首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We develop an energetic approach to identify the relationship between biomass fluxes and standing biomass across trophic levels. Our approach links ecological rates and trophic dynamics to measure temperature‐dependent changes to the strength of trophic interactions and determine how these changes alter food web stability. It accomplishes this by using biomass as a common energetic currency and isolating three temperature‐dependent processes that are common to all consumer–resource interactions: biomass accumulation of the resource, resource consumption and consumer mortality. Using this framework, we clarify when and how temperature alters consumer to resource biomass ratios, equilibrium resilience, consumer variability, extinction risk and transient vs. equilibrium dynamics. Finally, we characterise key asymmetries in species responses to temperature that produce these distinct dynamic behaviours and identify when they are likely to emerge. Overall, our framework provides a mechanistic and more unified understanding of the temperature dependence of trophic dynamics in terms of ecological rates, biomass ratios and stability.  相似文献   

2.
Multichannel feeding, whereby consumers feed across resource channels such as upon herbivore and detritivore resources, acts to link discrete compartments of a food web with implications for ecosystem functioning and stability. Currently however, we have little understanding which feeding strategies of consumers underlie multichannel feeding. We therefore link spider functional group and resource density‐dependent or density‐independent feeding strategies to multichannel feeding by quantifying not only consumer diet, but also the relative availability of resources. Here we analysed herbivore (green) and detritivore (brown) prey use by spider communities in grasslands, and tested if available prey biomass proportions were linked to observed spider dietary proportions. Different spider functional groups each linked green and brown resource channels, but while green prey were always consumed in proportion to their relative biomass, brown prey were consumed independently of proportion by some functional groups. Additionally, we found greater intraguild predation by cursorial spiders when green resources were relatively scarcer, suggesting green prey was preferred, and needed to be compensated for when rare. Overall, we observed a stronger consumer connection to the green than brown resource channel, yet this green connection was more variable due to greater range in green resource availability across grasslands and density‐dependent consumption on green prey. Consequently, multichannel feeding by spiders was determined by density‐dependent and density‐independent feeding strategies that varied by spider functional group and across resources channels. Our results demonstrate that the role of multichannel feeding by spiders in linking separate food web compartments is a dynamic component of food web structure in these wild grasslands.  相似文献   

3.
The stability of consumer–resource systems can depend on the form of feeding interactions (i.e. functional responses). Size‐based models predict interactions – and thus stability – based on consumer–resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4–6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates – particularly around the unimodal optimum – and promoted prey population stability in model simulations. Many real consumer–resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context‐Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology.  相似文献   

4.
Theoretical studies have demonstrated that selection will favor increased migration when fitnesses vary both temporally and spatially, but it is far from clear how pervasive those theoretical conditions are in nature. Although consumer–resource interactions are omnipresent in nature and can generate spatial and temporal variation, it is unknown even in theory whether these dynamics favor the evolution of migration. We develop a mathematical model to address whether and how migration evolves when variability in fitness is determined at least in part by consumer–resource coevolutionary interactions. Our analyses show that such interactions can drive the evolution of migration in the resource, consumer, or both species and thus supplies a general explanation for the pervasiveness of migration. Over short time scales, we show the direction of change in migration rate is determined primarily by the state of local adaptation of the species involved: rates increase when a species is locally maladapted and decrease when locally adapted. Our results reveal that long‐term evolutionary trends in migration rates can differ dramatically depending on the strength or weakness of interspecific interactions and suggest an explanation for the evolutionary divergence of migration rates among interacting species.  相似文献   

