首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land use has large effects on the diversity of ecological assemblages. Differences among land uses in the diversity of local assemblages (alpha diversity) have been quantified at a global scale. Effects on the turnover of species composition between locations (beta diversity) are less clear, with previous studies focusing on particular regions or groups of species. Using a global database on the composition of ecological assemblages in different land uses, we test for differences in the between‐site turnover of species composition, within and among land‐use types. Overall, we show a strong impact of land use on assemblage composition. While we find that compositional turnover within land uses does not differ strongly among land uses, human land uses and secondary vegetation in an early stage of recovery are poor at retaining the species that characterise primary vegetation. The dissimilarity of assemblages in human‐impacted habitats compared with primary vegetation was more pronounced in the tropical than temperate realm. An exploratory analysis suggests that this geographic difference might be caused primarily by differences in climate seasonality and in the numbers of species sampled. Taken together the results suggest that, while small‐scale beta diversity within land uses is not strongly impacted by land‐use type, compositional turnover between land uses is substantial. Therefore, land‐use change will lead to profound changes in the structure of ecological assemblages.  相似文献   

2.
Temporal variation in the composition of species assemblages could be the result of deterministic processes driven by environmental change and/or stochastic processes of colonization and local extinction. Here, we analyzed the relative roles of deterministic and stochastic processes on bird assemblages in an agricultural landscape of southwestern France. We first assessed the impact of land cover change that occurred between 1982 and 2007 on (i) the species composition (presence/absence) of bird assemblages and (ii) the spatial pattern of taxonomic beta diversity. We also compared the observed temporal change of bird assemblages with a null model accounting for the effect of stochastic dynamics on temporal beta diversity. Temporal assemblage dissimilarity was partitioned into two separate components, accounting for the replacement of species (i.e. turnover) and for the nested species losses (or gains) from one time to the other (i.e. nestedness-resultant dissimilarity), respectively. Neither the turnover nor the nestedness-resultant components of temporal variation were accurately explained by any of the measured variables accounting for land cover change (r2<0.06 in all cases). Additionally, the amount of spatial assemblage heterogeneity in the region did not significantly change between 1982 and 2007, and site-specific observed temporal dissimilarities were larger than null expectations in only 1% of sites for temporal turnover and 13% of sites for nestedness-resultant dissimilarity. Taken together, our results suggest that land cover change in this agricultural landscape had little impact on temporal beta diversity of bird assemblages. Although other unmeasured deterministic process could be driving the observed patterns, it is also possible that the observed changes in presence/absence species composition of local bird assemblages might be the consequence of stochastic processes in which species populations appeared and disappeared from specific localities in a random-like way. Our results might be case-specific, but if stochastic dynamics are generally dominant, the ability of correlative and mechanistic models to predict land cover change effects on species composition would be compromised.  相似文献   

3.
The distribution patterns of animal species at local scales have been explained by direct influences of vegetation structure, topography, food distribution, and availability. However, these variables can also interact and operate indirectly on the distribution of species. Here, we examined the direct and indirect effects of food availability (fruits and insects), vegetation clutter, and elevation in structuring phyllostomid bat assemblages in a continuous terra firme forest in Central Amazonia. Bats were captured in 49 plots over 25‐km² of continuous forest. We captured 1138 bats belonging to 52 species with 7056 net*hours of effort. Terrain elevation was the strongest predictor of species and guild compositions, and of bat abundance. However, changes in elevation were associated with changes in vegetation clutter, and availability of fruits and insects consumed by bats, which are likely to have had direct effects on bat assemblages. Frugivorous bat composition was more influenced by availability of food‐providing plants, while gleaning‐animalivore composition was more influenced by the structural complexity of the vegetation. Although probably not causal, terrain elevation may be a reliable predictor of bat‐assemblage structure at local scales in other regions. In situations where it is not possible to collect local variables, terrain elevation can substitute other variables, such as vegetation structure, and availability of fruits and insects.  相似文献   

