首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The original strategies developed by Helicobacter pylori to persistently colonise its host and to deregulate its cellular functions make this bacterium an outstanding model to study host‐pathogen interaction and the mechanisms responsible for bacterial‐induced carcinogenesis. During the last year, significant results were obtained on the role of bacterial factors essential for gastric colonisation such as spiral shape maintenance, orientation through chemotaxis and the formation of bacteria clonal population islands inside the gastric glands. Particularities of the H pylori cell surface, a structure important for immune escape, were demonstrated. New insights in the bacterial stress response revealed the importance of DNA methylation‐mediated regulation. Further findings were reported on H pylori components that mediate natural transformation and mechanisms of bacterial DNA horizontal transfer which maintain a high level of H pylori genetic variability. Within‐host evolution was found to be niche‐specific and probably associated with physiological differences between the antral and oxyntic gastric mucosa. In addition, with the progress of CryoEM, high‐resolution structures of the major virulence factors, VacA and CagT4SS, were obtained. The use of gastric organoid models fostered research revealing, preferential accumulation of bacteria at the site of injury during infection. Several studies further characterised the role of CagA in the oncogenic properties of H pylori, identifying the activation of novel CagA‐dependent pathways, leading to the promotion of genetic instabilities, epithelial‐to‐mesenchymal transition and finally carcinogenesis. Recent studies also highlight that microRNA‐mediated regulation and epigenetic modifications, through DNA methylation, are key events in the H pylori‐induced tumorigenesis process.  相似文献   

2.
Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host.  相似文献   

3.
Chronic inflammation induced by Helicobacter pylori infection is a critical factor in the development of peptic ulcer disease and gastric cancer. Central to this inflammation is the initiation of pro‐inflammatory signaling cascades within epithelial cells, in particular those mediated by two sensors of bacterial cell wall components, nucleotide‐binding oligomerization domain‐containing protein 1 (NOD1) and alpha‐protein kinase 1 (ALPK1). H pylori is, however, also highly adept at mitigating inflammation in the host, thereby restricting tissue damage and favoring bacterial persistence. H pylori modulates host immune responses by altering cytokine signaling in epithelial and myeloid cells, which results in increased proliferation of regulatory T cells and downregulation of effector T‐cell responses. H pylori vacuolating cytotoxin A (VacA) has been shown to play an important role in the dampening of immune responses and induction of immune tolerance capable of protecting against asthma. It is also possible to generate protective immune responses by immunization with various H pylori antigens or their epitopes, in combination with an adjuvant, though this for now has only been shown in mouse models. Novel non‐toxic adjuvants, consisting of modified bacterial enterotoxins or nanoparticles, have recently been developed that may not only enhance vaccine efficacy, but also help translate candidate vaccines to the clinic. This review will summarize the main discoveries in the past year regarding host immune responses to H pylori infection, as well as the design of new vaccine approaches against this infection.  相似文献   

4.
Background. Helicobacter pylori CagA is injected into the host cell and tyrosine‐phosphorylated. We examined tyrosine‐phosphorylation sites of CagA, as well as the function of CagA proteins in vivo and in vitro. Methods. After proteolytic digestion of CagA with lysyl endopeptidase, CagA tyrosine‐phosphorylation sites were determined using quadropolar time‐of‐flight (Q‐TOF) mass spectrometry analysis. Specific anti‐pY CagA polyclonal and anti‐CagA monoclonal antibodies were used to examine gastric mucosal biopsy specimens from H. pylori infected patients. Results. Mass spectrometry identified five crucial tyrosine‐phosphorylation sites of CagA at Tyr893, Tyr912, Tyr965, Tyr999, and Tyr1033 within the five repeated EPIYA sequences of H. pylori (NCTC11637)‐infected AGS cells. CagA protein also had an immuno‐receptor tyrosine‐based activation motif (ITAM)‐like amino acid sequences in the 3′ region of the cagA, E PIY ATI x27EIY ATI , which closely resembled the ITAM. CagA proteins: (i) were localized to the 1% TritonX‐100 resistant membrane fraction (lipid rafts); (ii) formed a cluster of phosphorylated CagA protein complexes; (iii) associated with tyrosine‐phosphorylated GIT1/Cat1 (G protein‐coupled receptor kinase‐interactor 1/Cool‐associated tyrosine‐phosphorylated 1), substrate molecules of receptor type protein‐tyrosine phosphatase (RPTPζ/β), which is the receptor of VacA; and (iv) were involved in a delay and negative regulation of VacA‐induced signal. Furthermore, immunohistochemical staining of gastric mucosal biopsy specimens provided strong evidence that tyrosine‐phosphorylated CagA is found together with CagA at the luminal surface of gastric foveola in vivo. Conclusion. These findings suggest an important role for CagA containing ITAM‐like sequences in the pathogenesis of H. pylori‐related disease.  相似文献   