5.
Disturbances have long been recognized as important forces for structuring natural communities but their effects on trophic structure are not well understood, particularly in terrestrial systems. This is in part because quantifying trophic linkages is a challenge, especially for small organisms with cryptic feeding behaviors such as insects, and often relies on conducting labor‐intensive feeding trials or extensive observations in the field. In this study, we used stable isotopes of carbon and nitrogen to examine how disturbance (annual biomass harvesting) in tallgrass prairies affected the trophic position, trophic range, and niche space of ants, a widespread grassland consumer. We hypothesized that biomass harvest would remove important food and nesting resources of insects thus affecting ant feeding relationships and trophic structure. We found shifts in the feeding relationships inferred by isotopic signatures with harvest. In particular, these shifts suggest that ants within harvest sites utilized resources at lower trophic levels (possibly plant‐based resources or herbivores), expanded trophic breadth, and occupied different niche spaces. Shifts in resource use following harvest could be due to harvest‐mediated changes in both the plant and arthropod communities that might affect the strength of competition or alter plant nitrogen availability. Because shifts in resource use alter the flow of nutrients across the food web, disturbance effects on ants could have ecosystem‐level consequences through nutrient cycling.  相似文献   

6.
We combine stoichiometry theory and optimal foraging theory into the MacArthur consumer-resource model. This generates predictions for diet choice, coexistence, and community structure of heterotroph communities. Tradeoffs in consumer resource-garnering traits influence community outcomes. With scarce resources, consumers forage opportunistically for complementary resources and may coexist via tradeoffs in resource encounter rates. In contrast to single currency models, stoichiometry permits multiple equilibria. These alternative stable states occur when tradeoffs in resource encounter rates are stronger than tradeoffs in elemental conversion efficiencies. With abundant resources consumers exhibit partially selective diets for essential resources and may coexist via tradeoffs in elemental conversion efficiencies. These results differ from single currency models, where adaptive diet selection is either opportunistic or selective. Interestingly, communities composed of efficient consumers share many of the same properties as communities based on substitutable resources. However, communities composed of relatively inefficient consumers behave similarly to plant communities as characterized by Tilman’s consumer resource theory. The results of our model indicate that the effects of stoichiometry theory on community ecology are dependent upon both consumer foraging behavior and the nature of resource garnering tradeoffs.  相似文献   

7.
Functional responses describing how foraging rates change with respect to resource density are central to our understanding of interspecific interactions. Competitive interactions are an important determinant of foraging rates; however, the relationship between the exploitation and interference components of competition has received little empirical or theoretical consideration. Moreover, little is known about the relationship between aggressive behavioural interactions and interference competition. Using a natural gradient of consumer and resource densities, we empirically examine how aggressiveness relates to consumer–consumer encounter rates and foraging for four species of Chaetodon reef fish spanning a range of dietary niche breadths. The probability of aggression was most strongly associated with both total consumer and resource densities. In contrast, total encounter rates were best predicted by conspecific consumer density, and were highest for the most specialised consumer (Chaetodon trifascialis), not the most aggressive (Chaetodon baronessa). The most specialised consumer, not the most aggressive, also exhibited the largest reduction in foraging rates with increasing consumer density. Our results support the idea of a positive link between the exploitation and interference components of competition for the most specialised consumer. Moreover, our results caution against inferring the presence of ecological interactions (competition) from observations of behaviour (aggression and agonism) alone.  相似文献   

8.
Generalist consumers commonly coexist in many ecosystems. Yet, eco-evolutionary theory poses a problem with this observation: generalist consumers (usually) cannot coexist stably. To provide a solution to this theory-observation dissonance, we analyzed a simple eco-evolutionary consumer resource model. We modeled consumption of two nutritionally interactive resources by species which evolve their resource encounter rates subject to a tradeoff. As shown previously, consumers can ecologically coexist through tradeoffs in resource encounter rates; however, this coexistence is evolutionary unstable. Here, we find that nutritional interactions between resources and the shape of acquisition tradeoffs produce very similar evolutionary outcomes in isolation. Specifically, they produce evolutionarily stable communities composed either of two specialists (concave acquisition tradeoff or antagonistic nutrition) or a single generalist (convex acquisition tradeoff or complementary nutrition). Thus, the generalist-coexistence problem remains. However, the combination of nonlinear resource acquisition tradeoffs with nonlinear resource nutritional relationships creates selection forces that can push and pull against each other. Ultimately, this push-pull dynamic can stabilize the coexistence of two competing generalist consumers—but only when we coupled a convex acquisition tradeoff with antagonistic nutrition. Thus, our model here offers some resolution to the generalist-coexistence problem in eco-evolutionary, consumer-resource theory.  相似文献   

