首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Diaspore (seed and/or fruit) survivorship of 12 species of North Queensland rainforest trees was monitored over a 4 week period in two rainforests on the Atherton Tableland, north Queensland, Australia, with replicated sites in forest interiors, canopy gaps, forest edges and adjacent pastures. General linear modelling was used to estimate the relative importance of forest site, habitat, species and diaspore type on survival. The probability of survival varied significantly among species, between habitat, forest and diaspore types. Survival averaged 41.2% at day 28, was greater in one forest (Curtain Fig, 56.1%) than the other (Lamins Hill, 25.3%) and was apparently inversely related to the abundance of rodents. In both forests, survival declined in the order: pasture ≥ forest edge ≥ forest interior = canopy gap. A lack of significant difference between the forest interior and canopy gap is consistent with findings in other rainforest sites within Australia, but contrasts with most results from other continents. The study also indicated that diaspore weight was an important intrinsic variable affecting survival, the predators (mostly rodents) taking small to moderately large diaspores rather than the very large ones.  相似文献   

2.
动物对花楸树种实的取食与传播   总被引:3,自引:1,他引:3  
花楸树是我国东北林区重要的非木质资源树种,其种实既有自然散布方式,也有动物散布方式.本文通过对花楸树种实散布过程中动物活动特点的研究,探索动物取食和传播花楸树种实的规律及其对花楸树天然更新的影响.在2008和2009年花楸树果实成熟期,通过定期观察取食花楸树果实的鸟类及其取食方式,确定对花楸树果实有拜访行为的鸟类有8种,其中食果肉鸟类斑鸫、灰喜鹊和白背啄木鸟对花楸树种实有传播作用,它们对花楸树果实的拜访频率分别为54%、12%和7%,取食后第一落点集中于距离母树5~10 m之间(占68.2%),其次为距离母树5 m以内(占27.3%),距离母树10 m以外的比例很小(占4.5%).果实在鸟类消化道内的滞留时间可达20 min,表明潜在传播距离会很长.人工摆放果实和种子试验表明,在不同生境地面摆放的果实6~7 d内全部消失,果实的取食者主要是啮齿类和地面取食的鸟类,取食率均较高(50%~70%);种子的取食者为啮齿类、地面取食的鸟类和蚁类,取食率均较低(1%~5%).花楸树为多种动物提供食物,而动物为花楸树传播种子,动物的取食对花楸树的天然更新有重要影响.  相似文献   

3.
A community of frugivorous insects was studied by rearing of 25 565 individual insects representing three orders (Coleoptera, Lepidoptera and Diptera except Drosophilidae) from 326 woody plant species in a lowland rainforest in Papua New Guinea. Fruits from 19.3% of plant species were not attacked by any insect order, 33.4% of plant species were attacked by a single order, 30% by two orders and 17.2% by all three orders. The likelihood of attack by individual orders was positively correlated so that a higher proportion of plant species than expected suffered either no attack at all or was attacked by all three insect orders. Fruits from most of the plant species exhibited low rates of attack and low densities of insects. One kilogram of fruit was attacked on average by 11 insects, including three to four Coleoptera, six Diptera and one Lepidoptera. Thus, we reared on average one insect from 10 fruits, including one Diptera from 14 fruits, one Coleoptera from 22 fruits and one Lepidoptera from 100 fruits. Only 72 out of the 326 plant species hosted more than one insect per 10 fruits, and only seven species supported a density of greater than one insect per fruit. Our results suggest that specialized insect seed predators are probably too rare to maintain the diversity of vegetation by density‐dependent mortality of seeds as suggested by the Janzen–Connell hypothesis. Fruit weight, fruit volume, mesocarp volume, seed volume and fleshiness had no significant effect on the probability that a fruit would be attacked by an insect frugivore. However, fruits attacked by Diptera were significantly larger and had larger volume of both mesocarp and seeds than fruits attacked by Coleoptera and Lepidoptera.  相似文献   

