首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial distributions of species, and the resulting composition of local communities, are shaped by a complex interplay between species’ climatic and habitat preferences. We investigated this interaction by analyzing how the climatic niches of bird species within given communities (measured as a community thermal index, CTI) are related to vegetation structure. Using 3129 bird communities from the French Breeding Bird Survey and an information theoretic multimodel inference framework, we assessed patterns of CTI variation along landscape scale gradients of forest cover and configuration. We then tested whether the CTI varies along local scale gradients of forest structure and composition using a detailed data set of 659 communities from six forests located in northwestern France. At landscape scale, CTI values decreased with increasing forest cover, indicating that bird communities were increasingly dominated by cold‐dwelling species. This tendency was strongest at low latitudes and in landscapes dominated by unfragmented forest. At local scale, CTI values were higher in mature deciduous stands than in conifer or early stage deciduous stands, and they decreased consistently with distance from the edge of forest. These trends underpin the assertion that species’ habitat use along forest gradients is linked with their climatic niche, although it remains unclear to what extent it is a direct consequence of microclimatic variation among habitats, or a reflection of macroscale correlations between species’ thermal preferences and their habitat choice. Moreover, our results highlight the need to address issues of scale in determining how habitat and climate interact to drive the spatial distribution of species. This will be a crucial step towards accurate predictions of changes in the composition and dynamics of bird communities under global warming.  相似文献   

2.

Aim

Habitat loss and climate change constitute two of the greatest threats to biodiversity worldwide, and theory predicts that these factors may act synergistically to affect population trajectories. Recent evidence indicates that structurally complex old‐growth forest can be cooler than other forest types during spring and summer months, thereby offering potential to buffer populations from negative effects of warming. Old growth may also have higher food and nest‐site availability for certain species, which could have disproportionate fitness benefits as species approach their thermal limits.

Location

Pacific Northwestern United States.

Methods

We predicted that negative effects of climate change on 30‐year population trends of old‐growth‐associated birds should be dampened in landscapes with high proportions of old‐growth forest. We modelled population trends from Breeding Bird Survey data for 13 species as a function of temperature change and proportion old‐growth forest.

Results

We found a significant negative effect of summer warming on only two species. However, in both of these species, this relationship between warming and population decline was not only reduced but reversed, in old‐growth‐dominated landscapes. Across all 13 species, evidence for a buffering effect of old‐growth forest increased with the degree to which species were negatively influenced by summer warming.

Main conclusions

These findings suggest that old‐growth forests may buffer the negative effects of climate change for those species that are most sensitive to temperature increases. Our study highlights a mechanism whereby management strategies to curb degradation and loss of old‐growth forests—in addition to protecting habitat—could enhance biodiversity persistence in the face of climate warming.
  相似文献   

3.
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high‐elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high‐elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high‐elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high‐elevation species to climatic changes.  相似文献   

4.
Jirˇí Reif  Jirˇí Flousek 《Oikos》2012,121(7):1053-1060
Climate change is one of the most important recent forces modulating the structure of ecological communities worldwide. Although a number of studies have documented climatically induced altitudinal range shifts, with species move upwards with increasing temperature and tracking their climatic optima, an examination of interspecific variability in such altitudinal shifts remains unexplored. Using a unique dataset on the altitudinal distribution of birds in a central European mountain range, collected with constant effort and methodology over more than 20 years, we examined the effects of particular species’ ecological traits on interspecific variability in altitudinal range shifts. We predicted that shifts would be greater in species with narrower European climatic niches, breeding in open habitats, feeding on insects and originally breeding at lower altitudes. Patterns of the shifts differed within the time period studied. In the first decade, no climate change was observed and species did not show any direction in their altitudinal shifts. In the second decade, local spring temperatures increased and species moved to higher altitudes. These altitudinal shifts were related to species’ habitat preferences, with open habitat species shifting to higher altitudes than forest species. The effect of other predictors was relatively small. The habitat effects imply either stronger self‐regulation of the forest microclimate compared to open habitats, with forest species less forced to move upwards, or a delayed shift in the alpine timberline due to the slow growth of trees. In the latter case, forest species would face unfavourable climatic conditions and at the same time be constrained by the limited distribution of their habitat. Our study shows that species’ ecology can considerably alter the actual outcome of the impacts of ongoing climate change in mountain areas.  相似文献   