9.
Explaining variability in the strength and sign of trophic interactions between primary consumers and plants is a long‐standing research challenge. Consumer density and body size vary widely in space and time and are predicted to have interactive effects on consumer–plant interactions. In a southern US salt marsh, we used replicate field enclosures to orthogonally manipulate the body size (mass) and density of a dominant consumer (a snail). We investigated impacts (leaf damage and biomass) on monocultures of cordgrass, the foundation species, over three months. Increasing consumer density and body size increased leaf damage additively and, as predicted, multiplicatively reduced plant biomass. Notably, size and density determined the sign of consumer impact on plants: low to medium densities of small consumers enhanced, while high densities of large consumers strongly suppressed, plant biomass. Finally, total consumer metabolic biomass (mass0.75) within an enclosure parsimoniously explained plant biomass response, supporting theoretical predictions and suggesting that multiplicative effects of density and body size resulted from their effects on total metabolic biomass. The consequences of changes in consumer density and body size resulting from anthropogenic perturbations may therefore be predicted based on metabolic biomass. Synthesis Consumer size, density and biomass can all strongly affect consumer–plant interactions. Though density and body size have been extensively studied as drivers of variation in interaction strength, the role of biomass as the ultimate driver has been less appreciated. We manipulated body size and density of a single consumer species and, based on metabolic theory, integrated these into a single variable: total metabolic biomass. Our results suggest that changes in interaction strength attributed to size or density may in fact be due to changes in metabolic biomass. This metric could thus serve as a useful tool in further understanding species interactions.  相似文献   

10.
The strength of trophic (feeding) links between two species depends on the traits of both the consumer and the resource. But which traits of consumer and resource have to be measured to predict link strengths, and how many? A novel theoretical framework for systematically determining trophic traits from empirical data was recently proposed. Here we demonstrate this approach for a group of 14 consumer fish species (Labeobarbus spp., Cyprinidae) and 11 aquatic resource categories coexisting in Lake Tana in northern Ethiopia, analysing large sets of phenotypic consumer and resource traits with known roles in feeding ecology. We systematically reconstruct structure and geometry of trophic niche space, in which link strengths are predicted by the distances between consumers and resources. These distances are then represented graphically resulting in an image of trophic niche space and its occupancy. We find trophic niche to be multidimensional. Among the models we analysed, one with two resource and two consumer traits had the highest predictive power for link strength. Results further suggest that trophic niche space has a pseudo-Euclidean geometry, meaning that link strength decays with distance in some dimensions of trophic niche space, while it increases with distance in other dimensions. Our analysis not only informs theory and modelling but may also be helpful for predicting trophic link strengths for pairs of other, similar species.  相似文献   

11.
Ecosystem functioning is affected by horizontal (within trophic groups) and vertical (across trophic levels) biodiversity. Theory predicts that the effects of vertical biodiversity depend on consumer specialization. In a microcosm experiment, we investigated ciliate consumer diversity and specialization effects on algal prey biovolume, evenness and composition, and on ciliate biovolume production. The experimental data was complemented by a process‐based model further analyzing the ecological mechanisms behind the observed diversity effects. Overall, increasing consumer diversity had no significant effect on prey biovolume or evenness. However, consumer specialization affected the prey community. Specialist consumers showed a stronger negative impact on prey biovolume and evenness than generalists. The model confirmed that this pattern was mainly driven by a single specialist with a high per capita grazing rate, consuming the two most productive prey species. When these were suppressed, the prey assemblage became dominated by a less productive species, consequently decreasing prey biovolume and evenness. Consumer diversity increased consumer biovolume, which was stronger for generalists than for specialists and highest in mixed combinations, indicating that consumer functional diversity, i.e. more diverse feeding strategies, increased resource use efficiency. Overall, our results indicate that consumer diversity effects on prey and consumers strongly depend on species‐specific growth and grazing rates, which may be at least equally important as consumer specialization in driving consumer diversity effects across trophic levels. Synthesis In a microcosm experiment, we investigated multitrophic consumer diversity and specialization effects using ciliate consumers and microalgal prey. Consumer diversity increased consumer biovolume, which was highest in combinations containing both generalists and specialists. Specialist consumers showed a stronger negative effect on prey biovolume and evenness than generalists. These experimental data were supported by a process‐based model, indicating that the large effect of the specialists was based on high per capita grazing rate on the two most productive prey species. Species‐specific traits such as growth and grazing rates were equally important for multitrophic diversity effects than consumer specialization.  相似文献   

