首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
光降解在凋落物分解中的作用   总被引:2,自引:0,他引:2  
近年来,越来越多的研究者认识到光降解可能在凋落物分解中发挥着重要作用.本文对光降解的作用机制,光降解在碳循环、养分循环中的作用,光降解与微生物分解的关系,以及影响光降解的因素进行了综述.光降解对凋落物分解过程同时具有正效应和负效应,正效应指光降解通过氧化有机质,或是改变凋落物自身理化性质使其更易淋溶和分解,负效应指高光辐射对分解者产生不利影响从而押制微生物分解.在光降解过程中光化学矿化产生CO2是生态系统碳流失的主要机制.除紫外光外,可见光中的蓝、绿光波段也对凋落物的降解产生影响.光降解作用的大小受到水分状况、凋落物化学性质和凋落物的暴露面积的影响.最后,讨论了该领域有待深入研究的方向,指出今后应当重点对光降解研究方法,光降解与环境因子的交互作用,光降解作用的空间差异,光降解与微生物分解的相互关系及其作用强度进行研究.  相似文献   

2.
3.
  总被引:1,自引:0,他引:1  
Colin Averill 《Ecology letters》2014,17(10):1202-1210
Allocation trade‐offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise stoichiometric tradeoffs implemented in plant ecology. These solutions may not maximise microbial growth and fitness under all conditions, because organic nutrients are also a significant carbon resource for microbes. I created multiple allocation frameworks and simulated microbial growth using a microbial explicit biogeochemical model. I demonstrate that prioritising stoichiometric trade‐offs does not optimise microbial allocation, while exploiting organic nutrients as carbon resources does. Analysis of continental‐scale enzyme data supports the allocation patterns predicted by this framework, and modelling suggests large deviations in soil C loss based on which strategy is implemented. Therefore, understanding microbial allocation strategies will likely improve our understanding of carbon cycling and climate.  相似文献   

4.
由于研究环境变化和微生物群落的需要,近年来高通量组学技术得到了迅猛开发和应用.其中,基于测序和芯片技术的宏基因组学是一个关键的、最成熟的组学技术,为大多数的其它组学技术提供了支撑.相比较而言,宏转录组学、宏蛋白质组学和宏代谢组学也取得了少数的有限成功,但已经显示出可喜的潜力.所有的组学技术都有赖于生物信息学,使得后者成为组学技术应用的一个主要的技术瓶颈.这些新的组学技术对环境微生物学领域产生了革命性的影响,极大地丰富了我们对于环境微生物基因资源和功能活性的了解.  相似文献   

5.
6.
    
Soil respiration (Rs), as the second largest flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere, is vulnerable to global nitrogen (N) enrichment. However, the global distribution of the N effects on Rs remains uncertain. Here, we compiled a new database containing 1282 observations of Rs and its heterotrophic component (Rh) in field N manipulative experiments from 317 published papers. Using this up-to-date database, we first performed a formal meta-analysis to explore the responses of Rs and Rh to N addition, and then presented a global spatially explicit quantification of the N effects using a Random Forest model. Our results showed that experimental N addition significantly increased Rs but had a minimal impact on Rh, not supporting the prevailing view that N enrichment inhibits soil microbial respiration. For the major biomes, the magnitude of N input was the main determinant of the spatial variation in Rs response, while the most important predictors for Rh response were biome specific. Based on the key predictors, global mapping visually demonstrated a positive N effect in the regions with higher anthropogenic N inputs (i.e., atmospheric N deposition and agricultural fertilization). Overall, our analysis not only provides novel insight into the N effects on soil CO2 fluxes, but also presents a spatially explicit assessment of the N effects at the global scale, which are pivotal for understanding ecosystem carbon dynamics in future scenarios with more frequent anthropogenic activities.  相似文献   