5.
Climate change, land‐use change and introductions of non‐native species are key determinants of biodiversity change worldwide. However, the extent to which anthropogenic drivers of environmental change interact to affect biological communities is largely unknown, especially over longer time periods. Here, we show that plant community composition in 996 Swedish landscapes has consistently shifted to reflect the warmer and wetter climate that the region has experienced during the second half of the 20th century. Using community climatic indices, which reflect the average climatic associations of the species within each landscape at each time period, we found that species compositions in 74% of landscapes now have a higher representation of warm‐associated species than they did previously, while 84% of landscapes now host more species associated with higher levels of precipitation. In addition to a warmer and wetter climate, there have also been large shifts in land use across the region, while the fraction of non‐native species has increased in the majority of landscapes. Climatic warming at the landscape level appeared to favour the colonization of warm‐associated species, while also potentially driving losses in cool‐associated species. However, the resulting increases in community thermal means were apparently buffered by landscape simplification (reduction in habitat heterogeneity within landscapes) in the form of increased forest cover. Increases in non‐native species, which generally originate from warmer climates than Sweden, were a strong driver of community‐level warming. In terms of precipitation, both landscape simplification and increases in non‐natives appeared to favour species associated with drier climatic conditions, to some extent counteracting the climate‐driven shift towards wetter communities. Anthropogenic drivers can act both synergistically and antagonistically to determine trajectories of change in biological communities over time. Therefore, it is important to consider multiple drivers of global change when trying to understand, manage and predict biodiversity in the future.  相似文献   

6.
Aim Species distribution models have been used frequently to assess the effects of climate change on mountain biodiversity. However, the value and accuracy of these assessments have been hampered by the use of low‐resolution data for species distributions and climatic conditions. Herein we assess potential changes in the distribution and community composition of tree species in two mountainous regions of Spain under specific scenarios of climate change using data with a high spatial resolution. We also describe potential changes in species distributions and tree communities along the entire elevational gradient. Location Two mountain ranges in southern Europe: the Central Mountain Range (central west of the Iberian Peninsula), and the Iberian Mountain Range (central east). Methods We modelled current and future distributions of 15 tree species (Eurosiberian, sub‐Mediterranean and Mediterranean species) as functions of climate, lithology and availability of soil water using generalized linear models (logistic regression) and machine learning models (gradient boosting). Using multivariate ordination of a matrix of presence/absence of tree species obtained under two Intergovernmental Panel on Climate Change (IPCC) scenarios (A2 and B2) for two different periods in the future (2041–70 and 2071–2100), we assessed the predicted changes in the composition of tree communities. Results The models predicted an upward migration of communities of Mediterranean trees to higher elevations and an associated decline in communities of temperate or cold‐adapted trees during the 21st century. It was predicted that 80–99% of the area that shows a climate suitable for cold–wet‐optimum Eurosiberian coniferous and broad‐leaved species will be lost. The largest overall changes were predicted for Mediterranean species found currently at low elevations, such as Pinus halepensis, Pinus pinaster, Quercus ilex ssp. ballota and Juniperus oxycedrus, with sharp increases in their range of 350%. Main conclusions It is likely that areas with climatic conditions suitable for cold‐adapted species will decrease significantly under climate warming. Large changes in species ranges and forest communities might occur, not only at high elevations within Mediterranean mountains but also along the entire elevational gradient throughout this region, particularly at low and mid‐elevations. Mediterranean mountains might lose their key role as refugia for cold‐adapted species and thus an important part of their genetic heritage.  相似文献   