4.
In the tropics, antagonistic seed predation networks may have different properties than mutualistic pollination and seed dispersal networks, but the former have been considerably less studied. We tested whether the structure of antagonistic tripartite networks composed of host plants, insects developing within seeds and fruits, and their insect parasitoids could be predicted from plant phylogenetic distance and plant traits. We considered subsets of the networks (‘subnetworks') at three rainforest locations (Panama, Thailand, Papua New Guinea), based on insect families, plant families or plant functional groups. We recorded 3197 interactions and observed a low percentage of realized interactions, especially in Panama, where insect host specificity was higher than in Thailand or New Guinea. Several factors may explain this, including insect faunal composition, incidence of dry fruits, high fruit production and high occurrence of Fabaceae at the Panamanian site. Host specificity was greater among seed-eaters than pulp-eaters and for insects feeding on dry fruits as opposed to insects feeding on fleshy fruits. Plant species richness within plant families did not influence insect host specificity, but site characteristics may be important in this regard. Most subnetworks were extremely specialized, such as those including Tortricidae and Bruchinae in Panama. Plant phylogenetic distance, plant basal area and plant traits (fruit length, number of seeds per fruit) had important effects on several network statistics in regressions weighted by sampling effort. A path analysis revealed a weak direct influence of plant phylogenetic distance on parasitoid richness, indicating limited support for the ‘nasty host hypothesis'. Our study emphasizes the duality between seed dispersal and seed predation networks in the tropics, as key plant species differ and host specificity tends to be low in the former and higher in the latter. This underlines the need to study both types of networks for sound practices of forest regeneration and conservation.  相似文献   

5.
食果动物传播种子的跟踪技术   总被引:6,自引:0,他引:6  
研究食果动物传播种子的主要问题之一是难以跟踪种子命运和估计种子域。到目前为止,已有不少方法用于研究食果动物与种子扩散和种子命运的关系,如直接观察法、同位素标记法、金属标记法、磁铁标记法、荧光染料法、微粒体标记法、线标法和遗传技术等。近年来,一些研究将数字编号用于种子标记,并已成为发展的主流。本文综述了以往跟踪种子命运和估计种子域的一些重要方法,并讨论了它们各自的优缺点及其应用。  相似文献   

6.
African Acacias are often major contributors to the progressive increase in the woody component of savannas, a phenomenon commonly referred to as bush encroachment. They produce large quantities of seed and may have large soil‐stored seed banks. In Hluhluwe–Umfolozi Park, the number of adult Acacia nilotica trees per hectare far exceed that of A. karroo adults. The relative dominance is reversed in the juvenile stage with A. karroo outnumbering A. nilotica threefold outside closed woodlands. Acacia karroo trees were smaller than A. nilotica trees on average, but produced more seeds for a given basal diameter size class. Acacia karroo showed less bruchid infestation than A. nilotica at all stages of pod development. Unlike A. nilotica, a proportion of A. karroo seeds was able to germinate after bruchid attack. We detected no difference between the two species in the soil‐stored seed bank or in the viability of seeds found in the seed bank.  相似文献   

7.
Bruchids and survival of Acacia seeds   总被引:1,自引:0,他引:1  
  相似文献   

8.
Regenerating forests make up an increasingly large portion of tropical landscapes worldwide and regeneration dynamics may be influenced by leaf-cutting ants (LCA), which proliferate in disturbed areas and collect seeds for fungus culturing. Here, we investigate how LCA influences seed fate in human-modified areas of Caatinga dry forest. We evaluate the seed deposition and predation on Atta opaciceps nests, foraging habitat surrounding nest and control habitat away of nest influence of 15 colonies located along a forest cover gradient during the rainy and dry seasons. For each habitat, four 50-cm2 plots were established and all seeds on the soil surface were collected along 1 year. We recorded 13,628 seeds distributed among 47 species and 36.57% of the total seeds did not show any sign of predation. Nest mound habitats supported low-density and species-poor seed assemblages, which were taxonomically distinct from the control habitats. These effects only occurred in the rainy season. The proportion of undamaged seeds were similar across the habitats. While forest cover did not influence seed assemblage in terms of species richness or seed predation, it did interact with habitat type via increments in seed abundance as forest cover increased across the nests. Forest cover also affected seed composition, but only in the rainy season. These results indicate that LCA decrease seed deposition in areas under their influence, particularly on the nest mounds. As LCA profit from human disturbance in the Caatinga, their role as seed ‘sinks’ should be enhanced in disturbed Caatinga patches, particularly during the rainy season, when most of the plant recruitment occurs. Our findings reinforce the importance of LCA as drivers of forest dynamics and resilience in human-modified landscapes.  相似文献   