7.
8.
土壤有机碳和氮分解对温度变化的响应趋势与研究方法   总被引:2,自引:0,他引:2  
吴建国 《应用生态学报》2007,18(12):2896-2904
总结了土壤中碳和氮贮量与温度的关系、土壤碳和氮分解对温度时空差异和直接加热升温的响应,以及土壤碳和氮分解对低温冻结及冻融循环的响应趋势,讨论了其研究方法的误差和不确定性,并对今后的研究提出了一些建议.气候变暖在短期内将使土壤碳和氮分解加速并引起CO2释放量增加,而长期过程中却并不一定会引起土壤碳和氮分解加速.合理解释不同研究结果的差异,除了需要系统分析土壤碳和氮分解对温度变化响应的机制外,还需要充分认识土壤碳和氮分解对温度变化响应的长期过程和短期过程的差异,以及研究方法、植被、土壤和气候等因素的影响.  相似文献   

9.
The influence of site fertility on soil microbial biomass and activity is not well understood but is likely to be complex because of interactions with plant responses to nutrient availability. We examined the effects of long-term (8 yr) fertilization and litter removal on forest floor microbial biomass and N and C transformations to test the hypothesis that higher soil resource availability stimulates microbial activity. Microbial biomass and respiration decreased by 20–30 % in response to fertilization. Microbial C averaged 3.8 mg C/g soil in fertilized, 5.8 mg C/g in control, and 5.5 mg C/g in litter removal plots. Microbial respiration was 200 µg CO2-C g–1 d–1 in fertilized plots, compared to 270 µg CO2-C g–1 d–1 in controls. Gross N mineralization and N immobilization did not differ among treatments, despite higher litter nutrient concentrations in fertilized plots and the removal of substantial quantities of C and N in litter removal plots. Net N mineralization was significantly reduced by fertilization. Gross nitrification and NO3 immobilization both were increased by fertilization. Nitrate thus became a more important part of microbial N cycling in fertilized plots even though NH4 + availability was not stimulated by fertilization.Soil microorganisms did not mineralize more C or N in response to fertilization and higher litter quality; instead, results suggest a difference in the physiological status of microbial biomass in fertilized plots that influenced N transformations. Respiration quotients (qCO2, respiration per unit biomass) were higher in fertilized plots (56 µg CO2-C mg C–1 d–1) than control (48 µg CO2-C mg C–1 d –1) or litter removal (45 µg CO2-C mg C–1 d–1), corresponding to higher microbial growth efficiency, higher proportions of gross mineralization immobilized, and lower net N mineralization in fertilized plots. While microbial biomass is an important labile nutrient pool, patterns of microbial growth and turnover were distinct from this pool and were more important to microbial function in nitrogen cycling.  相似文献   

10.
    
Benthic cyanobacterial mats are increasing in abundance worldwide with the potential to degrade ecosystem structure and function. Understanding mat community dynamics is thus critical for predicting mat growth and proliferation and for mitigating any associated negative effects. Carbon, nitrogen, and sulfur cycling are the predominant forms of nutrient cycling discussed within the literature, while metabolic cooperation and viral interactions are understudied. Although many forms of nutrient cycling in mats have been assessed, the links between niche dynamics, microbial interactions, and nutrient cycling are not well described. Here, we present an updated review on how nutrient cycling and microbial community interactions in mats are structured by resource partitioning via spatial and temporal heterogeneity and succession. We assess community interactions and nutrient cycling at both intramat and metacommunity scales. Additionally, we present ideas and recommendations for research in this area, highlighting top-down control, boundary layers, and metabolic cooperation as important future directions.  相似文献   

11.
    
