首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unified neutral theory of biodiversity and biogeography provides a promising framework that can be used to integrate stochastic and ecological processes operating in ecological communities. Based on a mechanistic non‐neutral model that incorporates density‐dependent mortality, we evaluated the deviation from a neutral pattern in tree species abundance distributions and explored the signatures of historical and ecological processes that have shaped forest biomes. We compiled a dataset documenting species abundance distributions in 1168 plots encompassing 16 973 tree species across tropical, temperate, and boreal forests. We tested whether deviations from neutrality of species abundance distributions vary with climatic and historical conditions, and whether these patterns differ among regions. Non‐neutrality in species abundance distributions was ubiquitous in tropical, temperate, and boreal forests, and regional differences in patterns of non‐neutrality were significant between biomes. Species abundance evenness/unevenness caused by negative density‐dependent or abiotic filtering effects had no clear macro‐scale climatic drivers, although temperature was non‐linearly correlated with species abundance unevenness on a global scale. These findings were not significantly biased by heterogeneity of plot data (the differences of plot area, measurement size, species richness, and the number of individuals sampled). Therefore, our results suggest that environmental filtering is not universally increasing from warm tropical to cold boreal forests, but might affect differently tree species assembly between and within biomes. Ecological processes generating particularly dominant species in local communities might be idiosyncratic or region‐specific and may be associated with geography and climate. Our study illustrates that stochastic dynamical models enable the analysis of the interplay of historical and ecological processes that influence community assemblies and the dynamics of biodiversity.  相似文献   

2.
1. In riverine ecosystems, streamflow determines the physical template upon which the life history strategies of biota are forged. Human freshwater needs and activities have resulted in widespread alteration of the variability, predictability and timing of streamflow, and anticipating the biotic consequences of anthropogenic streamflow alteration is critical for successful environmental flow management. In this study, we examined relationships between dam characteristics, metrics of flow alteration and fish functional community composition according to life history strategies by coupling stream flow records and fish survey data in paired flow‐regulated and free‐flowing rivers across the conterminous United States. 2. Dam operations have generally reduced flow variability and increased flow constancy based on a comparison of pre‐ and post‐dam flow records (respective mean record lengths 26.2 and 43.1 years). In agreement with ecological theory, fish assemblages downstream of dams were characterised by a lower proportion of opportunistic species (a strategy favoured in environmental settings dominated by unpredictable environmental change) and a higher proportion of equilibrium species (a strategy favoured in more stable, predictable environments) compared to free‐flowing, neighbouring locations. 3. Multiple linear regression models provided modest support for links between alteration of specific flow attributes and differential life history representation below dams, and they provided strong support for life history associations with dam attributes (age and release type). We also found support for a relationship of both reduced flow variability and dam age with higher representation of non‐native species below dams. 4. Our study demonstrated that river regulation by large dams has significant hydrological and biological consequences across the United States. We showed that on ecological time scales (i.e. the order of years to decades), dams are effectively changing the functional composition of communities that have established over millennia. Furthermore, the changes are directional and indicate a filtering by dams for some life histories (equilibrium strategists) and against other life histories (opportunists). Finally, our study highlights that dependence upon long‐term flow records and availability of biotic surveys extracted from national survey efforts limit our ability to guide environmental flow standards particularly in data‐poor regions.  相似文献   

3.
The influences of low-head dams on the fish assemblages were examined in this study, using fish data collected in six treatment and five reference sites at three low-head dams in the headwater streams of the Qingyi watershed, China. Comparing with those in the reference sites, local habitat variables were significantly altered by low-head dams in the treatment sites, involving wider channel (only in the impoundment area), deeper water and slower flow. Fish species richness varied significantly across seasons, not across site categories, suggesting that these low-head dams did not alter species richness. However, significant decreases in fish abundance and density were observed in the impoundment areas immediately upstream of dams, but not in the plunge areas downstream. Fish assemblage structures kept relative stability across seasons, and their significant difference between-site was only observed between the impoundment areas and the sites far from dams upstream. This variation in assemblage structures was due to the differing relative abundance of some co-occurring species; more lentic but less lotic fish was observed in the impoundment areas. The spatial and temporal patterns of fish assemblages were correlated with local habitat in this study area. Wetted width had negative correlation with fish species richness, abundance and density, respectively. Water temperature also positively affected species richness. In addition, wetted width, water depth, current velocity and substrate were the important habitat variables influencing assemblage structures. Our results suggested that, by modifying local habitat characteristics, low-head dams altered fish abundance and density in the impoundment areas immediately upstream of dam, not in the plunge areas immediately downstream, and thereby influenced fish assemblage structures in these stream segments.  相似文献   