9.
昆虫种子捕食与蒙古栎种子产量和种子大小的关系   总被引:2,自引:1,他引:2  
为了了解昆虫种子捕食者在栎类种群更新中的作用,于2006年秋季,在黑龙江省伊春市带岭区东方红林场研究了昆虫对蒙古栎Quercus mongolica在参园和东山两个种群的种子蛀食情况及其与蒙古栎种子产量和种子大小的关系。结果表明:(1)在参园和东山两个林分内,蒙古栎种子雨动态非常相似,种子雨成分中完好种子的平均密度仅为3.2±4.1个/m2(参园)和1.7±2.8个/m2(东山),分别仅占种子产量的4.0%和3.2%,而虫蛀种子和败育种子的比例均在38%以上,以虫蛀种子的比例最高,分别为58.2%和57.7%;(2)柞栎象Curculio arakawai是蛀食蒙古栎种子的主要昆虫种类,在虫蛀种子中所占比例高达96.8%(参园)和97.1%(东山),且象甲蛀食种子中所含虫卵数与种子大小有关,即种子越大,所含象甲的虫卵数就较多。本研究的结果说明2006年蒙古栎成熟种子多遭遇虫蛀,导致完好种子的数量极低,因而可能成为限制蒙古栎种群更新的重要因素。  相似文献   

10.
11.
12.
Seed sowing is a common early step in restoration, but seed consumers can impede plant establishment and alter community structure. Moreover, seed consumers vary in feeding behaviors and the relative importance of different seed consumer groups during restoration are not well understood. At 12 first‐year prairie restorations in Michigan, we studied seed predation using seed removal trays to ask: What is the relative magnitude of seed removal by insects and mammals? Do seed removal rates change over the growing season? Do habitat edges influence seed removal? At what rates are 10 prairie plant species' seeds removed by mammals and insects? Seed removal depended on consumer type, time of year, and seed species. Insects accounted for the majority of seed removal, contrary to previous research in similar systems. In May, insects removed 1.8 times more seeds than mammals, while in August, they removed 5.1 times more. There was greater seed removal in August. During May 28% of seeds were removed, compared to 54% of seeds removed during August, an increase driven by insects. Edge proximity did not influence seed removal. Certain seed species were removed more than others. For example, Lespedeza capitata (round‐headed bush clover) was always removed at high rates, whereas Coreopsis lanceolata (lance‐leaved coreopsis) and Andropogon gerardii (big bluestem) were always removed at low rates. Mammals and insects showed different preferences for several species. This research suggests a prominent role of seed predation, particularly by insects, for early prairie restoration dynamics, with influences varying temporally and among species.  相似文献   

13.
14.
To avoid seed predation, plants may invest in protective seed tissues. Often related to seed size, allocation in seeds' physical defenses can also be influenced by dispersers. We explore the relationships between seed traits (seed mass and hardness) and seed removal in 22 Myrtaceae species of the Brazilian Atlantic Forest, a dominant and diverse fleshy-fruited taxon dispersed by birds, rodents, and other mammals. Our goal is to understand how seed traits influence seed removal rates, and whether dispersers can affect tissue allocation in the seed coat. Seeds were exposed to field removal experiments. In the laboratory, total seed mass and seed coat mass were obtained. To evaluate the influence of seed traits on removal, we performed Kruskal–Wallis and Simple Linear Regression tests. We assessed seed coat and seed mass covariation through standardized major-axis allometric regressions. Harder seeds were larger than softer ones. Seed traits affect removal rates, as tougher and heavier seeds had lower removal. Seed mass significantly predicts seed coat proportion in seven of the 14 species tested. Bird-dispersed species tend to exhibit lower proportions of seed coat as seed mass increases, whereas rodent-dispersed species apparently present the opposite trend, with seed coat proportion increasing with seed mass. Such difference may be caused by the contrasting seed predation pressure represented by birds and rodents. Energy allocation for defense, expressed in seed coat proportion, is greater in large seeds, as these are mostly dispersed by rodents whose propensity to cache and disperse seeds is greater for large and well-protected seeds.  相似文献   