4.
5.
Rivers of the Cape Floristic Region (CFR) biodiversity hotspot are threatened by land transformation. This region is a centre of endemism for many taxa, including Odonata. These insects are highly sensitive to changes in physical habitat structure, which makes them good bioindicators, and this led to the development of the Dragonfly Biotic Index (DBI). We investigated the effects of local agricultural and urban land transformations on Odonata species richness, assemblage composition and DBI scores in three CFR rivers. A total of 48 sites were selected and categorized as natural, agricultural or urban land use. Adult male Odonata and four environmental variables were recorded over two seasons. Land transformation significantly influenced Odonata assemblage composition but did not always significantly reduce species richness. Average vegetation height also affected Odonata assemblage composition and decreased species richness. Agricultural and urban sites had Odonata assemblages differing from those in the natural areas. Agricultural and urban local land use types reduced opportunities for some endemic species but provided for the persistence and establishment of widespread, generalist species, as indicated by great changes in DBI scores. Mitigating the adverse influences of land transformation through establishment of protected areas is essential for the conservation of rare taxa, particularly in an area with a high number of endemic species.  相似文献   

6.
The ecological influence of changes in the functional guild and species composition of ant assemblages on ant‐dispersal mutualisms is still poorly known. Using a multi‐scale approach over an 800 km range within the Iberian Peninsula, we tested the hypothesis that variation in seed removal rate was related to functional guild rather than to species composition variations of disperser assemblages in the myrmecochore herb Helleborus foetidus. At least two premises must be confirmed to validate this hypothesis: 1) ant assemblages that are dissimilar in species composition but with similar functional guild composition will not differ significantly in seed removal, and 2) assemblages with different functional guild composition will render different seed removal services. We conducted 3328 ant‐visitor censuses on 462 individual plants to identify both the species composition and functional guild variation of the ant‐disperser assemblage, and the plant seed removal rate. Functional guild composition of the ant assemblage was determined by the proportion of visits of ants acting as legitimate dispersers, facultative dispersers or elaiosome predators. Results showed that ant‐seed dispersal success seemed to be more sensitive to species composition changes of the ant assemblage than to functional guild shifts. However, this sensitivity was scale‐dependent. Thus, at the fine, inter‐individual scale, seed removal covaried with the species and functional guild composition of the ant assemblages; at the inter‐populational scale, differences in seed removal tended to be related to the dissimilarity of the assemblage species composition rather than the assemblage functional guild; finally, inter‐regional differences in seed removal were unrelated to dissimilarities of the ant assemblage composition or functional guild. Though differences in seed removal and the relative frequency of the legitimate dispersers tended to be positively correlated, none of the above premises were fully confirmed in this study. Therefore, our results did not support in full the hypothesis that the variation in seed removal was explained by shifts in functional guild composition, rather than shifts in species composition.  相似文献   

7.
Species differ in vulnerability to anthropogenic land use changes. Knowledge of the mechanisms driving differential sensitivity can inform conservation strategies but is generally lacking for species‐rich taxa in the tropics. The diverse bat fauna of Southeast Asia is threatened by rapid loss of forest and expanding agricultural activities, but the associations between species, traits, vulnerability to agriculture, and the underlying drivers have yet to be elucidated. We studied the responses of speciose insectivorous bat assemblages to robusta coffee cultivation in Sumatra, Indonesia. We compared abundance, species richness, and assemblage structures of bats between forests and coffee farms based on trapping data and evaluated the influence of vegetation complexity on assemblage composition and species‐level reactions. Bat abundance and species richness were significantly lower in coffee farms than in forests. Bat assemblage structure differed between land uses, and the overall variation can be largely explained by vegetation simplification. Species sensitive to coffee agriculture were associated with more complex vegetation structure, whereas tolerant species were associated with simpler vegetation structure. Sensitive and tolerant species differed in the type, frequency, and bandwidth of echolocation calls and roost use. Species sensitive to coffee use broadband and high‐pitched frequency‐modulated calls, which are efficient at detecting insects in complex vegetation, and roost in plant structures that may be lost as vegetation is simplified. In contrast, tolerant species used lower pitched constant‐frequency calls and roost in caves. We advocate for greater use of trait analyses in studies seeking to clarify the influence of agriculture on diverse tropical bat faunas. Abstract in Indonesian is available with online material.  相似文献   