12.
Chuan Yan  Zhibin Zhang 《Oikos》2019,128(8):1147-1157
Despite the prevalence of context‐dependent interaction transitions in ecological systems, their impacts on persistence and interaction diversity have scarcely been explored in complex ecological networks. By using multispecies bi‐directional and unidirectional consumer–resource models, representing a continuum of interaction transitions (sign change of interaction outcomes), we investigated the effects of structural interaction transitions on persistence (the fraction of remaining species) and long‐term interaction outcomes in random ecological networks. We found that high interaction strength of exploiting resources generally decreased persistence, and high strength of providing resources increased persistence when the strength of exploiting resources was low in more complex networks; also, the networks with high persistence had a high proportion of mutualistic interactions relative to antagonistic interactions present initially and over the long term. The shifting of interaction strengths shaped the long‐term interaction compositions. Meanwhile, population dynamics, especially species extinction, affected the difference between initial and long‐term interactions. Based on classical consumer–resource theory, these results establish a transitional continuum of interaction outcomes in ecological networks and imply a theoretical association among interaction transition, community persistence and interaction diversity.  相似文献   

13.
Phenology is a crucial life history trait for species interactions and it can have great repercussions on the persistence of communities and ecosystems. Changes in phenology caused by climate change can disrupt species interactions causing decreases in consumer growth rates, as suggested by the match–mismatch hypothesis (MMH). However, it is still not clear what the long-term consequences of such phenological changes are. In this paper, we present models in which phenology and consumer–resource feedbacks determine long-term community dynamics. Our results show that consumer viability is constrained by limits in the amount of phenological mismatch with their resources, in accordance with the MMH, but the effects of phenological shifts are often nonmonotonic. Consumers generally have higher abundances when they recruit some time before or after their resources because this reduces the long-term effects of overexploitation that would otherwise occur under closer synchrony. Changes in the duration of recruitment phenologies also have important impacts on community stability, with shorter phenologies promoting oscillations and cycles. For small community modules, the effects of phenological shifts on populations can be explained, to a great extent, as superpositions of their effects on consumer–resource pairs. We highlight that consumer–resource feedbacks and overexploitation, which are not typically considered in phenological models, are important factors shaping the long-term responses to phenological changes caused by climate change.  相似文献   

14.
Most motile organisms use sensory cues when searching for resources, mates, or prey. The searcher measures sensory data and adjusts its search behavior based on those data. Yet, classical models of species encounter rates assume that searchers move independently of their targets. This assumption leads to the familiar mass action-like encounter rate kinetics typically used in modeling species interactions. Here we show that this common approach can mischaracterize encounter rate kinetics if searchers use sensory information to search actively for targets. We use the example of predator-prey interactions to illustrate that predators capable of long-distance directional sensing can encounter prey at a rate proportional to prey density to the power (where is the dimension of the environment) when prey density is low. Similar anomalous encounter rate functions emerge even when predators pursue prey using only noisy, directionless signals. Thus, in both the high-information extreme of long-distance directional sensing, and the low-information extreme of noisy non-directional sensing, encounter rate kinetics differ qualitatively from those derived by classic theory of species interactions. Using a standard model of predator-prey population dynamics, we show that the new encounter rate kinetics derived here can change the outcome of species interactions. Our results demonstrate how the use of sensory information can alter the rates and outcomes of physical interactions in biological systems.  相似文献   