An incubation method was used to investigate the nitrogen release characteristics from the residue of ten plant species which commonly grow in the northern part of the Loess Plateau. The effect of the residue on soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) was also determined. There were significant differences in the total N content and the C/N ratios among the different types of plant residue. The total N content of the residues ranged from 6.61 to 32.78 g kg?1. The C/N ratio of the residue ranged from 14 to 65. There was an immediate increase in soil N after alfalfa, erect milkvetch, and korshinsk peashrub residue was added to the soil. In contrast, soil N decreased after elm, sea buckthorn, and wild peach residue was added to the soil. The soil N content remained relatively low for 14–34 days and then increased. This indicated that N immobilization occurred during the early portion of the incubation period when elm, sea buckthorn and wild peach residue was added to the soil. Soil N levels were low during the entire incubation period when simon poplar, locust, Stipa bungeana, and old world bluestem residue were added to the soil. The addition of plant residue significantly increased SMBC and SMBN in all treatments. The SMBC and SMBN values were greatest in treatments containing plant residue with high total N content and low C/N ratios. The C/N ratios of korshinsk peashrub, sea buckthorn, and wild peach residues were similar, but the amount of N released from these residues and the effects of the residue on SMBC and SMBN in soil were significantly different. This indicates that not only the C/N ratio but also the chemical composition of the plant residue affected decomposition. It is important to consider C and N release characteristics from plant residue in order to adjust the C and N balance of soil when revegetating degraded ecosystems.  相似文献   

12.
荒漠土壤微生物量碳、氮变化对降水的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
许华  何明珠  唐亮  孙岩 《生态学报》2020,40(4):1295-1304
以腾格里沙漠东南缘的典型荒漠植被为研究对象,通过遮雨棚和滴灌系统设置5个降水梯度,即极端干旱处理、中度干旱处理、对照、增水处理I和增水处理II,研究了荒漠土壤微生物量碳(MBC)、氮(MBN)和微生物碳氮比(MBC/MBN)对季节、降水和土壤深度的响应规律,以期为极端降水事件影响干旱荒漠区土壤微生物量碳、氮及其循环规律的深入研究提供科学依据。结果表明:(1)MBC、MBN和MBC/MBN对降水处理的响应存在差异,三者的变化范围为:230.14—272.87 mg/kg,13.82—17.58 mg/kg,19.78—36.06。其中,降水处理对MBC、MBN的影响显著,对MBC/MBN的影响不显著,在极端干旱处理下,MBC、MBN均显著高于其他降水处理;(2)两年间的MBC、MBN和MBC/MBN差异显著,2017年较2016年MBC、MNB显著减少,MBC/MBN显著增加;(3)MBC、MBN和MBC/MBN变化均表现季节性差异,变化范围分别为:153.31—337.09 mg/kg,7.89—22.29 mg/kg,14.82—46.04,其中MBC、MBN为春季最高、秋季最低,M...  相似文献   

13.
         下载免费PDF全文
An incubation method was used to investigate the nitrogen release characteristics from the residue of ten plant species which commonly grow in the northern part of the Loess Plateau. The effect of the residue on soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) was also determined. There were significant differences in the total N content and the C/N ratios among the different types of plant residue. The total N content of the residues ranged from 6.61 to 32.78 g kg?1. The C/N ratio of the residue ranged from 14 to 65. There was an immediate increase in soil N after alfalfa, erect milkvetch, and korshinsk peashrub residue was added to the soil. In contrast, soil N decreased after elm, sea buckthorn, and wild peach residue was added to the soil. The soil N content remained relatively low for 14–34 days and then increased. This indicated that N immobilization occurred during the early portion of the incubation period when elm, sea buckthorn and wild peach residue was added to the soil. Soil N levels were low during the entire incubation period when simon poplar, locust, Stipa bungeana, and old world bluestem residue were added to the soil. The addition of plant residue significantly increased SMBC and SMBN in all treatments. The SMBC and SMBN values were greatest in treatments containing plant residue with high total N content and low C/N ratios. The C/N ratios of korshinsk peashrub, sea buckthorn, and wild peach residues were similar, but the amount of N released from these residues and the effects of the residue on SMBC and SMBN in soil were significantly different. This indicates that not only the C/N ratio but also the chemical composition of the plant residue affected decomposition. It is important to consider C and N release characteristics from plant residue in order to adjust the C and N balance of soil when revegetating degraded ecosystems.  相似文献   