4.
Species assemblages are shaped by local and continental-scale processes that are seldom investigated together, due to the lack of surveys along independent gradients of latitude and habitat types. Our study investigated changes in the effects of forest composition and structure on bat and bird diversity across Europe. We compared the taxonomic and functional diversity of bat and bird assemblages in 209 mature forest plots spread along gradients of forest composition and vertical structure, replicated in 6 regions spanning from the Mediterranean to the boreal biomes. Species richness and functional evenness of both bat and bird communities were affected by the interactions between latitude and forest composition and structure. Bat and bird species richness increased with broadleaved tree cover in temperate and especially in boreal regions but not in the Mediterranean where they increased with conifer abundance. Bat species richness was lower in forests with smaller trees and denser understorey only in northern regions. Bird species richness was not affected by forest structure. Bird functional evenness increased in younger and denser forests. Bat functional evenness was also influenced by interactions between latitude and understorey structure, increasing in temperate forests but decreasing in the Mediterranean. Covariation between bat and bird abundances also shifted across Europe, from negative in southern forests to positive in northern forests. Our results suggest that community assembly processes in bats and birds of European forests are predominantly driven by abundance and accessibility of feeding resources, i.e., insect prey, and their changes across both forest types and latitudes.  相似文献   

5.
Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama‐Coosa‐Tallapoosa (ACT), and Apalachicola‐Chattahoochee‐Flint (ACF) basins. Using long‐term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure “expected” streamflow) at the sub‐basin scale over the past half‐century. Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non‐native species richness using binomial logistic regression. Sub‐basin extirpations in the Southwest (= 95 Upper CR,= 130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub‐basin extirpations in the Southeast (ACT = 46, ACF = 22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin‐wide differences in native or non‐native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be expected unless management strategies that balance flow regulation with ecological outcomes are widely implemented.  相似文献   

6.
二滩水电站水库形成后鱼类种类组成的演变   总被引:11,自引:0,他引:11  
本文对二滩水库建成前后,雅砻江下游长约380km河段的鱼类种类结构、生态类群及相对资源量的变化进行了研究。结果表明水库建成后不同区段的鱼类种类结构发生了变化,喜栖静水和缓流环境的种类逐渐在库区占主导地位,适应急流环境的种类主要分布于库尾和支流等局部水域中,一些外来种已经定居并在某些水域形成了优势种群。在水库建成后的头几年,由于鱼类种群密度增加还导致了渔业捕捞量大幅度上升。针对上述变化,结合雅砻江梯级电站建设可能带来的进一步环境改变,作者提出了建立自然保护江段、开展人工繁殖放流、进行水库生态调度以及防止外来种入侵等措施和建议。  相似文献   

7.
8.
9.
Extensive distribution of widespread species and the loss of native species driven by anthropogenic disturbances modify community similarity, resulting in a decrease or increase in community distinctiveness. Data from four basins in the Wannan Mountains, China, were used to evaluate the effects of low‐head dams on patterns of fish faunal homogenization and differentiation based on abundance data. We aimed to examine the spatial changes in taxonomic and functional similarities of fish assemblages driven by low‐head dams and to examine whether the changes in the similarity of fish assemblages differed between taxonomic and functional components. We found that low‐head dams significantly decreased the mean taxonomic similarity but increased the mean functional similarity of fish assemblages in impoundments using abundance‐based approaches, suggesting that taxonomic differentiation accompanied functional homogenization in stream fish assemblages. These results show the importance of population abundance in structuring fish faunal homogenization and differentiation at small scales, especially when the major differences among assemblages are in species abundance ranks rather than species identities. Additionally, we also found only a weak positive correlation between changes in mean taxonomic and functional similarities, and partial pairs exhibited considerable variation in patterns of fish faunal homogenization and differentiation for taxonomic and functional components. In conclusion, this study highlighted that the observed taxonomic differentiation of current fish assemblages (short‐term phenomenon) is probably an early warning sign of further homogenization in regions where native species are completely predominated and that changes in taxonomic similarity cannot be used to predict changes in functional similarity.  相似文献   