15.
The functional response is a fundamental model of the relationship between consumer intake rate and resource abundance. The random walk is a fundamental model of animal movement and is well approximated by simple diffusion. Both models are central to our understanding of numerous ecological processes but are rarely linked in ecological theory. To derive a synthetic model, we draw on the common logical premise underlying these models and show how the diffusion and consumption rates of consumers depend on elementary attributes of naturally occurring consumer-resource interactions: the abundance, spatial aggregation, and traveling speed of resources as well as consumer handling time and directional persistence. We show that resource aggregation may lead to increased consumer diffusion and, in the case of mobile resources, reduced consumption rate. Resource-dependent movement patterns have traditionally been attributed to area-restricted search, reflecting adaptive decision making by the consumer. Our synthesis provides a simple alternative hypothesis that such patterns could also arise as a by-product of statistical movement mechanics.  相似文献   

16.
Ecologists have extensively investigated the effect of warming on consumer–resource interactions, with experiments revealing that warming can strengthen, weaken or have no net effect on top‐down control of resources. These experiments have inspired a body of theoretical work to explain the variation in the effect of warming on top‐down control. However, there has been no quantitative attempt to reconcile theory with outcomes from empirical studies. To address the gap between theory and experiment, we performed a meta‐analysis to examine the combined effect of experimental warming and top‐down control on resource biomass and determined potential sources of variation across experiments. We show that differences in experimental outcomes are related to systematic variation in the geographical distribution of studies. Specifically, warming strengthened top‐down control when experiments were conducted in colder regions, but had the opposite effect in warmer regions. Furthermore, we found that differences in the thermoregulation strategy of the consumer and openness of experimental arenas to dispersal can contribute to some deviation from the overall geographical pattern. These results reconcile empirical findings and support the expectation of geographical variation in the response of consumer–resource interactions to warming.  相似文献   

17.
Animal movement strategies including migration, dispersal, nomadism, and residency are shaped by broad‐scale spatial‐temporal structuring of the environment, including factors such as the degrees of spatial variation, seasonality and inter‐annual predictability. Animal movement strategies, in turn, interact with the characteristics of individuals and the local distribution of resources to determine local patterns of resource selection with complex and poorly understood implications for animal fitness. Here we present a multi‐scale investigation of animal movement strategies and resource selection. We consider the degree to which spatial variation, seasonality, and inter‐annual predictability in resources drive migration patterns among different taxa and how movement strategies in turn shape local resource selection patterns. We focus on adult Galapagos giant tortoises Chelonoidis spp. as a model system since they display many movement strategies and evolved in the absence of predators of adults. Specifically, our analysis is based on 63 individuals among four taxa tracked on three islands over six years and almost 106 tortoise re‐locations. Tortoises displayed a continuum of movement strategies from migration to sedentarism that were linked to the spatio‐temporal scale and predictability of resource distributions. Movement strategies shaped patterns of resource selection. Specifically, migratory individuals displayed stronger selection toward areas where resources were more predictable among years than did non‐migratory individuals, which indicates a selective advantage for migrants in seasonally structured, more predictable environments. Our analytical framework combines large‐scale predictions for movement strategies, based on environmental structuring, with finer‐scale analysis of space‐use. Integrating different organizational levels of analysis provides a deeper understanding of the eco‐evolutionary dynamics at play in the emergence and maintenance of migration and the critical role of resource predictability. Our results highlight that assessing the potential benefits of differential behavioral responses first requires an understanding of the interactions among movement strategies, resource selection and individual characteristics.  相似文献   

