首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Invasive fish threaten many native freshwater fauna. However, it can be difficult to determine how invasive fish impact animals with complex life cycles as interaction may be driven by either predation of aquatic larvae or avoidance of fish‐occupied waterbodies by the terrestrial adult stage. Mosquitofish (Gambusia spp.) are highly successful and aggressive invaders that negatively impact numerous aquatic fauna. One species potentially threatened by Gambusia holbrooki is the green and golden bell frog (Litoria aurea). However, G. holbrooki's role in this frog's decline was unclear due to declines driven by the chytrid fungal disease and the continued co‐existence of these fish and frogs in multiple locations. To clarify the extent to which Gambusia is impacting L. aurea, we conducted 3 years of field surveys across a deltaic wetland system in south‐east Australia. We measured the presence and abundance of aquatic taxa including G. holbrooki, and L. aurea frogs and tadpoles, along with habitat parameters at the landscape and microhabitat scale. Generalized linear models were used to explore patterns in the abundance and distributions of L. aurea and G. holbrooki. We found strong negative associations between G. holbrooki and tadpoles of most species, including L. aurea, but no apparent avoidance of G. holbrooki by adult frogs. Native invertebrate predators (Odonata and Coleoptera) were also absent from G. holbrooki‐occupied ponds. Due to the apparent naivety of adult frogs toward G. holbrooki, the separation of G. holbrooki and tadpoles, plus the abundance of alternative predators in G. holbrooki‐free ponds, we conclude that the impact of G. holbrooki on L. aurea recruitment is likely substantial and warrants management action.  相似文献   

3.
Schizopygopsis younghusbandi is an endemic fish of Tibet characterized by slow growth. Artificial stock enhancement was applied to rebuild the natural population of S. younghusbandi in recent years. However, the optimal growth temperature and thermal tolerance of S. younghusbandi has not been studied, which restricts the production of S. younghusbandi fingerling for stock enhancement. The purpose of this paper is to determine the growth, critical thermal maximum (CTMax), lethal thermal maximum (LTMax) and acclimation response ratio (ARR) of S. younghusbandi juveniles (body weight 5.7 ± 1.2 g) at three acclimation temperature levels (10, 15, 20°C). The results showed that acclimation temperature significantly affected the growth, CTMax, LTMax and ARR of the experimental fish. Largest final weight (7.5 ± 2.3 g) was recorded in 15°C group. At a heating rate of 1°C/30 min, CTMax ranged from 30.98 to 32.01°C and LTMax ranged from 31.76 to 32.31°C in the three acclimation temperatures. Schizopygopsis younghusbandi had lower ARR value (0.097) than most other fish species. Low ARR value indicates that S. younghusbandi may have narrower thermal tolerance range and weaker acclimation ability to global warming. For successful aquaculture of S. younghusbandi juveniles, temperature should be maintained around 15°C.  相似文献   

4.
Yellow perch, Perca flavescens, is an ecologically and economically important species native to a large portion of the northern United States and southern Canada and is also a promising candidate species for aquaculture. However, no yellow perch reference genome has been available to facilitate improvements in both fisheries and aquaculture management practices. By combining Oxford Nanopore Technologies long‐reads, 10X Genomics Illumina short linked reads and a chromosome contact map produced with Hi‐C, we generated a high‐continuity chromosome‐scale yellow perch genome assembly of 877.4 Mb. It contains, in agreement with the known diploid chromosome yellow perch count, 24 chromosome‐size scaffolds covering 98.8% of the complete assembly (N50 = 37.4 Mb, L50 = 11). We also provide a first characterization of the yellow perch sex determination locus that contains a male‐specific duplicate of the anti‐Mullerian hormone type II receptor gene (amhr2by) inserted at the proximal end of the Y chromosome (chromosome 9). Using this sex‐specific information, we developed a simple PCR genotyping assay which accurately differentiates XY genetic males (amhr2by+) from XX genetic females (amhr2by?). Our high‐quality genome assembly is an important genomic resource for future studies on yellow perch ecology, toxicology, fisheries and aquaculture research. In addition, characterization of the amhr2by gene as a candidate sex‐determining gene in yellow perch provides a new example of the recurrent implication of the transforming growth factor beta pathway in fish sex determination, and highlights gene duplication as an important genomic mechanism for the emergence of new master sex determination genes.  相似文献   