15.
Empty seeds reduce seed predation by birds in Juniperus osteosperma   总被引:1,自引:0,他引:1  
Utah juniper (Juniperus osteosperma) is one of many plant species that produce large numbers of fruits containing parthenocarpic or otherwise empty or inviable seeds. We tested the hypothesis that production of empty fruits in this species results in reduced levels of predation on fertile seeds. In a population in west-central Utah, we estimated the proportion of fruits with filled seeds in trees suffering high levels of fruit destruction by the seed-eating bird Parus inornatus and in neighbouring trees similar in crown and fruit-crop size but suffering negligible predation. We found that the heavily attacked trees had higher proportions of filled seeds. Thus, juniper may benefit from producing fruits that contain no offspring. This is the first study to demonstrate that empty seeds may reduce predation by vertebrate seed eaters and the first to demonstrate discrimination based on seed filling at the level of whole plants.  相似文献   

16.
Paclobutrazol (PBZ) applied to almond fruits 25 days after full bloom delayed the growth of fruits and seeds. The period of the delay and the amount of retardation depended on the paclobutrazol concentration applied.Seeds from the treated fruits germinated well, except those treated twice with 4000 mg L–1 which showed only a low percentage of germination. Seeds treated just before sowing failed to germinate.Abbreviations PBZ Paclobutrazol  相似文献   

17.
Abstract Although pigeons from the genus Ducula are considered among the best avian dispersers of large seeds in Asia and the Pacific, little has been documented on their role. The early fate of dispersed and undispersed seeds of the large‐seeded tree Myristica hypargyraea A. Gray was studied in order to understand the advantage of seed dispersal by the Pacific Pigeon, Ducula pacifica Gmelin in Tonga. Frequency of visits by frugivores to fruiting trees and dispersal distance of seeds were measured. Pre‐dispersal vertebrate seed predation was assessed, then post‐dispersal predation was measured over 160 days. Overall, pre‐dispersal seed predation by parrots was low but variable among trees sampled. Most seeds (54.7%) in the study area were estimated to be dispersed by D. pacifica; 79.7% of those ingested were expelled directly beneath conspecific fruiting crowns, 20% were dispersed locally and < 0.3% were dispersed more than 300 m into a different forest type. Flying foxes (Pteropus tonganus Quoy and Gaimard) dispersed very few seeds (0.7%) and all were dropped below fruiting crowns. Between 4% and 39% of dispersed and undispersed seeds were still viable, or had established seedlings after 160 days. Most seeds had been removed or killed by rats, and seed survival was highest for locally dispersed seeds (approx. 20 m from source trees and within the M. hypargyraea forest). Although D. pacifica was the only frugivore observed to disperse seeds into this higher zone of survival, overall they did not confer a great advantage to seed survival since significant numbers of seeds/seedlings also persisted under fruiting crowns (27% under crowns compared with 39% locally dispersed). Nevertheless, D. pacifica was the only vector by which seeds were regularly moved within the M. hypargyraea forest and over longer distances, and hence, D. pacifica still plays a significant role in the regeneration of M. hypargyraea.  相似文献   