5.
Helicobacter pylori represents an important pathogen involved in diseases ranging from gastritis, peptic ulceration, to gastric malignancies. Prominent virulence factors comprise the vacuolating cytotoxin VacA and the cytotoxin‐associated genes pathogenicity island (cagPAI)‐encoded type IV secretion system (T4SS). The T4SS effector protein CagA can be translocated into AGS and other gastric epithelial cells followed by phosphorylation through c‐Src and c‐Abl tyrosin kinases to hijack signalling networks. The duodenal cell line AZ‐521 has been recently introduced as novel model system to investigate CagA delivery and phosphorylation in a VacA‐dependent fashion. In contrast, we discovered that AZ‐521 cells display a T4SS incompetence phenotype for CagA injection, which represents the first reported gastrointestinal cell line with a remarkable T4SS defect. We proposed that this deficiency may be due to an imbalanced coexpression of T4SS receptor integrin‐β1 or carcinoembryonic antigen‐related cell adhesion molecules (CEACAMs), which were described recently as novel H. pylori receptors. We demonstrate that AZ‐521 cells readily express integrin‐β1, but overexpression of integrin‐β1 constructs did not restore the T4SS defect. We further show that AZ‐521 cells lack the expression of CEACAMs. We demonstrate that genetic introduction of either CEACAM1 or CEACAM5, but not CEACAM6, in AZ‐521 cells is sufficient to permit injection and phosphorylation of CagA by H. pylori to degrees observed in the AGS cell model. Expression of CEACAM1 or CEACAM5 in infected AZ‐521 cells was also accompanied by tyrosine dephosphorylation of the cytoskeletal proteins vinculin and cortactin, a hallmark of H. pyloriinfected AGS cells. Our results suggest the existence of an integrin‐β1‐ and CEACAM1‐ or CEACAM5‐dependent T4SS delivery pathway for CagA, which is clearly independent of VacA. The presence of two essential host protein receptors during infection with H. pylori represents a unique feature in the bacterial T4SS world. Further detailed investigation of these T4SS functions will help to better understand infection strategies by bacterial pathogens.  相似文献   

6.
Gastric cancer causes a large social and economic burden to humans. Helicobacter pylori (H pylori) infection is a major risk factor for distal gastric cancer. Detailed elucidation of H pylori pathogenesis is significant for the prevention and treatment of gastric cancer. Animal models of H pylori‐induced gastric cancer have provided an invaluable resource to help elucidate the mechanisms of H pylori‐induced carcinogenesis as well as the interaction between host and the bacterium. Rodent models are commonly used to study H pylori infection because H pylori‐induced pathological processes in the stomachs of rodents are similar to those in the stomachs of humans. The risk of gastric cancer in H pylori‐infected animal models is greatly dependent on host factors, bacterial determinants, environmental factors, and microbiota. However, the related mechanisms and the effects of the interactions among these impact factors on gastric carcinogenesis remain unclear. In this review, we summarize the impact factors mediating gastric cancer risk when establishing H pylori‐infected animal models. Clarifying these factors and their potential interactions will provide insights to construct animal models of gastric cancer and investigate the in‐depth mechanisms of H pylori pathogenesis, which might contribute to the management of H pylori‐associated gastric diseases.  相似文献   

7.
Many pathogenic Gram‐negative bacteria possess type IV secretion systems (T4SS) to inject effector proteins directly into host cells to modulate cellular processes to their benefit. The human bacterial pathogen Helicobacter pylori, a major aetiological agent in the development of chronic gastritis, duodenal ulcer and gastric carcinoma, harbours the cag‐T4SS to inject the cytotoxin associated Antigen (CagA) into gastric epithelial cells. This results in deregulation of major signalling cascades, actin‐cytoskeletal rearrangements and eventually gastric cancer. We show here that a pre‐infection with live H. pylori has a dose‐dependent negative effect on the CagA translocation efficiency of a later infecting strain. This effect of the ‘first’ strain was independent of any of its T4SS, the vacuolating cytotoxin (VacA) or flagella. Other bacterial pathogens, e.g. pathogenic Escherichia coli, Campylobacter jejuni, Staphylococcus aureus, or commensal bacteria, such as lactobacilli, were unable to interfere with H. pylori's CagA translocation capacity in the same way. This interference was independent of the β1 integrin receptor availability for H. pylori, but certain H. pylori outer membrane proteins, such as HopI, HopQ or AlpAB, were essential for the effect. We suggest that the specific interference mechanism induced by H. pylori represents a cellularresponse to restrict and control CagA translocation into a host cell to control the cellular damage.  相似文献   