5.
The large yellow croaker, Larimichthys crocea, is a commercially important drum fish (Family: Sciaenidae) native to the East and South China Sea. Habitat deterioration and overfishing have led to significant population decline and the collapse of its fishery over the past decades. Today, the market supply of L. crocea depends solely on stocks produced in hatcheries and farms. Common issues that occur in the culture of L. crocea include germplasm degradation, precocious puberty, elevated disease susceptibility and growth retardation. In this study, we employed SLAF‐seq (specific‐locus amplified fragment sequencing) technology to identify single nucleotide polymorphism (SNP) loci across the L. crocea genome. Sixty samples were selected for SLAF analysis out of 1000 progeny in the same cohort of a cultured stock. Our analysis obtained a total of 151 253 SLAFs, of which 65.88% (99 652) were identified to be polymorphic, scoring a total of 710 567 putative SNPs. Further filtration resulted in a final panel of 1782 SNP loci. The data derived from this work could be beneficial for understanding the genetics of complex phenotypic traits as well as for developing marker‐selection‐assisted breeding programs in L. crocea.  相似文献   

6.
Nibea albiflora (yellow drum) is an important seafood fish species in East Asia. We explored the population genetic variation of N. albiflora along the coastal waters of the China Sea using microsatellite markers to facilitate a selective breeding programme that is undertaken in China. A total of 256 alleles were detected at 12 loci in four wild populations. A high level of genetic diversity was observed with the mean number of alleles and the observed and expected heterozygosity in each population ranging from 7.917 to 14.083, 0.701 to 0.764 and 0.765 to 0.841, respectively. Pairwise fixation index (FST) analysis indicated significant but weak genetic differentiation among populations from four localities (FST?=?0.030, P?<?0.01), which was also confirmed by analysis of molecular variance (AMOVA). Significant genetic differentiation was detected between Ningde and the other populations (FST?=?0.047–0.056, P?<?0.01). Structure analysis suggested that N. albiflora within the examined range might be composed of two stocks. The data of the present study revealed high genetic diversity and low genetic differentiation among the N. albiflora populations along the coast of the China Sea. This baseline information could be valuable for future selective breeding programmes of N. albiflora.  相似文献   

7.
This study deals with in vitro‐induced mutagenesis and selection of Phytophthora tolerant lines of Citrus jambhiri and their regeneration. For in vitro‐induced mutagenesis, cotyledons were treated with ethyl methane sulfonate (EMS) 100, 200 and 300 mm for different time durations viz. 1, 3, 6 and 9 hr. Callus cultures were established from EMS treated cotyledon explants on MS medium supplemented with 2.0 mg/L of 2,4‐D and 500 mg/L of malt extract. Calli derived from cotyledon were challenged in vitro on selective MS medium containing 5%–100% of culture filtrate (CF) of the Phytophthora parasitica. Selected mutagen‐treated calli showed resistance in vitro on media containing CF. Calli treated with 100 mm EMS for 6‐hr duration showed tolerance (24%) up to 75% CF after 4th selection cycle. While, calli treated with 200 mm for 6‐hr duration showed maximum tolerance (76%) up to 75% CF. Resistant calli were then transferred to MS regeneration medium for shoot bud regeneration. A dose‐dependent decrease in the regeneration capacity of the selected calli was observed with the increasing concentration of the CF. In randomly amplified polymorphic DNA analysis, plantlets showed different banding pattern in comparison with the control plant, which confirms the presence of variations at genetic level.  相似文献   

8.
The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (Nobliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well‐defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis.  相似文献   