7.
AimAlthough patterns of biodiversity across the globe are well studied, there is still a controversial debate about the underlying mechanisms and their generality across biogeographic scales. In particular, it is unclear to what extent diversity patterns along environmental gradients are directly driven by abiotic factors, such as climate, or indirectly mediated through biotic factors, such as resource effects on consumers.LocationAndes, Southern Ecuador; Mt. Kilimanjaro, Tanzania.MethodsWe studied the diversity of fleshy‐fruited plants and avian frugivores at the taxonomic level, that is, species richness and abundance, as well as at the level of functional traits, that is, functional richness and functional dispersion. We compared two important biodiversity hotspots in mountain systems of the Neotropics and Afrotropics. We used field data of plant and bird communities, including trait measurements of 367 plant and bird species. Using structural equation modeling, we disentangled direct and indirect effects of climate and the diversity of plant communities on the diversity of bird communities.ResultsWe found significant bottom‐up effects of fruit diversity on frugivore diversity at the taxonomic level. In contrast, climate was more important for patterns of functional diversity, with plant communities being mostly related to precipitation, and bird communities being most strongly related to temperature.Main conclusionsOur results illustrate the general importance of bottom‐up mechanisms for the taxonomic diversity of consumers, suggesting the importance of active resource tracking. Our results also suggest that it might be difficult to identify signals of ecological fitting between functional plant and animal traits across biogeographic regions, since different species groups may respond to different climatic drivers. This decoupling between resource and consumer communities could increase under future climate change if plant and animal communities are consistently related to distinct climatic drivers.  相似文献   

8.
9.
Anthropogenic activities such as uncontrolled deforestation and increasing greenhouse gas emissions are responsible for triggering a series of environmental imbalances that affect the Earth's complex climate dynamics. As a consequence of these changes, several climate models forecast an intensification of extreme weather events over the upcoming decades, including heat waves and increasingly severe drought and flood episodes. The occurrence of such extreme weather will prompt profound changes in several plant communities, resulting in massive forest dieback events that can trigger a massive loss of biodiversity in several biomes worldwide. Despite the gravity of the situation, our knowledge regarding how extreme weather events can undermine the performance, survival, and distribution of forest species remains very fragmented. Therefore, the present review aimed to provide a broad and integrated perspective of the main biochemical, physiological, and morpho‐anatomical disorders that may compromise the performance and survival of forest species exposed to climate change factors, particularly drought, flooding, and global warming. In addition, we also discuss the controversial effects of high CO2 concentrations in enhancing plant growth and reducing the deleterious effects of some extreme climatic events. We conclude with a discussion about the possible effects that the factors associated with the climate change might have on species distribution and forest composition.  相似文献   

10.
Disentangling the relative effects of local and regional processes on local species richness (LSR) is critical for understanding the mechanisms underlying large‐scale biodiversity patterns. In this study we used 1098 forest plots from 41 mountains across China, together with regional flora data, to examine the relative influence of local climate vs regional species richness (RSR) on LSR patterns. Both RSR and LSR for woody species and all species combined decreased with increasing latitude, while richness of herbaceous species exhibited a hump‐shaped pattern. The major climatic orrelates of species richness differed across spatial scales. At the regional scale, winter coldness was the best predictor of RSR patterns for both woody and herbaceous species. At the local scale, however, productivity‐related climatic indices were the best predictors of LSR patterns. Local climate and RSR together explained 48, 54 and 23% of the variation in LSR, for overall, woody and herbaceous species, respectively. Both local climate and RSR independently influenced LSR in addition to their joint effects, suggesting that LSR patterns were shaped by local and regional processes together. Local climate and RSR affected LSR of woody species mainly through their joint effects, while there were few shared effects of climate and RSR on the LSR of herbaceous species. Our findings suggest that while geographic RSR patterns are mainly determined by winter coldness, the ecological processes driven by productivity may be critical to the filtering of regional flora into local communities. We also demonstrate that biogeographic region is not a good surrogate for regional richness, at least for our dataset. Consequently, whether biogeographic region can effectively reflect regional effects needs further examination.  相似文献   

