首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of parasite virulence and host defences is affected by population structure. This effect has been confirmed in studies focusing on large spatial scales, whereas the importance of local structure is not well understood. Slavemaking ants are social parasites that exploit workers of another species to rear their offspring. Enslaved workers of the host species Temnothorax longispinosus have been found to exhibit an effective post‐enslavement defence behaviour: enslaved workers were observed killing a large proportion of the parasites’ offspring. As enslaved workers do not reproduce, they gain no direct fitness benefit from this ‘rebellion’ behaviour. However, there may be an indirect benefit: neighbouring host nests that are related to ‘rebel’ nests can benefit from a reduced raiding pressure, as a result of the reduction in parasite nest size due to the enslaved workers’ killing behaviour. We use a simple mathematical model to examine whether the small‐scale population structure of the host species could explain the evolution of this potentially altruistic defence trait against slavemaking ants. We find that this is the case if enslaved host workers are related to nearby host nests. In a population genetic study, we confirm that enslaved workers are, indeed, more closely related to host nests within the raiding range of their resident slavemaker nest, than to host nests outside the raiding range. This small‐scale population structure seems to be a result of polydomy (e.g. the occupation of several nests in close proximity by a single colony) and could have enabled the evolution of ‘rebellion’ by kin selection.  相似文献   

2.
On coral reefs in New Caledonia, the eggs of demersal‐spawning fishes are consumed by turtle‐headed seasnakes (Emydocephalus annulatus). Fish repel nest‐raiding snakes by a series of tactics. We recorded 232 cases (involving 22 fish species) of antipredator behaviour towards snakes on a reef near Noumea. Blennies and gobies focused their attacks on snakes entering their nests, whereas damselfish (Pomacentridae) attacked passing snakes, as well as nest‐raiders (reflecting territorial defence). Biting the snake was the most common form of attack, although damselfish and blennies also slapped snakes with the tail, or (blennies only) plugged the nest entrance with the parent fish's body. Gobies rarely defended the nest, although they sometimes bit or threw sand at the snake. A snake was more likely to flee if it was attacked before it began feeding rather than after it found the eggs (82% versus 3% repelled) and if bitten on the head rather than the body (68% versus 53%). Tail‐slaps were not effective, although plugging the burrow and throwing sand often caused snakes to flee. These strong patterns reflect phylogenetic variation in fish behaviour (e.g. damselfish detect a snake approach sooner than do substrate‐dwelling blennies and gobies) coupled with intraspecific variation in snake diets. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 415–425.  相似文献   

3.
Division of labour in social insect colonies is facilitated in two ways: through temporal sharing of tasks or by morphologically specialised castes. In casteless species, colony defence is maintained by morphologically indistinct workers, who lack the obvious defensive specialisation of polymorphic species. Discrimination of intruders is carried out via antenna, which also detects defensive social cues such as alarm pheromones. Despite their functional importance however, antennal morphology is rarely considered in studies of nestmate recognition. We investigated antennal morphology and the necessity of social cues in mediating defensive behaviour across differentially tasked workers of a casteless social bee, Tetragonula carbonaria. Our results suggest that the current understanding of division of labour in casteless worker species remains poorly understood, with differences in antennal morphology and aggression creating morphologically and behaviourally distinct ‘cryptic castes’. Further, we found that defensive behaviour was only elicited near nest odours, highlighting the importance of mediating aggression among workers.  相似文献   

4.
Detailed measurements on nest architecture and colony size of the fungus-growing ant Mycetophylax simplex Emery, 1888 (Formicidae, Attini) are reported for the first time, based on excavations of 55 nests from two sites in southern Brazil. All nests were subterranean, with a single entrance hole. Most nests consisted of two chambers, an upper and a lower chamber, but one and three-chamber nests were also found. The chambers were more cone-shaped than rounded, and located at a depth ranging from 4.0 cm to 32.5 cm below the nest entrance. The chamber dimensions generally increased as the depth of the chambers increased, and the lower chamber was mostly wider than the upper one. The fungus garden was always found resting on the chamber floor. The average colony size was 264.1 workers, ranging from 67 to 610 workers. Colonies produced most sexuals during the summer (from December to March) and a few during the winter (July). Direct observations showed that colonies were mostly monogynous, but more than one queen was recorded in two nests, suggesting that polygyny may also occur in this species. Received 30 November 2006; revised 20 April 2007; accepted 23 April 2007.  相似文献   