9.
Perennial ryegrass (Lolium perenne) is often infected with the fungal‐endophyte Neotyphodium lolii. In addition to the ‘wild‐type’ strain (EWT), several ‘selected’ strains of N. lolii are now being marketed as AR1 (EAR1) and AR37 (EAR37). Each of these strains impact positively on L. perenne's resistance against many insects, including the African black beetles (Heteronychus arator). The impact of volatile oils produced specifically by each strain in the endophyte–grass association in enhancing the grass's resistance to insects is still largely unknown. Keeping these in view, we determined the volatile oil profiles produced by L. perenne infected with either EWT or EAR1 or EAR37 and determined the impacts of these volatiles on the host‐selection behaviour of H. arator adults. In the absence of endophyte infection (E), L. perenne produced 18 different volatile oils. In L. perenne EWT, quantities of 2‐ethyl‐1‐hexanol acetate (Rt = 14.5 min), (Z)‐2‐octen‐1‐ol (Rt = 22.2 min), and butylated hydroxyl toluene (Rt = 23.2 min) were 24, 16 and 26%, respectively, greater than L. perenne E. The strains EAR1 and EAR37 affected differently the quantities of the volatile compounds but not their identity. In the four‐choice bioassay, males and females of H. arator were equally attracted to each strain. In Y‐tube olfactometer, compared against E, H. arator adults were less attracted to L. perenne EWT and EAR1. The attractiveness of EAR37 was similar in effect to E to H. arator. The results indicate that each strain of N. lolii alters the profile of volatile oils in L. perenne differently and that alteration can influence H. arator adult‐host selection.  相似文献   

10.
Taiwan, an island with three major mountain ranges, provides an ideal topography to study mountain–island effect on organisms that would be diversified in the isolation areas. Glaciations, however, might drive these organisms to lower elevations, causing gene flow among previously isolated populations. Two hypotheses have been proposed to depict the possible refugia for alpine organisms during glaciations. Nunatak hypothesis suggests that alpine species might have stayed in situ in high mountain areas during glaciations. Massif de refuge, on the other hand, proposes that alpine species might have migrated to lower ice‐free areas. By sampling five sympatric carabid species of Nebria and Leistus, and using two mitochondrial genes and two nuclear genes, we evaluated the mountain–island effect on alpine carabids and tested the two proposed hypotheses with comparative phylogeographic method. Results from the phylogenetic relationships, network analysis, lineage calibration, and genetic structure indicate that the deep divergence among populations in all L. smetanai, N. formosana, and N. niitakana was subjected to long‐term isolation, a phenomenon in agreement with the nunatak hypothesis. However, genetic admixture among populations of N. uenoiana and some populations of L. nokoensis complex suggests that gene flow occurred during glaciations, as a massif de refuge depicts. The speciation event in N. niitakana is estimated to have occurred before 1.89 million years ago (Mya), while differentiation among isolated populations in N. niitakana, N. formosana, L. smetanai, and L. nokoensis complex might have taken place during 0.65–1.65 Mya. While each of the alpine carabids arriving in Taiwan during different glaciation events acquired its evolutionary history, all of them had confronted the existing mountain ranges.  相似文献   

11.
Transmission plays an integral part in the intimate relationship between a host insect and its pathogen that can be altered by abiotic or biotic factors. The latter include other pathogens, parasitoids, or predators. Ants are important species in food webs that act on various levels in a community structure. Their social behavior allows them to prey on and transport larger prey, or they can dismember the prey where it was found. Thereby they can also influence the horizontal transmission of a pathogen in its host's population. We tested the hypothesis that an ant species like Formica fusca L. (Hymenoptera: Formicidae) can affect the horizontal transmission of two microsporidian pathogens, Nosema lymantriae Weiser (Microsporidia: Nosematidae) and Vairimorpha disparis (Timofejeva) (Microsporidia: Burenellidae), infecting the gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae: Lymantriinae). Observational studies showed that uninfected and infected L. dispar larvae are potential prey items for F. fusca. Laboratory choice experiments led to the conclusion that F. fusca did not prefer L. dispar larvae infected with N. lymantriae and avoided L. dispar larvae infected with V. disparis over uninfected larvae when given the choice. Experiments carried out on small potted oak, Quercus petraea (Mattuschka) Liebl. (Fagaceae), saplings showed that predation of F. fusca on infected larvae did not significantly change the transmission of either microsporidian species to L. dispar test larvae. Microscopic examination indicated that F. fusca workers never became infected with N. lymantriae or V. disparis after feeding on infected prey.  相似文献   

