene expression and sequence evolution approaches to take critical steps towards characterizing the genomic basis of interactions between the freshwater snail Potamopyrgus antipodarum and its co‐evolving sterilizing trematode parasite, Microphallus sp., a textbook example of natural coevolution. We found that Microphallus‐infected P. antipodarum exhibit systematic downregulation of genes relative to uninfected P. antipodarum. The specific genes involved in parasite response differ markedly across lakes, consistent with a scenario where population‐level co‐evolution is leading to population‐specific host–parasite interactions and evolutionary trajectories. We also used an FST‐based approach to identify a set of loci that represent promising candidates for targets of parasite‐mediated selection across lakes as well as within each lake population. These results constitute the first genomic evidence for population‐specific responses to co‐evolving infection in the P. antipodarum‐Microphallus interaction and provide new insights into the genomic basis of co‐evolutionary interactions in nature.  相似文献   

20.
The fitness consequences of deleterious mutations are sometimes greater when individuals are parasitized, hence parasites may result in the more rapid purging of deleterious mutations from host populations. The significance of host deleterious mutations when hosts and parasites antagonistically coevolve (reciprocal evolution of host resistance and parasite infectivity) has not previously been experimentally investigated. We addressed this by coevolving the bacterium Pseudomonas fluorescens and a parasitic bacteriophage in laboratory microcosms, using bacteria with high and low mutation loads. Directional coevolution between bacterial resistance and phage infectivity occurred in all populations. Bacterial population fitness, as measured by competition experiments with ancestral genotypes in the absence of phage, declined with time spent coevolving. However, this decline was significantly more rapid in bacteria with high mutation loads, suggesting the cost of bacterial resistance to phage was greater in the presence of deleterious mutations (synergistic epistasis). As such, resistance to phage was more costly to evolve in the presence of a high mutation load. Consistent with these data, bacteria with high mutation loads underwent less rapid directional coevolution with their phage populations, and showed lower levels of resistance to their coevolving phage populations. These data suggest that coevolution with parasites increases the rate at which deleterious mutations are purged from host populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号