8.
We studied the spatio-temporal patterns of ground-dwelling and -foraging ant assemblages in a continuous mixed secondary lowland rainforest on the northern periphery of the Dja Biosphere Reserve in southeast Cameroon. The effect of season and of the interaction of season with vegetation type on ant species density, activity and composition were investigated. We also checked for a possible impact of army ant activity on the ant assemblage. Ants were collected by pitfall trapping in seven vegetation types in each of three seasons during 12 months in 2003 and 2004–2005. Season significantly influenced the ground-dwelling ant assemblage. The late wet season had the lowest ant species density and a different species composition than the early wet and the dry season. Also inter-annual variation in ant species density and composition was detected and could partly be explained by an influence of Dorylus activity. In general, vegetation type and inter-annual variation had a larger influence on the ground-ant assemblage than season. Significant effects of interactions between season, year, vegetation type and army ants on the ant assemblage confirm that also in African rainforests ant assemblages are extremely dynamic and depend on a complex combination of availability of food resources, nest sites and predators. Received 4 October 2006; revised 4 June 2007; accepted 2 July 2007.  相似文献   

9.
10.
Land use change modifies the environment at multiple spatial scales, and is a main driver of species declines and deterioration of ecosystem services. However, most of the research on the effects of land use change has focused on taxonomic diversity, while functional diversity, an important predictor of ecosystem services, is often neglected. We explored how local and landscape scale characteristics influence functional and taxonomic diversity of hummingbirds in the Andes Mountains in southern Ecuador. Data was collected in six landscapes along a land use gradient, from an almost intact landscape to one dominated by cattle pastures. We used point counts to sample hummingbirds from 2011 to 2012 to assessed how local factors (i.e., vegetation structure, flowering plants richness, nectar availability) and landscape factors (i.e., landscape heterogeneity, native vegetation cover) influenced taxonomic and functional diversity. Then, we analyzed environment – trait relationships (RLQ test) to explore how different hummingbird functional traits influenced species responses to these factors. Taxonomic and functional diversity of hummingbirds were positively associated with landscape heterogeneity but only functional diversity was positively related to native vegetation coverage. We found a weak response of taxonomic and functional diversity to land use change at the local scale. Environment‐trait associations showed that body mass of hummingbirds likely influenced species sensitivity to land use change. In conclusion, landscape heterogeneity created by land use change can positively influence hummingbird taxonomic and functional diversity; however, a reduction of native vegetation cover could decrease functional diversity. Given that functional diversity can mediate ecosystem services, the conservation of native vegetation cover could play a key role in the maintenance of hummingbird pollination services in the tropical Andes. Moreover, there are particular functional traits, such as body mass, that increase a species sensitivity to land use change.  相似文献   

11.
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait‐based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system‐wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small‐bodied, algal‐farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.  相似文献   

12.
The world is currently experiencing a period of rapid, human‐driven biodiversity loss. Over the past decade, numerous metrics for biodiversity have been used to create indicators to track change in biodiversity. However, our ability to predict future changes has been limited. In this study, we use two very different models to predict the status and possible futures for the composition and diversity of ecological assemblages in African tropical grasslands and savannas under land‐use change. We show that ecological assemblages are affected more by land use in African grasslands and savannas than in other biomes. We estimate that average losses of assemblage composition and diversity are already between 9.7 and 42.0%, depending on the model and measure used. If current socio‐economic trajectories continue (‘business‐as‐usual’), the likely associated land‐use changes are predicted to lead to a further 5.6–12.3% loss of assemblage composition and diversity. In contrast, a scenario that assumes more efficient use of agricultural areas (thus requiring a smaller total area) could be associated with a partial reversal ? of as much as 3.2% ? of past losses. While the agriculture that causes the majority of land‐use change is an important source of economic growth, projections of the effects of land use on ecological assemblages can allow for more informed decisions.  相似文献   

13.
Árva  Diána  Tóth  Mónika  Mozsár  Attila  Specziár  András 《Hydrobiologia》2017,787(1):353-373