5.
Social insects construct nests that protect their brood and food resources from both the physical environment and natural enemies. Stingless bees use plant‐derived resins, mixed with wax to form propolis, in the construction of their nests, and these products can be effective sources of defense against natural enemies, including ants. However, it is not known whether this defense, in the form of deterring or repelling workers, derives from the physical properties or chemical compounds of these products. The nest entrance of Tetragonula carbonaria is constructed with propolis and Corymbia resins, and we ask whether nonvolatile chemicals present in these products act as a defense against ants. Our field experiments revealed that workers of Iridomyrmex mayri Forel were deterred from crossing a chemical barrier comprising nonvolatile, nonpolar (hexane) extracts of propolis and Corymbia tree resin. However, polar (ethanol) extracts did not have this effect. These data are the first to demonstrate that the chemical components alone of entrance propolis and resins can provide a nest‐defense function against ants.  相似文献   

6.
Many ant species construct subterranean nests. The presence of their nests may explain soil respiration “hot spots”, an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species‐specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single‐hole and multiple‐hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species‐specific activity of ants, the nest soil environment, and nest structure.  相似文献   

7.
As the structural bases of insect societies are essential to colony survival, nests must be protected from predation. Nest defence behaviours are among the most important roles assigned to worker members. However, in hornet societies, temporal polyethism (age-dependent division of labour among workers) is assumed to be weak. Few studies have investigated this phenomenon, probably because hornet nests are aggressively defended and dangerous to approach. In the present study, we propose a method for rearing nests of Vespa velutina, a species newly introduced into Europe. This method enables the handling of hornets, and thus the design of experiments. By marking all newly emerged hornets, we recorded aggressiveness in workers of different ages from three captive colonies. We observed that nest defence behaviour in V. velutina depends on the age of the workers. Nest defence appears to be mediated by the queen, probably through pheromones that promote nest organization. We also identified a previously unreported but important behaviour in V. velutina that workers are aggressive towards male hornets. This behaviour might be a strategy to avoid inbreeding. Collectively, our results provide new research perspectives for the management of social hymenopteran predators.  相似文献   

8.
Although predation of individual social insect workers has little effect on colony fitness, nest predation may be a significant selective agent because it can result in substantial loss of reproductive success. Surprisingly, the consequences of predation on social insect nests are poorly understood. In the present study, we investigate the factors that correlate with the probability of predation by echidnas, Tachyglossus aculeatus , on nests and colonies of the facultatively polydomous meat ant, Iridomyrmex purpureus. In particular, we investigate whether colony fragmentation provides a mechanism for reducing the costs of echidna predation. Over 2 years, 138 of the 140 colonies on our study site were depredated. Nest predation was most common in woodlands but with no obvious seasonal patterns. The probability of nest predation was positively correlated with the size of the nest, and negatively correlated with the density of surrounding nests. Although polydomous colonies are at a similar risk of predation by echidnas, the proportion of depredated nests is negatively correlated with the number of nests; thus, the probability that one or more nests avoid predation is increased with increasing nest numbers. Surprisingly, we found no influence of the level of echidna predation on colony growth, measured by either changes in the number of nests or the number of nest entrance holes.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 1–8.  相似文献   

9.
Aculeate Hymenoptera provision their progeny with large amounts of food. To protect their investment against brood parasites, females of many bee and wasp species construct brood cells that are hard to penetrate when finally sealed. However, the sealed brood cells also pose a problem for parasites that oviposit in the brood cell during provisioning. Brood parasites are smaller than their host and may lack strong mandibles to break through the solid brood cell walls. Furthermore, in nests built in existing cavities, newly‐eclosed brood parasites need information about the location of the nest entrance. In the present study, the mechanisms of emergence are investigated in Cacoxenus indagator Loew (Diptera, Drosophilidae), the major cleptoparasite in nests of the red Mason bee Osmia bicornis L. (Hymenoptera, Megachilidae). Larvae of C. indagator move to brood cells closer to the nest entrance and sometimes make small emergence holes in the final closure of the nest entrance. Nevertheless, approximately one‐third of newly‐eclosed flies orientate and break through at least one intact cell partition to emerge. Flies make most of their attempts to emerge at the correct side (i.e. the one pointing to the nest entrance, probably by using the shape of the cell partition as a cue). Newly‐eclosed flies use their head blister (ptilinum) to exert hydraulic pressure on particles of the cell partitions and produce small holes. Thus, C. indagator exhibits a set of behavioural and physiological adaptations enabling them to successfully emerge even from closed brood cells of their host.  相似文献   