18.
Abstract Canopy crane‐based studies have been carried out to quantify the sets of arthropods that visit the flowers of a suite of common species of trees, palms and vines within the Cape Tribulation study area. Those Orders that increase significantly in abundance between the budding and flowering stages of inflorescences are identified, and multivariate and univariate comparisons have been made first, among coflowering plant species and second, at different seasons for the same plant species. The analysis has been repeated for both the profile of higher arthropod taxa in the samples and for the relative abundances of families of Coleoptera: one of the Orders most frequently suggested as critical in the pollination biology of Australian rainforests. In all cases significant differences are identified among species confirming that the visitor profile is a plant species‐specific phenomenon. Profiles within plant species at different times also differed. At the ordinal level significant differences in visitor profiles associated with coflowering plants, were observed, variously, in Thysanoptera, Diptera, Lepidoptera, Coleoptera and Hymenoptera. Within the Coleoptera significant differences occurred in relative abundances of Scarabaeidae, Phalacridae, Latridiidae and Curculionidae. Seasonal differences in visitation to Syzygium gustavioides, Normanbya normanbyi and Calamus radicalis, reflected differences in Diptera, Lepidoptera, Homoptera, Thysanoptera, Hymenoptera and Araneida. Within the Coleoptera, the Elateridae and Curculionidae varied significantly between occasions. The various forms of flower/arthropod interaction that may be represented in these results are discussed, as are the implications for pollination.  相似文献   

19.
Variation in seed traits is a well‐known phenomenon affecting plant ecology and evolution. Here we describe, for the first time, a bimodal colour pattern of individual seeds, proposing an adaptive explanation, using Pinus halepensis as a model. Pinus halepensis disperses its seeds either by wind on hot dry days, from regular cones, or after fires, mainly from serotinous cones. Post‐dispersal seeds are exposed to strong predation by passerine birds, making crypsis important for seed survival. Individual seeds from non‐serotinous cones have a bimodal colour pattern: one side is light brown and the other black, exposing only one colour when lying on the ground. Serotinous cones from most trees have seeds with similar bimodal colour patterns, whereas seeds from serotinous cones of some trees are light brown on both sides. The dark side provides the seed with better crypsis on dark soils, whereas the light‐brown side is better adapted to light‐coloured soils, and mainly to light‐grey ash‐covered soil, which is the natural post‐fire regeneration niche of P. halepensis. The relative reflection curves of the black and brown seed colours differ, and their calculated relative chromatic distance is 5: meaning that seed‐predating passerine birds see them differently, and probably prefer seeds that present a higher contrast against the soil background. We propose that such a bimodal colour pattern of individual seeds is probably an overlooked general phenomenon mainly linked to seed dispersal in post‐fire and other heterogeneous environments. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 271–278.  相似文献   

20.
Understanding the functional role of animal species in seed dispersal is central to determining how biotic interactions could be affected by anthropogenic drivers. In the Monte Desert, mammals play different functional roles in Prosopis flexuosa seed dispersal, acting as opportunistic frugivores (endozoochorous medium‐sized and large mammals) or seed hoarders (some small sigmodontine rodents). Our objective was assessing the functional role of Microcavia australis, a small hystricognathi rodent, in the fruit removal and seed deposition stages of P. flexuosa seed dispersal, compared to sympatric sigmodontine rodents. In situ, we quantified fruit removal by small rodents during non‐fruiting and fruiting periods, and determined the distance seeds were transported, particularly by M. australis. In laboratory experiments, we analysed how M. australis stores seeds (through scatter‐ or larder‐hoarding) and how many seeds are left in caches as living seeds, relative to previous data on sigmodontine rodents. To conduct field studies, we established sampling stations under randomly chosen P. flexuosa trees at the Ñacuñán Man and Biosphere Reserve. We analysed fruit removal by small rodents and seed dispersal distance by M. australis using camera traps focused on P. flexuosa fruits covered with wire screen, which only allowed entry of small animals. In laboratory trials, we provided animals with a known number of fruits and assessed seed conditions after removal. Small rodents removed 75.7% of fruit supplied during the non‐fruiting period and 53.2% during the fruiting period. Microcavia australis and Graomys griseoflavus were the main fruit removers. Microcavia australis transported seeds to a mean distance of 462 cm and cached seeds mainly in scatter‐hoards, similarly as Eligmodontia typus. All transported seeds were left in fruit segments or covered only by the endocarp, never as predated seeds. Microcavia australis disperses P. flexuosa seeds by carrying fruits away from a source to consume them and then by scatter‐hoarding fruits and seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号