12.
Species of Lasiodiplodia are important pathogens of a wide variety of plants covering a wide geographical distribution. These fungi can be associated with different symptoms such as stem cankers, shoot blights, fruit rots, dieback and gummosis. Diseases caused by Lasiodiplodia were surveyed on Eucalyptus urophylla × grandis, Polyscias balfouriana and Bougainvillea spectabilis in a nursery in southern China. Based on morphology characteristics and phylogenetic analyses of ITS rDNA sequences and translation elongation factor 1‐alpha (TEF‐1α) gene regions, four species of Lasiodiplodia were identified. Lasiodiplodia theobromae was identified from E. urophylla × grandis, P. balfouriana and B. spectabilis. L. hormozganensis, L. iraniensis and L. pseudotheobromae were identified from B. spectabilis. To our knowledge, with the exception of L. theobromae on E. urophylla × grandis, this study represents the first report of these fungi on the host plants. Pathogenicity tests showed that all Lasiodiplodia spp. obtained in this study are virulent to E. urophylla × grandis and B. spectabilis, and L. theobromae was virulent to P. balfouriana.  相似文献   

13.
For cnidarians that can undergo shifts in algal symbiont relative abundance, the underlying algal physiological changes that accompany these shifts are not well known. The sea anemone Anthopleura elegantissima associates with the dinoflagellate Symbiodinium muscatinei and the chlorophyte Elliptochloris marina, symbionts with very different tolerances to light and temperature. We compared the performance of these symbionts in anemones maintained in an 8–11.5 month outdoor common garden experiment with simulated intertidal conditions and three levels of shading (2, 43, and 85% ambient irradiance). Symbiont densities, mitotic indices, photophysiology and pigments were assessed at three time points during the summer, a period of high irradiance and solar heating during aerial exposure. Whereas S. muscatinei was either neutrally or positively affected by higher irradiance treatments, E. marina responded mostly negatively to high irradiance. E. marina in the 85% irradiance treatment exhibited significantly reduced Pmax and chlorophyll early in the summer, but it was not until nearly 3 months later that a shift in symbiont relative abundance toward S. muscatinei occurred, coincident with bleaching. Symbiont densities and proportions remained largely stable in all other treatments over time, and displacement of S. muscatinei by E. marina was not observed in the 2% irradiance treatment despite the potentially better performance of E. marina. While our results support the view that rapid changes in symbiont relative abundance are typically associated with symbiont physiological dysfunction and bleaching, they also show that significant temporal lags may occur between the onset of symbiont stress and shifts in symbiont relative abundances.  相似文献   