10.
Christa Beckmann  Kathy Martin 《Ibis》2016,158(2):335-342
Nest structures are essential for successful reproduction in most bird species. Nest construction costs time and energy, and most bird species typically build one nest per breeding attempt. Some species, however, build more than one nest, and the reason for this behaviour is often unclear. In the Grey Fantail Rhipidura albiscapa, nest abandonment before egg‐laying is very common. Fantails will build up to seven nests within a breeding season, and pairs abandon up to 71% of their nests before egg‐laying. We describe multiple nest‐building behaviour in the Grey Fantail and test four hypotheses explaining nest abandonment in this species: cryptic depredation, destruction of nests during storm events, and two anti‐predatory responses (construction of decoy nests to confuse predators, and increasing concealment to ‘hide’ nests more effectively). We found support for only one hypothesis – that abandonment is related to nest concealment. Abandoned nests were significantly less concealed than nests that received eggs. Most abandoned nests were not completely built and none received eggs, thus ruling out cryptic predation. Nests were not more likely to be abandoned following storm events. The decoy nest hypothesis was refuted as abandoned nests were constructed at any point during the breeding season and some nests were dismantled and the material used to build the subsequent nest. Thus, Grey Fantails are flexible about nest‐site locations during the nest‐building phase and readily abandon nest locations if they are found to have deficient security.  相似文献   

11.
Spatial distribution of ant workers within the nest is a key element of the colony social organization contributing to the efficiency of task performance and division of labour. Spatial distribution must be efficiently organized when ants are highly starved and have to get food rapidly. By studying ants’ behaviour within the nest during the beginning of food recruitment, this study demonstrates how the spatial organization is affected by starvation and improves the efficiency and the speed of recruitment as well as the allocation of food. (1) In starved nests, nestmates left the deep part of the nest and crowded near the nest entrance. This modification of the spatial distribution is a local phenomenon concerning only the individuals situated in the first chamber near the nest entrance. These starved individuals have a higher probability of leaving the nest after a contact with recruiters than nestmates situated deeper in the nest. This strongly suggests that nestmates situated near the nest entrance have a low response threshold to the signals emitted by recruiters. Their higher responsiveness speeds up their exit to the foraging area and hence may increase the efficiency of highly starved colonies in exploiting new food opportunities. (2) In starved nests, the trajectory covered by recruiters between contacts with nestmates was nearly twice as small. For recruiters, this represented a gain of time in the allocation of food. As the recruitment process follows snowball dynamics, this gain of time by starved recruiters might also speed up the exploitation of food. This study evidences how the spatial distribution of individuals as a function of their motivational state might have a regulatory function in the recruitment process, which should be generic for many social species.  相似文献   

12.
1. Xylocopa virginica virginica Linnaeus is a wide‐ranging species with plastic nesting behaviour that appears to represent an intermediary between solitary and social nesting species. Over 3 years, a natural population was studied with the objective of quantifying the relationship among population dynamics, climate, female nest provisioning behaviour, and male mating strategy. 2. Males in the population congregated around female‐occupied nesting sites before the beginning of nest provisioning by females; both resident and satellite male mating strategies were observed. Overall, the present results are consistent with female defence polygyny. 3. Male mating strategies were consistent across the three breeding seasons of our study, in spite of annual variation in population size, sex ratio, and weather. Male mating behaviour was also consistent with that seen in other populations with longer breeding seasons. 4. Adult non‐breeding females that never leave nests are observed in nests throughout the breeding season and we hypothesise that males continue to defend territories after breeding females have mated because of a small probability they can mate with one of these non‐breeding females. 5. These results are important to our understanding of the relationship between mating systems and the evolution of sociality, contributing data on the role of ecological factors to male mating behaviour. Collection of such data for a variety of species that differ in sociality is necessary for the comparative analysis that is required to fully elucidate coevolution of mating systems and sociality.  相似文献   