8.
Helicobacter pylori is a highly successful bacterial pathogen of humans, infecting the stomach of more than half of the worlds population. The H. pylori infection results in chronic gastritis, eventually followed by peptic ulceration and, more rarely, gastric cancer. H. pylori has developed a unique set of virulence factors, actively supporting its survival in the special ecological niche of the human stomach. Vacuolating cytotoxin (VacA) and cytotoxin-associated antigen A (CagA) are two major bacterial virulence factors involved in host cell modulation. VacA, so far mainly regarded as a cytotoxin of the gastric epithelial cell layer, now turns out to be a potent immunomodulatory toxin, targeting the adapted immune system. Thus, in addition to the well-known vacuolating activity, VacA has been reported to induce apoptosis in epithelial cells, to affect B lymphocyte antigen presentation, to inhibit the activation and proliferation of T lymphocytes, and to modulate the T cell-mediated cytokine response.  相似文献   

9.
10.
This review covers recent publications investigating the relationship between Helicobacter pylori infection and gastroesophageal reflux disease, Barrett's esophagus, eosinophilic esophagitis, peptic ulcer disease (PUD), H pylori gastritis, and functional dyspepsia. In the area of gastroesophageal reflux disease, new data suggest that reflux may have a role in the transmission of H pylori infection. In addition to several observational studies, data on alterations in esophageal physiology in patients with H pylori infection are presented. Further evidence for the inverse relationship between H pylori infection and Barrett's esophagus is available in the form of a meta‐analysis from the North American Barrett's and Esophageal Carcinoma Consortium. The relationship between H pylori infection and eosinophilic esophagitis remains uncertain. Although new data do not indicate a significantly lower prevalence of H pylori among patients with eosinophilic esophagitis, a meta‐analysis showed a 37% reduced risk of eosinophilic esophagitis among H pylori‐infected patients. Novel data are presented on the genetic variability of bacterial virulence factors and their relationship with PUD. We also report data on plasma biomarkers, which may detect progression to gastric cancer in H pylori‐associated PUD. A new meta‐analysis was published, which assessed the risk of PUD in low‐dose aspirin users with H pylori infection. Finally, we report on the ongoing attempts to stratify patients with gastritis using endoscopic methods when compared to standard biopsy examination.  相似文献   

11.
Background. Helicobacter pylori induces gastric damage and may be involved in the pathogenesis of gastric cancer. H. pylori‐vacuolating cytotoxin, VacA, is one of the important virulence factors, and is responsible for H. pylori‐induced gastritis and ulceration. The aim of this study is to assess whether several naturally occurring polyphenols inhibit VacA activities in vitro and in vivo. Materials and Methods. Effects of polyphenols on VacA were quantified by the inhibition of: 1, vacuolation; 2, VacA binding to AZ‐521 or G401 cells or its receptors; 3, VacA internalization. Effects of hop bract extract (HBT) containing high molecular weight polymerized catechin on VacA in vivo were investigated by quantifying gastric damage after oral administration of toxins to mice. Results. HBT had the strongest inhibitory activity among the polyphenols investigated. HBT inhibited, in a concentration‐dependent manner: 1, VacA binding to its receptors, RPTPα and RPTPβ; 2, VacA uptake; 3, VacA‐induced vacuolation in susceptible cells. In addition, oral administration of HBT with VacA to mice reduced VacA‐induced gastric damage at 48 hours. In vitro, VacA formed a complex with HBT. Conclusions. HBT may suppress the development of inflammation and ulceration caused by H. pylori VacA, suggesting that HBT may be useful as a new type of therapeutic agent for the prevention of gastric ulcer and inflammation caused by VacA.  相似文献   