18.
1. The importance of species diversity for the stability of populations, communities and ecosystem functions is a central question in ecology. 2. Biodiversity experiments have shown that diversity can impact both the average and variability of stocks and rates at these levels of ecological organization in single trophic-level ecosystems. Whether these impacts hold in food webs and across trophic levels is still unclear. 3. We asked whether resource species diversity, community composition and consumer feeding selectivity in planktonic food webs impact the stability of resource or consumer populations, community biomass and ecosystem functions. We also tested the relative importance of resource diversity and community composition. 4. We found that resource diversity negatively affected resource population stability, but had no effect on consumer population stability, regardless of the consumer's feeding selectivity. Resource diversity had positive effects on most ecosystem functions and their stability, including primary production, resource biomass and particulate carbon, nitrogen and phosphorus concentrations. 5. Community composition, however, generally explained more variance in population, community and ecosystem properties than species diversity per se. This result points to the importance of the outcomes of particular species interactions and individual species' effect traits in determining food web properties and stability. 6. Among the stabilizing mechanisms tested, an increase in the average resource community biomass with increasing resource diversity had the greatest positive impact on stability. 7. Our results indicate that resource diversity and composition are generally important for the functioning and stability of whole food webs, but do not have straightforward impacts on consumer populations.  相似文献   

19.
The positive effects of biodiversity on the functioning of ecosystems are well demonstrated in laboratory microcosms but the precise mechanisms underlying higher ecosystem process rates in natural assemblages are less well understood. We investigated, under semi-natural conditions (field enclosures), the potentially interactive effects of species identity and trophic function (i.e., feeding guild) on consumer growth, using a fish assemblage in a tropical stream. We tested the relative importance of species identity and trophic function on consumer growth by placing 2 fish of either (i) the same species, (ii) different species but of similar trophic function, or (iii) different species of different trophic functions in each of 72 stream enclosures for 48 days and measuring biomass change, individual diet composition and behavior. We predicted that if functional diversity had a larger impact than species diversity, then fish growth would be highest for pairs of species from different functional groups (i.e., those with the highest diet complementarity), intermediate for different species within a guild, and lowest for the same species (those with the lowest complementarity and highest niche overlap), such that functional variation between species in different guilds would exceed functional differences within guilds. Our results show that functional heterogeneity rather than species diversity per se had the greatest impact on food resources used complementarily, leading to higher biomass accrual. Mechanistically, higher growth rates were driven by concomitant increases in resource intake and reductions in antagonistic interactions. Together, these results underscore the importance of functional diversity on macroconsumer production in natural assemblages.  相似文献   

20.
The risk of predation can drive trophic cascades by causing prey to engage in antipredator behavior (e.g. reduced feeding), but these behaviors can be energetically costly for prey. The effects of predation risk on prey (nonconsumptive effects, NCEs) and emergent indirect effects on basal resources should therefore depend on the ecological context (e.g. resource abundance, prey state) in which prey manage growth/predation risk tradeoffs. Despite an abundance of behavioral research and theory examining state‐dependent responses to risk, there is a lack of empirical data on state‐dependent NCEs and their impact on community‐level processes. We used a rocky intertidal food chain to test model predictions for how resources levels and prey state (age/size) shape the magnitude of NCEs. Risk cues from predatory crabs Carcinus maenas caused juvenile and sub‐adult snails Nucella lapillus to increase their use of refuge habitats and decrease their growth and per capita foraging rates on barnacles Semibalanus balanoides. Increasing resource levels (high barnacle density) and prey state (sub‐adults) enhanced the strength of NCEs. Our results support predictions that NCEs will be stronger in resource‐rich systems that enhance prey state and suggest that the demographic composition of prey populations will influence the role of NCEs in trophic cascades. Contrary to theory, however, we found that resources and prey state had little to no effect on snails in the presence of predation risk. Rather, increases in NCE strength arose because of the strong positive effects of resources and prey state on prey foraging rates in the absence of risk. Hence, a common approach to estimating NCE strength – integrating measurements of prey traits with and without predation risk into a single metric – may mask the underlying mechanisms driving variation in the strength and relative importance of NCEs in ecological communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号