13.
14.
Climate‐driven increases in spring temperatures are expected to result in higher prey availability earlier in the breeding season for insectivorous birds breeding in wetland habitats. Predation during the incubation phase is a major cause of nesting failure in open‐nesting altricial birds such as the Eurasian reed warbler. The nest predation rate in this species has recently been shown to be substantially reduced under conditions of experimentally elevated invertebrate prey availability. Food availability near the nest may be an important determinant of adult incubation and nest defence behaviours during the incubation period. We used two experimental studies to compare incubation behaviour and nest defence in food‐supplemented and unsupplemented adult Eurasian reed warblers during the incubation phase. In the first study we measured nest defence behavioural responses to a taxidermic mount of a native predator (stoat Mustela erminea). In the second study we used temperature loggers installed in nests to measure breaks in incubation as a measure of nest vulnerability. Food‐supplemented birds responded aggressively to the presence of a predator more quickly than those in the unsupplemented group, suggesting they are closer to their nest and can more quickly detect a predator in the vicinity. Food‐supplemented birds also had shorter breaks in incubation (both in terms of maximum and mean off‐bout durations), presumably because they were foraging for shorter periods or over shorter distances from the nest. This study therefore identifies the behavioural mechanisms by which changes in food availability may lead to changes in nest survival and thus breeding productivity, in open‐nesting insectivorous birds.  相似文献   

15.
Understanding the foraging behaviour of predators is key to interpreting the role of anti‐predator adaptations of birds in reducing nest losses. Conducting research in primaeval habitats, with a low level of direct human interference, is particularly valuable in the understanding of predator–prey interactions. Using nest cameras, we investigated the identity and behaviour of potential and actual predators appearing at Wood Warbler Phylloscopus sibilatrix nests, and the importance of different predator groups for nest survival, in the primaeval part of Bia?owie?a Forest (Poland). Mammals formed the main predator group (30 of 32 nest depredations), particularly medium‐sized carnivores (24 of 32), which attacked nests more frequently than merely passing by. This contrasted with other species, especially small rodents, which were commonly recorded near nests but rarely attacked them. Most nest attacks (22 of 32) took place at night and nest survival did not depend on nest visibility, indicating a reduced utility of nest concealment in defence against predators using mainly sound or olfaction when hunting. Daily nest survival declined strongly with nest progression (from egg‐laying to fledging of chicks), probably due to increased predator detection of nests containing older and louder chicks, rather than to increasing parental activity at nests during the day. The set of actual nest predators differed from some previous studies in human‐transformed habitats, showing that Wood Warblers may face different threats in modified vs. near‐pristine environments.  相似文献   

16.
Parental care is a behavior that increases the growth and survival of offspring, often at a cost to the parents' own survival and/or future reproduction. In this study, we focused on nest guarding, which is one of the most important types of extended parental care; we studied this behavior in two solitary bee species of the genus Ceratina with social ancestors. We performed the experiment of removing the laying female, who usually guards the nest after completing its provisioning, to test the effects of nest guarding on the offspring survival and nest fate. By dissecting natural nests, we found that Ceratina cucurbitina females always guarded their offspring until the offspring reached adulthood. In addition, the females of this species were able to crawl across the nest partitions and inspect the offspring in the brood cells. In contrast, several Ceratina chalybea females guarded their nests until the offspring reached adulthood, but others closed the nest entrance with a plug and deserted the nest. Nests with a low number of provisioned cells were more likely to be plugged and abandoned than nests with a higher number of cells. The female removal experiment had a significantly negative effect on offspring survival in both species. These nests frequently failed due to the attacks of natural enemies (e.g., ants, chalcidoid wasps, and other competing Ceratina bees). Increased offspring survival is the most important benefit of the guarding strategy. The abandonment of a potentially unsuccessful brood might constitute a benefit of the nest plugging behavior. The facultative nest desertion strategy is a derived behavior in the studied bees and constitutes an example of an evolutionary reduction in the extent of parental care.  相似文献   

17.
1. Workers in several bee species travel to conspecific nests (‘drifting’), enter them, and produce male offspring inside them, so acting as intra‐specific social parasites. This adds a new dimension to bees' reproductive behaviour and spatial ecology, but the extent to which drifting occurs over field scales, i.e. at natural nest densities in field conditions, has been unclear. 2. Using the bumble bee Bombus terrestris (Linnaeus) as a model system, we sought to determine rates of worker drifting at field scales and the frequency of potential drifter workers in wild nests. 3. A field experiment with 27 colonies showed that workers travelled to, and became accepted in, conspecific nests that were up to 60 m away, although the number of accepted drifter workers within nests fell significantly with distance. The rate at which nests were entered by drifters was relatively high and significantly exceeded the rate at which drifters became accepted. 4. Microsatellite genotyping of eight field‐collected nests from Greater London, U.K., showed that a low frequency (3%) of workers were not full sisters of nestmate workers and hence were likely to have been drifter workers. 5. It is therefore concluded that workers can drift to conspecific nests over field scales and confirmed that successful drifting occurs in natural populations. Drifting appears to be a natural but low‐frequency behaviour permitting B. terrestris workers to gain direct fitness.  相似文献   