14.
The diet breadth of insect herbivores influences their response to variation in plant quality, and these bitrophic interactions have implications for the higher‐level trophic interactions between herbivores and their natural enemies. In this comparative study, we examined the role of host plant species and plant secondary chemistry on the potential interactions between three species of nymphaline caterpillars and their natural enemies. The caterpillar species (all Lepidoptera: Nymphalidae) varied in their degree of specialization: the buckeye, Junonia coenia Hübner, is a specialist on plants that contain iridoid glycosides (IGs); the white peacock, Anartia jatrophae L., feeds on plants in five families, some of which contain IGs and some of which do not; and the painted lady, Vanessa cardui L., is a generalist, feeding on plants in at least 15 families. Each species was reared on leaves of an introduced host plant, Plantago lanceolata L. (Plantaginaceae), which produces two IGs, aucubin and catalpol, and on another plant species that is a common host plant. These alternate host plants were Plantago major L. (Plantaginaceae) for J. coenia, Bacopa monnieri (L.) Pennell (Plantaginaceae) for A. jatrophae, and Malva parviflora L. (Malvaceae) for V. cardui. We examined growth, sequestration, and immune response of these caterpillars on the different host plant species. Junonia coenia developed more rapidly and sequestered higher IG concentrations when reared on P. lanceolata, whereas both other species grew more slowly on P. lanceolata. Host plant did not influence immune response of J. coenia or A. jatrophae, whereas V. cardui immune response was weaker when reared on P. lanceolata. Junonia coenia was most efficient at IG sequestration and A. jatrophae was least efficient, when all three species were reared on P. lanceolata. These results indicate that diet breadth may play an important role in structuring tritrophic interactions, and this role should be further explored.  相似文献   

15.
Marine medaka (Oryzias melastigma) is considered to be a useful fish model for marine and estuarine ecotoxicology studies and has good potential for field‐based population genomics because of its geographical distribution in Asian estuarine and coastal areas. In this study, we present the first whole‐genome draft of O. melastigma. The genome assembly consists of 8,602 scaffolds (N50 = 23.737 Mb) and a total genome length of 779.4 Mb. A total of 23,528 genes were predicted, and 12,670 gene families shared with three teleost species (Japanese medaka, mangrove killifish and zebrafish) were identified. Genome analyses revealed that the O. melastigma genome is highly heterozygous and contains a large number of repeat sequences. This assembly represents a useful genomic resource for fish scientists.  相似文献   

16.
For ground‐nesting waterfowl, the timing of egg hatch and duckling departure from the nest may be influenced by the risk of predation at the nest and en route to wetlands and constrained by the time required for ducklings to imprint on the hen and be physically able to leave the nest. We determined the timing of hatch, nest departure, and predation on dabbling duck broods using small video cameras placed at the nests of mallard (Anas platyrhynchos; n = 26), gadwall (Mareca strepera; n = 24), and cinnamon teal (Anas cyanoptera; n = 5). Mallard eggs began to hatch throughout the day and night, whereas gadwall eggs generally started to hatch during daylight hours (mean 7.5 hr after dawn). Among all species, duckling departure from the nest occurred during daylight (98%), and 53% of hens typically left the nest with their broods 1–4 hr after dawn. For mallard and gadwall, we identified three strategies for the timing of nest departure: (a) 9% of broods left the nest the same day that eggs began to hatch (6–12 hr later), (b) 81% of broods left the nest the day after eggs began to hatch, and (c) 10% of broods waited 2 days to depart the nest after eggs began to hatch, leaving the nest just after the second dawn (27–42 hr later). Overall, eggs were depredated at 10% of nests with cameras in the 2 days prior to hatch and ducklings were depredated at 15% of nests with cameras before leaving the nest. Our results suggest that broods prefer to depart the nest early in the morning, which may best balance developmental constraints with predation risk both at the nest and en route to wetlands.  相似文献   

17.
Suspected phytoplasma and virus‐like symptoms of little leaf, yellow mosaic and witches’ broom were recorded on soya bean and two weed species (Digitaria sanguinalis and Parthenium hysterophorus), at experimental fields of Indian Agricultural Research Institute, New Delhi, India, in August–September 2013. The phytoplasma aetiology was confirmed in symptomatic soya bean and both the weed species by direct and nested PCR assays with phytoplasma‐specific universal primer pairs (P1/P6 and R16F2n/R16R2n). One major leafhopper species viz. Empoasca motti Pruthi feeding on symptomatic soya bean plants was also found phytoplasma positive in nested PCR assays. Sequencing BLASTn search analysis and phylogenetic analysis revealed that 16Sr DNA sequences of phytoplasma isolates of soya bean, weeds and leafhoppers had 99% sequence identity among themselves and were related to strains of ‘Candidatus Phytoplasma asteris’. PCR assays with Mungbean yellow mosaic India virus (MYMIV) coat‐protein‐specific primers yielded an amplicon of approximately 770 bp both from symptomatic soya bean and from whiteflies (Bemisia tabaci) feeding on soya bean, confirmed the presence of MYMIV in soya bean and whitefly. Hence, this study suggested the mixed infection of MYMIV and ‘Ca. P. asteris’ with soya bean yellow leaf and witches’ broom syndrome. The two weed species (D. sanguinalis and P. hysterophorus) were recorded as putative alternative hosts for ‘Ca. P. asteris’ soya bean Indian strain. However, the leafhopper E. motti was recorded as putative vector for the identified soya bean phytoplasma isolate, and the whitefly (B. tabaci) was identified as vector of MYMIV which belonged to Asia‐II‐1 genotype.  相似文献   