10.
Aim To compare patterns and drivers of freshwater fish introductions across five climatically similar regions and evaluate similarities and differences in the non‐native species introduced. Location Five mediterranean‐climate regions: California (USA), central Chile, south‐western Australia, the Iberian peninsula (Spain and Portugal) and the south‐western Cape (South Africa). Methods Species presence–absence for native and non‐native fishes were collated across the regions, and patterns of faunal change were examined using univariate and multivariate statistical approaches. Taxonomic patterns in freshwater fish introductions were evaluated by comparing the number of species introduced by order to the numbers expected from binomial probabilities. Factors influencing multiple introductions of freshwater fish species in mediterranean regions were determined using generalized linear modelling. Results High levels of endemism (70–90%) were revealed for south‐western Cape, south‐western Australia and Chile. Despite their high rates of endemism, all regions currently have more non‐native species than endemic species. Taxonomic selection was found for five orders, although this was only significant for Salmoniformes across regions. The average increase in regional compositional similarity of fish faunas resulting from non‐native fish introductions was 8.0%. Important factors predicting multiple introductions of a species include previous introduction success and mean latitude of its distribution Main conclusions The mediterranean‐climate regions of the world, separated by vast distances, originally had a few fish species in common but are now more similar, owing to species introductions, illustrating the extent and importance of taxonomic homogenization. Introductions are largely driven by taxonomically biased human interests in recreational fisheries, aquaculture and ornamental pet species.  相似文献   

11.
Triest  Ludwig  Lung’ayia  Henri  Ndiritu  George  Beyene  Abebe 《Hydrobiologia》2012,695(1):343-360
We investigated epilithic diatoms in rivers draining to the Nyanza Bay in Lake Victoria (Kenya) with the aim of determining environmental gradients in the assemblages and testing the usefulness of diatom metrics from temperate regions. Spatial and temporal variations of assemblages were studied in 12 sites of three rivers. Kibos, Nyando, and Kisat rivers contained 224 diatom taxa collected on seven sampling occasions over 4 years. Species richness showed a marginal decrease downstream and was the lowest at sites with high conductivity and ammonia–nitrogen levels. Two-Way Indicator Species Analysis and Canonical Correspondence Analysis revealed two major groups of river sites. Conductivity, alkalinity, turbidity, dissolved oxygen, and silicate were the most important variables influencing species distribution. Ecological diatom metrics of temperate regions and the Specific Pollution sensitivity Index showed good relationships with environmental variables. Both diatom assemblages and averaged indicator values were strong in predicting sites of ecological deterioration and in differentiating an upstream site of better quality (drinking water supply of Kisumu), thereby confirming epilithic diatoms as suitable water quality indicators in equatorial rivers. The use of metrics initially designed for temperate rivers, however, appears less valuable in good quality tropical rivers because potential indicators are not considered.  相似文献   

12.
13.
There have been numerous attempts to synthesize the results of local‐scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local‐scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome–driver combinations we have identified as most critical in terms of where local‐scale species richness change studies are lacking include the following: land‐use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local‐scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.  相似文献   

14.
1. Fish assemblages and habitats were sampled annually at fixed sites in three tributaries of the Gila River catchment over a 21‐year span that included prolonged low‐ and high‐flow periods. Model selection was used to evaluate responses of seven native fishes with variable ecological traits (four small‐bodied cyprinids, one large‐bodied cyprinid, and two large‐bodied catostomids) to mean annual discharge and predacious non‐native fishes across the three sites. We also compared habitat use and overlap of native and non‐native fishes to identify potential for negative interactions among species. 2. Assemblage structure (species abundance and richness) and recruitment of native species was strongly and primarily affected by mean annual discharge and secondarily by location and densities of non‐native predators (mainly the centrarchid Micropterus dolomieui). 3. Densities of age‐0 catostomids and small‐bodied cyprinids were positively associated with discharge, and this pattern was strongest in the tributary with the lowest densities of non‐native predators. Absence or extreme low abundance of natives during low‐flow years was most pronounced at the sites where non‐native predators were comparatively common. Densities of adults of large‐bodied native species also varied by site, but often were positively associated with densities of non‐native predators. 4. Spatially variable responses of native fish assemblages indicated that the persistence of native fishes could be jeopardized if key habitats were lost or flow regimes unnaturally altered, particularly during low‐flow conditions when recruitment of native fishes is low and predation by non‐natives is high. Large‐bodied species may be less vulnerable to multiple years of poor conditions because adults are able to avoid predation by non‐natives and thus can rely on occasional high discharge years for successful recruitment. 5. As in other arid‐land streams, native fish assemblages of the Gila River Basin continue to decline. Our results indicate that conservation requires specific knowledge and consideration of physical influences as well as life‐history attributes of native and non‐native fishes.  相似文献   