14.
  总被引:1,自引:0,他引:1  
Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of current models compare to field observations, identify the processes causing model divergence, and identify future observation and experiment needs. We used a set of N‐fertilization simulations from two global biogeochemical models (CLM‐CN and O‐CN) that use different approaches to modeling C‐N interactions. On the global scale, net primary productivity (NPP) in the CLM‐CN model was substantially more responsive to N fertilization than in the O‐CN model. The most striking difference between the two models occurred for humid tropical forests, where the CLM‐CN simulated a 62% increase in NPP at high N addition levels (30 g N m?2 yr?1), while the O‐CN predicted a 2% decrease in NPP due to N fertilization increasing plant respiration more than photosynthesis. Across 35 temperate and boreal forest sites with field N‐fertilization experiments, we show that the CLM‐CN simulated a 46% increase in aboveground NPP in response to N, which exceeded the observed increase of 25%. In contrast, the O‐CN only simulated a 6% increase in aboveground NPP at the N‐fertilization sites. Despite the small response of NPP to N fertilization, the O‐CN model accurately simulated ecosystem retention of N and the fate of added N to vegetation when compared to empirical 15N tracer application studies. In contrast, the CLM‐CN predicted lower total ecosystem N retention and partitioned more losses to volatilization than estimated from observed N budgets of small catchments. These results point to the need for model improvements in both models in order to enhance the accuracy with which global C‐N cycle feedbacks are simulated.  相似文献   

15.
  总被引:3,自引:0,他引:3  
Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual‐based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community‐driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions.  相似文献   

16.
The availability of nitrogen (N) is a critical control on the cycling and storage of soil carbon (C). Yet, there are conflicting conceptual models to explain how N availability influences the decomposition of organic matter by soil microbial communities. Several lines of evidence suggest that N availability limits decomposition; the earliest stages of leaf litter decay are associated with a net import of N from the soil environment, and both observations and models show that high N organic matter decomposes more rapidly. In direct contrast to these findings, experimental additions of inorganic N to soils broadly show a suppression of microbial activity, which is inconsistent with N limitation of decomposition. Resolving this apparent contradiction is critical to representing nutrient dynamics in predictive ecosystem models under a multitude of global change factors that alter soil N availability. Here, we propose a new conceptual framework, the Carbon, Acidity, and Mineral Protection hypothesis, to understand the effects of N availability on soil C cycling and storage and explore the predictions of this framework with a mathematical model. Our model simulations demonstrate that N addition can have opposing effects on separate soil C pools (particulate and mineral‐protected carbon) because they are differentially affected by microbial biomass growth. Moreover, changes in N availability are frequently linked to shifts in soil pH or osmotic stress, which can independently affect microbial biomass dynamics and mask N stimulation of microbial activity. Thus, the net effect of N addition on soil C is dependent upon interactions among microbial physiology, soil mineralogy, and soil acidity. We believe that our synthesis provides a broadly applicable conceptual framework to understand and predict the effect of changes in soil N availability on ecosystem C cycling under global change.  相似文献   

17.
    
Global warming is generally predicted to increase aridity in drylands, while the effects of aridity changes on microbial carbon use efficiency (CUE) and its linkage to soil organic carbon (SOC) storage remain unresolved, limiting the accuracy of soil carbon dynamic predictions under changing climates. Here, by employing large-scale soil sampling from 50 sites along an ~6000 km aridity gradient in northern China, we report a significant decreasing trend in microbial CUE (ranging from approximately 0.07 to 0.59 across the aridity gradient) with increasing aridity. The negative effect of aridity on microbial CUE was further verified by an independent moisture manipulation experiment, which revealed that CUE was lower under lower moisture levels than under higher moisture levels. Aridity-induced increases in physicochemical protection or decreases in microbial diversity primarily mediated the decrease in CUE with increasing aridity. Moreover, we found a highly positive microbial CUE–SOC relationship, and incorporating CUE improved the explanatory power of SOC variations along the aridity gradient. Our findings provide empirical evidence for aridity-induced reductions in microbial CUE over a broad geographic scale and highlight that increasing aridity may be a crucial mechanism underlying SOC loss by suppressing the ability of soil microorganisms to sequester carbon.  相似文献   