Environmental heterogeneity plays a determinant role in structuring taxonomic and functional composition of local assemblages via various interacting processes as synthesized in the metacommunity theory. In this study, we evaluate the relative roles of local environmental and landscape filters, spatial constraints and seasonality in organization of assemblages of Chironomidae (Diptera), a diverse aquatic insect group with winged adults, in an extremely heterogeneous wetland system, Kis-Balaton, Hungary. As expected, local environmental variables explained a substantial proportion of assemblage variance mainly along sediment structure, macrophyte coverage, and decomposing plant matter gradients. Considering the narrow spatial range of the study area, pure spatial influence was unexpectedly strong, likely because of the dispersal limitation related to tall terrestrial vegetation patches and mass effect related to the uneven distribution and area of certain microhabitats and their species pools. However, landscape- and season-related variability proved to be low or negligible. Taxonomic and functional feeding guild (FFG)-based approaches revealed the same main trends in assemblage data; however, FFGs seemed to track environmental changes more tightly. We argue for the common use of taxonomic and functional-based approaches and advise the improvement of species optima and tolerance spectra databases to expand bioassessment power.

  相似文献   

14.
Conversion of tropical forests to agriculture affects vertebrate assemblages, but we do not know how fast or to what extent these assemblages recover after field abandonment. We addressed this question by examining amphibians and reptiles in secondary forests in southeastern Mexico. We used chronosequence data (12 secondary forests fallow for 1–23 yr and 3 old‐growth forest sites) to analyze successional trajectories and estimate recovery times of assemblage attributes for amphibians and reptiles. We conducted 6 surveys at each site over 14 mo (1200 person‐hours) and recorded 1552 individuals, including 25 species of amphibians and 36 of reptiles, representing 96 and 74 percent of the expected regional number of species, respectively. Abundance, species richness, and species diversity of amphibians increased rapidly with successional age, approaching old‐growth forest values in < 30 yr. Species richness and species diversity of reptiles reached old‐growth forest values in < 20 yr. By contrast, the abundance of reptiles and the assemblage composition of amphibians and reptiles recovered more slowly. Along the chronosequence, we observed more species replacement in reptile assemblages than in amphibian assemblages. Several species in the old‐growth forest were absent from secondary forests. Dispersal limitation and harsh conditions prevailing in open sites and early successional environments appear to preclude colonization by old‐growth forest species. Furthermore, short fallow periods and isolation of forest remnants lead to the formation of new assemblages dominated by species favored by human disturbances.  相似文献   

15.
Caatinga vegetation continues to be converted into mosaics of secondary forest stands, but the affect of this process on biodiversity has not yet been examined. We used 35 regenerating and old‐growth stands of Caatinga to examine the recovery of plant assemblages subsequent to slash‐and‐burn agriculture and cattle ranching/pasture in northeastern Brazil. Plant assemblages were contrasted in terms of community structure (stem density/basal area/species richness/diversity), functional (leaf habit/reproductive traits) and taxonomic composition. Soil attributes were also examined to infer potential drivers for cross‐habitat differences. As expected, plant assemblages clearly differed across a large set of community‐level attributes, including all trait categories relative to leaf habit and reproduction (pollination syndrome/floral color, size, type). Overall, old‐growth forest stands supported distinct and more diverse assemblages at the plot and habitat level; e.g., long‐lived tree species were almost exclusively found in old‐growth forest stands. For most attributes, plant assemblages subsequent to pasture exhibited intermediate values between those exhibited by old‐growth forest and those of agriculture‐related stands. Surprisingly, soils exhibited similar fertility‐related scores across habitats. Our results indicate that: (1) sprouting/resprouting represents an important mechanism of forest regeneration; (2) assemblage‐level attributes suggest recovery at distinct rates; (3) forest regeneration implies community‐level changes in both vegetative and reproductive functional attributes, including directional changes; (4) Caatinga is not able to completely recover in a period of 15‐yr following land abandonment; and (5) historical land use affects recovery rates and successional pathways/taxonomic trajectories. Seasonally dry tropical forests may intrinsically cover a wide range of patterns relative to successional model, recovery rates and successional pathways.  相似文献   