18.
19.
The effects of gastrointestinal tract microbiota (GTM) on host physiology and health have been the subject of considerable interest in recent years. While a variety of captive bred species have been used in experiments, the extent to which GTM of captive and/or inbred individuals resembles natural composition and variation in wild populations is poorly understood. Using 454 pyrosequencing, we performed 16S rDNA GTM barcoding for 30 wild house mice (Mus musculus) and wild‐derived inbred strain mice belonging to two subspecies (M. m. musculus and M. m. domesticus). Sequenced individuals were selected according to a 2 × 2 experimental design: wild (14) vs. inbred origin (16) and M. m. musculus (15) vs. M. m. domesticus (15). We compared alpha diversity (i.e. number of operational taxonomic units – OTUs), beta diversity (i.e. interindividual variability) and microbiota composition across the four groups. We found no difference between M. m. musculus and M. m. domesticus subspecies, suggesting low effect of genetic differentiation between these two subspecies on GTM structure. Both inbred and wild populations showed the same level of microbial alpha and beta diversity; however, we found strong differentiation in microbiota composition between wild and inbred populations. Relative abundance of ~ 16% of OTUs differed significantly between wild and inbred individuals. As laboratory mice represent the most abundant model for studying the effects of gut microbiota on host metabolism, immunity and neurology, we suggest that the distinctness of laboratory‐kept mouse microbiota, which differs from wild mouse microbiota, needs to be considered in future biomedical research.  相似文献   

20.
Dehydration leads to different physiological and biochemical responses in plants. We analysed the lipid composition and the expression of genes involved in lipid biosynthesis in the desiccation‐tolerant plant Craterostigma plantagineum. A comparative approach was carried out with Lindernia brevidens (desiccation tolerant) and two desiccation‐sensitive species, Lindernia subracemosa and Arabidopsis thaliana. In C. plantagineum the total lipid content remained constant while the lipid composition underwent major changes during desiccation. The most prominent change was the removal of monogalactosyldiacylglycerol (MGDG) from the thylakoids. Analysis of molecular species composition revealed that around 50% of 36:x (number of carbons in the acyl chains: number of double bonds) MGDG was hydrolysed and diacylglycerol (DAG) used for phospholipid synthesis, while another MGDG fraction was converted into digalactosyldiacylglycerol via the DGD1/DGD2 pathway and subsequently into oligogalactolipids by SFR2. 36:x‐DAG was also employed for the synthesis of triacylglycerol. Phosphatidic acid (PA) increased in C. plantagineum, L. brevidens, and L. subracemosa, in agreement with a role of PA as an intermediate of lipid turnover and of phospholipase D in signalling during desiccation. 34:x‐DAG, presumably derived from de novo assembly, was converted into phosphatidylinositol (PI) in C. plantagineum and L. brevidens, but not in desiccation‐sensitive plants, suggesting that PI is involved in acquisition of desiccation tolerance. The accumulation of oligogalactolipids and PI in the chloroplast and extraplastidial membranes, respectively, increases the concentration of hydroxyl groups and enhances the ratio of bilayer‐ to non‐bilayer‐forming lipids, thus contributing to protein and membrane stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号