12.
The cytotoxin‐associated gene A protein (CagA) plays a pivotal role in the aetiology of Helicobacter pylori‐associated gastric diseases. CagA is injected into the cytoplasm of host cells by a type IV secretion system, and is phosphorylated on tyrosine residues by the host enzyme c‐Src. We previously reported that the enzyme haem oxygenase‐1 (HO‐1) inhibits IL‐8 secretion by H. pylori‐infected cells. However, the cellular mechanism by which HO‐1 regulates the innate immune function of infected cells remains unknown. We now show that nitric oxide and haemin, two inducers of HO‐1, decrease the level of phosphorylated CagA (p‐CagA) in H. pylori‐infected gastric epithelial cells and this is blocked by either pharmacological inhibition of HO‐1 or siRNA knockdown of hmox‐1. Moreover, forced expression of HO‐1 by transfection of a plasmid expressing hmox‐1 also results in a strong attenuation of CagA phosphorylation. This occurs through the inhibition of H. pylori‐induced c‐Src phosphorylation/activation by HO‐1.Consequently, H. pylori‐induced cytoskeletal rearrangements and activation of the pro‐inflammatory response mediated by p‐CagA are inhibited in HO‐1‐expressing cells. These data highlight a mechanism by which the innate immune response of the host can restrict the pathogenicity of H. pylori by attenuating CagA phosphorylation in gastric epithelial cells.  相似文献   

13.
万秀坤  刘纯杰 《微生物学报》2016,56(12):1821-1830
幽门螺杆菌感染是导致从胃炎到胃癌等一系列胃相关疾病的主要病因,但具体的致病机制仍不是很清楚。细胞毒素相关蛋白A(cytotoxin-associated gene A,Cag A)是幽门螺杆菌编码的一种重要毒力因子,且作为细菌来源的唯一癌蛋白被大量研究。Cag A蛋白是由幽门螺杆菌Ⅳ型分泌系统介导并注入宿主胃上皮细胞内,一旦进入细胞,Cag A能够与多个分子发生相互作用,扰乱细胞正常的信号通路,引起细胞病变和转化,而动物实验也证明了Cag A蛋白的致癌特点。本文重点对Cag A蛋白的序列特征,转位方式及致病机制等方面的最新进展进行了综述,希望能进一步阐释Cag A介导的幽门螺杆菌的致病机制,为以后的研究提供一定的方向和指导。  相似文献   

14.

Background  

Helicobacter pylori infection is one of the most common infections worldwide and is associated with gastric cancer and peptic ulcer. Bacterial virulence factors such as CagA have been shown to increase the risk of both diseases. Studies have suggested a causal role for CagA EPIYA polymorphisms in gastric carcinogenesis, and it has been shown to be geographically diverse. We studied associations between H. pylori CagA EPIYA patterns and gastric cancer and duodenal ulcer, in an ethnically admixed Western population from Brazil. CagA EPIYA was determined by PCR and confirmed by sequencing. A total of 436 patients were included, being 188 with gastric cancer, 112 with duodenal ulcer and 136 with gastritis.  相似文献   

15.
Jin S  Wu M  Cao H  Ying S  Hua J  Chen Y 《Helicobacter》2012,17(2):140-147
Background and Aims: Infection by Helicobacter pylori is one of the major contributing factors of chronic active gastritis and peptic ulcer and is closely associated with the occurrence and progression of gastric cancer. CagA protein is a major virulence factor of H. pylori that interacts with SHP‐2, a true oncogene, to interfere with cellular signaling pathways; CagA also plays a crucial role in promoting the carcinogenesis of gastric epithelial cells. However, currently, the molecular mechanisms of gastric epithelial cells that antagonize CagA pathogenesis remain inconclusive. Methods: We showed that AGS gastric cancer cells transfected with CagA exhibited the inhibition of proliferation and increased activity of caspase 3/7 using two‐dimensional gel electrophoresis and secondary mass spectrometry (MS/MS). Results: It was found that the AGS gastric cancer cells stably expressing CagA displayed significantly increased the expression of 16 proteins, including hnRNPC1/2. Further analysis revealed that hnRNPC1/2 significantly boosted the expression of the p27kip1 protein. Conclusion: Our data suggested that hnRNPC1/2 upregulates p27kip1 expression and the subsequent suppression of cell proliferation and induction of apoptosis, thereby providing an important mechanism whereby gastric epithelial cells antagonize CagA‐mediated pathogenesis.  相似文献   

16.
Understanding the mechanisms involved in induction and regulation of the immune and inflammatory response to Helicobacter pylori is extremely important in determining disease outcomes. H pylori expresses a plethora of factors that influence the host response. Vaccines against H pylori are desperately needed for the prevention of gastric carcinogenesis, especially with the increasing trends in antimicrobial resistance. This review summarizes some important findings, published between 1 April 2019 and 31 March 2020, in the areas of H pylori‐mediated inflammation, immunity and vaccines.  相似文献   