16.
Synopsis The fish assemblage in nineteen shallow water (0–3 m) areas on the Swedish west coast, including an estuarine zone, was assessed during spring and autumn 1989 and autumn 1990, using semi-quantitative survey nets. Samples of macrovegetation were collected concurrently for estimates of species composition and biomass. Nine stations had rocky-bottom substrata and ten had soft-bottom substrata all characterized by high coverage of macrovegetation and variously overgrown with epiphytic filamentous algae. Fish assemblage structures were compared and related to vegetation biomass, substrata and estuarine influences. At rocky-bottom stations total fish biomass was positively correlated with total vegetation biomass and negatively correlated with the proportion of filamentous algae during autumn samplings. In soft-bottom habitats variation in vegetation was small between stations, and no correlation existed between vegetation biomass and fish biomass. However, the number of fish species in soft-bottom habitats decreased significantly with increasing dominance of filamentous algae. The component species of the fish assemblage varied in their relation to the vegetation biomass and structure suggesting differences in degree of association with vegetation at the species level. Multivariate analysis based on fish species composition and on vegetation assemblages at the individual stations, yielded two major groups in accordance with division of the substrate into rocky- and soft-bottom habitats. Vegetation biomass superimposed on the fish assemblage ordination indicated a relationship between vegetation biomass and fish assemblage structure. Location of stations, in relation to the estuary was reflected in subgroups formed in the fish assemblage based cluster and ordination, suggesting a substantial estuarine influence on the fish assemblages. Thus, substrate type, vegetation biomass and structure, and estuarine influence are all potential structuring factors for the fish assemblages. In our study, vegetation structure seems to be of major importance and changes such as increased dominance of filamentous algae, like that observed in coastal areas in Sweden, might cause significant changes in fish assemblage structure.  相似文献   

17.
Question: Can dissimilarity measures of individual plots be used to forecast the driving factors among various anthropogenic disturbances influencing understorey successional changes? Location: Yambulla State Forest, south‐eastern Australia (37°14'S, 149°38'E). Methods: Assessments of understorey vegetation communities were taken prior to anthropogenic disturbances and at three subsequent time periods representing a period of 15 years post‐disturbance. Dissimilarities were calculated from the original assessment and modelled in a Bayesian framework to examine the influence of logging, number of prescribed burns and time. Results: All sites underwent significant changes over time independently of the imposed management regimes. Logging resulted in an immediate change in vegetation assemblage which decreased in the subsequent assessments. The number of prescribed fires brought greater change in the shrub vegetation assemblages, but less change in the ground species vegetation assemblages. Conclusions: The anthropogenic disturbances did have some role in the changes of vegetation assemblages but these were minimal. The ongoing changes appear to be a natural response to the last wildfire, which passed through the study area in 1973 (13 years prior to the study). Forest management practices should consider the influence of wildfire succession when planning for the conservation of biodiversity.  相似文献   

18.
Most investigations of biogenic habitat provision consider the promotion of local biodiversity by single species, yet habitat-forming species are often themselves components of diverse assemblages. Increased prevalence of anthropogenic changes to assemblages of habitat-forming species prompts questions about the importance of facilitator biodiversity to associated organisms. We used observational and short-term (30 days) manipulative studies of an intertidal seaweed system to test for the implications of changes in four components of biodiversity (seaweed species richness, functional group richness, species composition, and functional group composition) on associated small mobile invertebrate epifauna. We found that invertebrate epifauna richness and abundance were not influenced by changes in seaweed biodiversity. Invertebrate assemblage structure was in most cases not influenced by changes in seaweed biodiversity; only when algal assemblages were composed of monocultures of species with ‘foliose’ morphologies did we observe a difference in invertebrate assemblage structure. Correlations between algal functional composition and invertebrate assemblage structure were observed, but there was no correlation between algal species composition and invertebrate assemblage structure. These results suggest that changes in seaweed biodiversity are likely to have implications for invertebrate epifauna only under specific scenarios of algal change.  相似文献   