15.
1. Dam removal has great potential for restoring rivers and streams, yet limited data exist documenting recovery of associated biota within these systems following removals, especially on larger systems. This study examined the effects of a dam breach on benthic macroinvertebrate and fish assemblages in the Fox River, Illinois, U.S.A. 2. Benthic macroinvertebrates and fish were collected above and below the breached dam and three nearby intact dams for 1 year pre‐ and 3 years post‐breach (2 years of additional pre‐breach fish data were obtained from previous surveys). We also examined the effects of the breach on associated habitat by measuring average width, depth, flow rate and bed particle size at each site. 3. Physical habitat at the former impoundment (IMP) became comparable to free‐flowing sites (FF) within 1 year of the breach (width and depth decreased, flow rate and bed particle size increased). We also found a strong temporal effect on depth and flow rate at all surveyed sites. 4. Following the breach, relative abundance of Ephemeroptera, Plecoptera and Trichoptera (largely due to hydropsychid caddisflies) increased, whereas relative abundance of Ostracoda decreased, in the former IMP to levels comparable to FF sites. High variation in other metrics (e.g. total taxa, diversity) precluded determination of an effect of the breach on these aspects of the assemblage. However, non‐metric multidimensional scaling (NMDS) ordinations indicated that overall macroinvertebrate assemblage structure at the former IMP shifted to a characteristically FF assemblage 2 years following the breach. 5. Total fish taxa and a regional fish index of biotic integrity became more similar in the former IMP to FF sites following the breach. However, other fish metrics (e.g. biomass, diversity, density) did not show a strong response to the breach of the dam. Ordinations of abundance data suggested the fish assemblage only slightly shifted to FF characteristics 3 years after the breach. 6. Effects of the breach to the site immediately below the former dam included minor alterations in habitat (decreased flow rate and increased particle size) and short‐term changes in several macroinvertebrate metrics (e.g. decreased assemblage diversity and EPT richness for first post‐year), but longer‐term alterations in several fish metrics (e.g. decreased assemblage richness for all three post‐years; decreased density for first two post‐years). However, NMDS ordinations suggested no change to overall assemblage structure for both macroinvertebrates and fish following the breach at this downstream site. 7. Collectively, our results support the effectiveness of dam removal as a restoration practice for impaired streams and rivers. However, differences in response times of macroinvertebrates and fish coupled with the temporal effect on several habitat variables highlight the need for longer‐term studies.  相似文献   

16.
Non‐native fishes in rivers and seas The number of non‐native fish species in our water bodies is increasing in the course of globalisation. They navigate artificial canals, travel in ballast water of ships or are displaced as eggs attached to ships and other materials. Many of these species remain unnoticed but some may establish a reproductive population and even cause harm. Invasive gobies from the Black Sea – especially the bighead goby and round goby – are taken as an example to explain how biology and ecology can be studied and how we proceed to estimate the potential risk. Simple egg traps may help to reduce dispersal of these fish. Such measures are especially promising at locations such as the Upper Rhine where hydropower dams present bottlenecks.  相似文献   

17.
Disturbance regimes are changing in forests across the world in response to global climate change. Despite the profound impacts of disturbances on ecosystem services and biodiversity, assessments of disturbances at the global scale remain scarce. Here, we analyzed natural disturbances in boreal and temperate forest ecosystems for the period 2001–2014, aiming to 1) quantify their within- and between-biome variation and 2) compare the climate sensitivity of disturbances across biomes. We studied 103 unmanaged forest landscapes with a total land area of 28.2 × 106 ha, distributed across five continents. A consistent and comprehensive quantification of disturbances was derived by combining satellite-based disturbance maps with local expert knowledge of disturbance agents. We used Gaussian finite mixture models to identify clusters of landscapes with similar disturbance activity as indicated by the percent forest area disturbed as well as the size, edge density and perimeter–area-ratio of disturbed patches. The climate sensitivity of disturbances was analyzed using Bayesian generalized linear mixed effect models and a globally consistent climate dataset. Within-biome variation in natural disturbances was high in both boreal and temperate biomes, and disturbance patterns did not vary systematically with latitude or biome. The emergent clusters of disturbance activity in the boreal zone were similar to those in the temperate zone, but boreal landscapes were more likely to experience high disturbance activity than their temperate counterparts. Across both biomes high disturbance activity was particularly associated with wildfire, and was consistently linked to years with warmer and drier than average conditions. Natural disturbances are a key driver of variability in boreal and temperate forest ecosystems, with high similarity in the disturbance patterns between both biomes. The universally high climate sensitivity of disturbances across boreal and temperate ecosystems indicates that future climate change could substantially increase disturbance activity.  相似文献   