17.
18.
Helicobacter pylori is a major chronic health problem, infecting more than half of the population worldwide. H. pylori infection is linked with various clinical complications ranging from gastritis to gastric cancer. The resolution of gastritis and peptic ulcer appears to be linked with the eradication of H. pylori. However, resistance to antibiotics and eradication failure rates are reaching alarmingly high levels. This calls for urgent action in finding alternate methods for H. pylori eradication. Here, we discuss the recently identified mechanism of H. pylori known as cholesterol glucosylation, mediated by the enzyme cholesterol-α-glucosyltransferase, encoded by the gene cgt. Cholesterol glucosylation serves several functions that include promoting immune evasion, enhancing antibiotic resistance, maintaining the native helical morphology, and supporting functions of prominent virulence factors such as CagA and VacA. Consequently, strategies aiming at inhibition of the cholesterol glucosylation process have the potential to attenuate the potency of H. pylori infection and abrogate H. pylori immune evasion capabilities. Knockout of H. pylori cgt results in unsuccessful colonization and elimination by the host immune responses. Moreover, blocking cholesterol glucosylation can reverse antibiotic susceptibility in H. pylori. In this work, we review the main roles of cholesterol glucosylation in H. pylori and evaluate whether this mechanism can be targeted for the development of alternate methods for eradication of H. pylori infection.  相似文献   

19.
Nam YH  Ryu E  Lee D  Shim HJ  Lee YC  Lee ST 《Helicobacter》2011,16(4):276-283
Background: Infection of cagA‐positive Helicobacter pylori is associated with increased expression of MMPs in gastric epithelial cells. The role of phosphorylated CagA in the induction of MMP‐9, a protease‐degrading basement membrane, in gastric epithelial cells has not been clearly defined yet. The aim of this study is to analyze whether the presence of CagA and its phosphorylation status play a role in increased expression of MMP‐9 in gastric epithelial cells. Materials and Methods: Induction of MMP‐9 secretion was analyzed in gastric epithelial AGS cells harboring CagA with or without EPIYA motif, which is injected by H. pylori or ectopically expressed. In addition, signaling pathways involved in the CagA‐dependent MMP‐9 production have been studied. Results: The 147C strain of H. pylori expressing tyrosine‐phosphorylated CagA (EPIYA present) induced higher MMP‐9 secretion by AGS cells than the 147A strain expressing non‐tyrosine‐phosphorylated CagA (EPIYA absent). In addition, in bacteria‐free CagA‐inducible AGS cells, expression of wild‐type CagA induced more MMP‐9 secretion than phosphorylation‐resistant CagA. Inhibition of CagA phosphorylation by the Src family kinase inhibitor PP1 downregulated CagA‐mediated MMP‐9 secretion. Knockdown of SHP‐2 phosphatase dramatically reduced MMP‐9 secretion. ERK inhibitors, PD98059 and U0126, and NF‐κB pathway inhibitors, sulfasalazine and N‐acetyl‐l ‐cysteine, also inhibited MMP‐9 expression. Conclusion: These results support a model whereby the EPIYA motif of CagA is phosphorylated by Src family kinases in gastric epithelial cells, which initiates activation of SHP‐2. In addition, they suggest that the resultant activation of ERK pathway along with CagA‐dependent NF‐κB activation is critical for the induction of MMP‐9 secretion.  相似文献   

20.
The type IV secretion system (T4SS) of Helicobacter pylori triggers massive inflammatory responses during gastric infection by mechanisms that are poorly understood. Here we provide evidence for a novel pathway by which the T4SS structural component, CagL, induces secretion of interleukin‐8 (IL‐8) independently of CagA translocation and peptidoglycan‐sensing nucleotide‐binding oligomerization domain 1 (NOD1) signalling. Recombinant CagL was sufficient to trigger IL‐8 secretion, requiring activation of α5β1 integrin and the arginine–glycine–aspartate (RGD) motif in CagL. Mutation of the encoded RGD motif to arginine‐glycine‐alanine (RGA) in the cagL gene of H. pylori abrogated its ability to induce IL‐8. Comparison of IL‐8 induction between H. pylori ΔvirD4 strains bearing wild‐type or mutant cagL indicates that CagL‐dependent IL‐8 induction can occur independently of CagA translocation. In line with this notion, exogenous CagL complemented H. pylori ΔcagL mutant in activating NF‐κB and inducing IL‐8 without restoring CagA translocation. The CagA translocation‐independent, CagL‐dependent IL‐8induction involved host signalling via integrin α5β1, Src kinase, the mitogen‐activated protein kinase (MAPK) pathway and NF‐κB but was independent of NOD1. Our findings reveal a novel pathway whereby CagL, via interaction with host integrins, can trigger pro‐inflammatory responses independently of CagA translocation or NOD1 signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号