19.
Ecosystems are rapidly being altered and destabilized on a global scale, threatening native biota and compromising vital services provided to human society. We need to better understand the processes that can undermine ecosystem integrity (resistance‐resilience) in order to devise strategies to ameliorate this trend. We used a herpetofaunal assemblage to first assess spatial patterns of biodiversity and then to discover the underlying landscape processes likely responsible for these patterns. Reptiles and amphibians are a phylogenetically diverse set of species with documented sensitivity to environmental perturbations. We examined ecogeographic patterns of these taxa in aquatic and riparian environments across the landscape mosaic of the Mattole River watershed of northern California, USA. We analyzed species distributions relative to three primary vegetation types (grassland, second‐growth forest, late‐seral forest) and two hydrologic regimes (perennial vs intermittent). We sought evidence for the processes behind these patterns by modeling animal distributions relative to multi‐scale compositional, structural, and physical attributes of the vegetation or hydrologic type. Total herpetofaunal diversity was higher along perennial streams, with reptile diversity higher in mixed grassland. Amphibian and reptile richness, and reptile evenness, varied significantly among the three vegetations. Evidence indicated that distinct assemblages were associated with each end of a seral continuum. Four amphibians were more abundant in late‐seral forest, while two amphibians and two reptiles were more abundant in second‐growth forest, or mixed grassland, or both. Two amphibians were more abundant along intermittent streams. Models for predicting reptile richness, or abundances of the two amphibian assemblages, indicated water temperature was the best predictor variable. Based on these results and the physiological limits of several sensitive species, we determined the primary processes influencing faunal assemblage patterns on this landscape have been vegetation changes resulting from the harvesting of late‐seral forests and the clearing of forest for pasture. Comparing past with present landscape mosaics indicated that these changes have transformed the dominant amphibian and reptile species assemblage from a mostly cold‐water and cool forest‐associated assemblage to one now dominated by warm‐water and mixed grassland/woodland species.  相似文献   

20.
1. Characterisation of biodiversity is typically based on taxonomic approaches, while much less is known about other related aspects. Functional trait diversity is one such component of biodiversity that has not been addressed rigorously in ecological research until recently. We tested the congruence between taxonomic‐ and trait‐based approaches, and examined how spatial configuration, local abiotic environmental factors and biotic effects interact to influence taxonomic‐ and trait‐based characterisation of freshwater fish assemblages. 2. Fish assemblage data were compiled for 124 lakes in southern Finland. Variance partitioning in both linear regression analyses and redundancy analysis was used to quantify the relative contribution of spatial and environmental variables to taxonomic and functional trait diversity and structure. Additionally, a null model analysis was used to test for the potential effects of interspecific segregation and biotic interactions on the co‐occurrence of species. 3. The species pool was relatively poor. However, trait‐based classification of species indicated that most species belonged to unique functional entities, which suggested low redundancy in species composition. Correlation analysis indicated a very strong relationship between species richness (SR) and the number of unique trait combinations (UTC). Ecoregion‐level heterogeneity in SR and UTC were well represented in a relatively small group of randomly selected lakes (c. 30 lakes). Multiple regressions indicated moderate roles for abiotic environmental variables (i.e. lake surface area, depth, total phosphorous, colour and pH) in determining SR, UTC and the distribution of single trait categories, whereas geographical location was not generally influential. 4. Redundancy analysis revealed similar patterns to those of diversity analyses for taxonomic and associated trait‐based structure, emphasising the effect of abiotic environmental variables and the negligible effect of geographical position. 5. Co‐occurrence analysis indicated significant checkerboard distribution at the whole assemblage level, but interspecific segregation proved to be of relatively minor importance in the constrained analyses, where species pair combinations within trait category groups were evaluated. 6. Our results suggest that taxonomic‐ and trait‐based patterns of boreal lake fish assemblages are strongly interrelated. Environmental filtering through the effects of local abiotic variables seems to have the most prominent role in determining trait‐based assemblage patterns among lakes, which may also be secondarily shaped by biotic interactions. 7. From the applied perspective, it may not necessarily matter whether traditional taxonomic or more novel trait‐based approaches are used in characterising spatial patterns in boreal fish assemblages. However, trait‐based approaches may provide complementary information which cannot be directly revealed by taxonomic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号