18.
Grain legumes and green manures as pre-rice crops in Northeast Thailand   总被引:1,自引:0,他引:1  
The loss of dry matter (ash corrected), nitrogen (N) and carbon (C) from residues of several tropical legume species was monitored using litter bags in the field over a three-month period in Northeast Thailand. This work was linked to an experiment in a farmers' field where the residual benefits of the same legume species grown before flooded rice were measured. Litter bags were incorporated in the flooded rice plots at the same time as residue incorporation in the field experiment. The species studied were Sesbania rostrata, Aeschynomene afraspera and a multi-purpose cowpea variety (Vigna unguiculata cv KVC-7). In the case of S. rostrata the breakdown of fresh and oven-dried residues and of residues buried at depths of 2–3 cm and 15 cm was also compared.Although the initial N and C concentrations were similar for all the residues they exhibited differing dry matter, N and C loss patterns. With Sesbania rostrata, 80% of the N was lost from the residues after 20 days, however, there was only a 40% decline in C and weight during the same period. The rate and amount of N loss from Aeschynomene afraspera residues was much less than with S. rostrata, declining by approximately 35% during the first 40 days. There were marked differences in rates of N loss from stem and leaves of A. afraspera indicating that monitoring the decomposition of stem and leaves combined can be misleading. In multi-purpose cowpea, loss patterns of dry matter, N and C were all similar and 50–65% was lost after 40 days burial. There was little difference between breakdown of fresh and oven-dried S. rostrata residues nor were there noticeable differences between residues incorporated superficially (2–3 cm) and buried at 15 cm. Although both %N and lignin:N ratios correlated well with weight and N loss from the residues, this was only the case when leaf and stem material were analyzed separately for A. afraspera.Despite the slower rate and smaller total amount of N released from the A. afraspera residues compared with the S. rostrata residues, a similar amount and proportion (around 20 kg N ha-1 or 22–28%) of the N was recovered from both residues by a crop of rice planted at the time of residue incorporation. This suggests a considerably higher use efficiency by rice of the N released from the A. afraspera residues (approximately 40%) compared with that for S. rostrata (30%).  相似文献   

19.
  总被引:2,自引:0,他引:2  
We assessed the response of soil microbial nitrogen (N) cycling and associated functional genes to elevated temperature at the global scale. A meta‐analysis of 1,270 observations from 134 publications indicated that elevated temperature decreased soil microbial biomass N and increased N mineralization rates, both in the presence and absence of plants. These findings infer that elevated temperature drives microbially mediated N cycling processes from dominance by anabolic to catabolic reaction processes. Elevated temperature increased soil nitrification and denitrification rates, leading to an increase in N2O emissions of up to 227%, whether plants were present or not. Rates of N mineralization, denitrification and N2O emission demonstrated significant positive relationships with rates of CO2 emissions under elevated temperatures, suggesting that microbial N cycling processes were associated with enhanced microbial carbon (C) metabolism due to soil warming. The response in the abundance of relevant genes to elevated temperature was not always consistent with changes in N cycling processes. While elevated temperature increased the abundances of the nirS gene with plants and nosZ genes without plants, there was no effect on the abundances of the ammonia‐oxidizing archaea amoA gene, ammonia‐oxidizing bacteria amoA and nirK genes. This study provides the first global‐scale assessment demonstrating that elevated temperature shifts N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification in terrestrial ecosystems. These findings infer that elevated temperatures have a profound impact on global N cycling processes with implications of a positive feedback to global climate and emphasize the close linkage between soil microbial C and N cycling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号