18.
Ant supercolonies are the largest cooperative units known in nature. They consist of networks of interconnected nests with hundreds of reproductive queens, where individuals move freely between nests, cooperate across nest boundaries and show little aggression towards non‐nestmates. The combination of high queen numbers and free mixing of workers, queens and brood between nests results in extremely low nestmate relatedness. In such low‐relatedness societies, cooperative worker behaviour appears maladaptive because it may aid random individuals instead of relatives. Here, we provide a comprehensive picture of genetic substructure in supercolonies of the native wood ant Formica aquilonia using traditional population genetic as well as network analysis methods. Specifically, we test for spatial and temporal variation in genetic structure of different classes of individuals within supercolonies and analyse the role of worker movement in determining supercolony genetic networks. We find that relatedness within supercolonies is low but positive when viewed on a population level, which may be due to limited dispersal of individuals and/or ecological factors such as nest site limitation and competition against conspecifics. Genetic structure of supercolonies varied with both sample class and sampling time point, which indicates that mobility of individuals varies according to both caste and season and suggests that generalizing has to be carried out with caution in studies of supercolonial species. Overall, our analysis provides novel evidence that native wood ant supercolonies exhibit fine‐scale genetic substructure, which may explain the maintenance of cooperation in these low‐relatedness societies.  相似文献   

19.
The ponerine ant Brachyponera chinensis was introduced to the USA, where it has become invasive. Although various ecological data have been collected for B. chinensis populations in the USA, most aspects concerning the biology and ecology of native populations in Japan, a presumed origin, remain unknown. Here we investigated the social structure and nestmate discrimination in native populations of B. chinensis and a closely related species, B. nakasujii. Both species showed functional polygyny over seasons. Only in B. nakasujii was there a seasonal change in the numbers of queens and workers per nest. In arena tests, workers of neither species showed aggressive behaviors to conspecific non‐nestmates from the same population, and the mean aggression score did not increase with the distance between nests. However, some differences in non‐aggressive responses were detected between nestmate and non‐nestmate pairs in both species. In an experiment to introduce a single worker into a nest, B. chinensis accepted non‐nestmates with a high probability just like nestmates, whereas in B. nakasujii non‐nestmates were less accepted than nestmates. These findings suggest that native populations of B. chinensis already possess some of the key characteristics shared by many invasive exotic ants in introduced ranges, such as stable polygyny, weak internest aggression and acceptance of non‐nestmates. These tendencies are remarkable in comparison to the closely related B. nakasujii.  相似文献   

20.
Rolf Kümmerli  Laurent Keller 《Oikos》2008,117(4):580-590
Due to their haplo‐diploid sex determination system and the resulting conflict over optimal sex allocation between queens and workers, social Hymenoptera have become important model species to study variation in sex allocation. While many studies indeed reported sex allocation to be affected by social factors such as colony kin structure or queen number, others, however, found that sex allocation was impacted by ecological factors such as food availability. In this paper, we present one of the rare studies that simultaneously investigated the effects of social and ecological factors on social insect nest reproductive parameters (sex and reproductive allocation, nest productivity) across several years. We found that the sex ratio was extremely male biased in a polygynous (multiple queens per nest) population of the ant Formica exsecta. Nest‐level sex allocation followed the pattern predicted by the queen‐replenishment hypothesis, which holds that gynes (new queens) should only be produced and recruited in nests with low queen number (i.e. reduced local resource competition) to ensure nest survival. Accordingly, queen number (social factor) was the main determinant on whether a nest produced gynes or males. However, ecological factors had a large impact on nest productivity and therefore on a nest's resource pool, which determines the degree of local resource competition among co‐breeding queens and at what threshold in queen number nests should switch from male to gyne production. Additionally, our genetic data revealed that gynes are recruited back to their parental nests after mating. However, our genetic data are also consistent with some adult queens dispersing on foot from nests where they were produced to nests that never produced queens. As worker production is reduced in gyne‐producing nests, queen migration might be offset by workers moving in the other direction, leading to a nest network characterized by reproductive division of labour. Altogether our study shows that both, social and ecological factors can influence long‐term nest reproductive strategies in insect societies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号