18.
Temperate and boreal forests are forecast to change in composition and shift spatially in response to climate change. Local‐scale expansions and contractions are most likely observable near species range limits, and as trees are long‐lived, initial shifts are likely to be detected in the understory regeneration layers. We examined understory relative abundance patterns of naturally regenerated temperate and boreal tree species in two size classes, seedlings and saplings, and across two spatial scales, local stand‐scale ecotones (tens of meters) and the regional temperate–boreal transition zone (?250 km) in central North America, to explore indications of climate‐mediated shifts in regeneration performance. We also tested for the presence of strong environmental gradients across local ecotones that might inhibit species expansion. Results showed that tree regeneration patterns across ecotones varied by species and size class, and varied across the regional summer temperature gradient. Temperate tree species regeneration has established across local ecotones into boreal forest patches and this process was facilitated by warmer temperatures. Conversely, boreal conifer regeneration exhibited negative responses to the regional temperature gradient and only displayed high abundance at the boreal end of local ecotones at cool northern sites. The filtering effects of temperature also increased with individual size for both boreal and temperate understory stems. Observed regeneration patterns and the minor environmental gradients measured across local ecotones failed to support the idea that there were strong barriers to potential temperate tree expansion into boreal forest patches. Detectable responses, consistently in the directions predicted for both temperate and boreal species, indicate that summer temperature is likely an important driver of natural tree regeneration in forests across the temperate–boreal transition zone. Regeneration patterns point toward temperate expansion and reduced but continued boreal presence in the near‐future, resulting in local and regional expansions of mixed temperate‐boreal forests.  相似文献   

19.
Changing climate extremes and invasion by non‐native species are two of the most prominent threats to native faunas. Predicting the relationships between global change and native faunas requires a quantitative toolkit that effectively links the timing and magnitude of extreme events to variation in species abundances. Here, we examine how discharge anomalies – unexpected floods and droughts – determine covariation in abundance of native and non‐native fish species in a highly variable desert river in Arizona. We quantified stochastic variation in discharge using Fourier analyses on >15 000 daily observations. We subsequently coupled maximum annual spectral anomalies with a 15‐year time series of fish abundances (1994–2008), using Multivariate Autoregressive State‐Space (MARSS) models. Abiotic drivers (discharge anomalies) were paramount in determining long‐term fish abundances, whereas biotic drivers (species interactions) played only a secondary role. As predicted, anomalous droughts reduced the abundances of native species, while floods increased them. However, in contrast to previous studies, we observed that the non‐native assemblage was surprisingly unresponsive to extreme events. Biological trait analyses showed that functional uniqueness was higher in native than in non‐native fishes. We also found that discharge anomalies influenced diversity patterns at the meta‐community level, with nestedness increasing after anomalous droughts due to the differential impairment of native species. Overall, our results advance the notion that discharge variation is key in determining community trajectories in the long term, predicting the persistence of native fauna even in the face of invasion. We suggest this variation, rather than biotic interactions, may commonly underlie covariation between native and non‐native faunas, especially in highly variable environments. If droughts become increasingly severe due to climate change, and floods increasingly muted due to regulation, fish assemblages in desert rivers may become taxonomically and functionally impoverished and dominated by non‐native taxa.  相似文献   

20.
There is high uncertainty surrounding the magnitude of current and future biodiversity loss that is occurring due to human disturbances. Here, we present a global meta‐analysis of experimental and observational studies that report 327 measures of change in species richness between disturbed and undisturbed habitats across both terrestrial and aquatic biomes. On average, human‐mediated disturbances lead to an 18.3% decline in species richness. Declines in species richness were highest for endotherms (33.2%), followed by producers (25.1%), and ectotherms (10.5%). Land‐use change and species invasions had the largest impact on species richness resulting in a 24.8% and 23.7% decline, respectively, followed by habitat loss (14%), nutrient addition (8.2%), and increases in temperature (3.6%). Across all disturbances, declines in species richness were greater for terrestrial biomes (22.4%) than aquatic biomes (5.9%). In the tropics, habitat loss and land‐use change had the largest impact on species richness, whereas in the boreal forest and Northern temperate forests, species invasions had the largest impact on species richness. Along with revealing trends in changes in species richness for different disturbances, biomes, and taxa, our results also identify critical knowledge gaps for predicting the effects of human disturbance on Earth's biomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号