11.
Climate change has the potential to influence the persistence of ecological communities by altering their stability properties. One of the major drivers of community stability is species diversity, which is itself expected to be altered by climate change in many systems. The extent to which climatic effects on community stability may be buffered by the influence of species interactions on diversity is, however, poorly understood because of a paucity of studies incorporating interactions between abiotic and biotic factors. Here, I report results of a 10-year field experiment, the past 7 years of which have focused on effects of ongoing warming and herbivore removal on diversity and stability within the plant community, where competitive species interactions are mediated by exploitation through herbivory. Across the entire plant community, stability increased with diversity, but both stability and diversity were reduced by herbivore removal, warming and their interaction. Within the most species-rich functional group in the community, forbs, warming reduced species diversity, and both warming and herbivore removal reduced the strength of the relationship between diversity and stability. Species interactions, such as exploitation, may thus buffer communities against destabilizing influences of climate change, and intact populations of large herbivores, in particular, may prove important in maintaining and promoting plant community diversity and stability in a changing climate.  相似文献   

12.
Shifts in the phenologies of coexistence species are altering the temporal structure of natural communities worldwide. However, predicting how these changes affect the structure and long‐term dynamics of natural communities is challenging because phenology and coexistence theory have largely proceeded independently. Here, I propose a conceptual framework that incorporates seasonal timing of species interactions into a well‐studied competition model to examine how changes in phenologies influence long‐term dynamics of natural communities. Using this framework I demonstrate that persistence and coexistence conditions strongly depend on the difference in species’ mean phenologies and how this difference varies across years. Consequently, shifts in mean and interannual variation in relative phenologies of species can fundamentally alter the outcome of interactions and the potential for persistence and coexistence of competing species. These effects can be predicted by how per‐capita effects scale with differences in species’ phenologies. I outline how this approach can be parameterized with empirical systems and discuss how it fits within the context of current coexistence theory. Overall, this synthesis reveals that phenology of species interactions can play a crucial yet currently understudied role in driving coexistence and biodiversity patterns in natural systems and determine how species will respond to future climate change.  相似文献   

13.
Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: “dispersal lags” affecting plant species’ spread along elevational gradients, “establishment lags” following their arrival in recipient communities, and “extinction lags” of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species’ range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide.  相似文献   

14.
Assessing the effect of global warming on forest growth requires a better understanding of species‐specific responses to climate change conditions. Norway spruce and European beech are among the dominant tree species in Europe and are largely used by the timber industry. Their sensitivity to changes in climate and extreme climatic events, however, endangers their future sustainability. Identifying the key climatic factors limiting their growth and survival is therefore crucial for assessing the responses of these two species to ongoing climate change. We studied the vulnerability of beech and spruce to warmer and drier conditions by transplanting saplings from the top to the bottom of an elevational gradient in the Jura Mountains in Switzerland. We (1) demonstrated that a longer growing season due to warming could not fully account for the positive growth responses, and the positive effect on sapling productivity was species‐dependent, (2) demonstrated that the contrasting growth responses of beech and spruce were mainly due to different sensitivities to elevated vapor–pressure deficits (VPD), (3) determined the species‐specific limits to VPD above which growth rate began to decline, and (4) demonstrated that models incorporating extreme climatic events could account for the response of growth to warming better than models using only average values. These results support that the sustainability of forest trees in the coming decades will depend on how extreme climatic events will change, irrespective of the overall warming trend.  相似文献   

15.
Although the effects of climate change on biodiversity are increasingly evident by the shifts in species ranges across taxonomical groups, the underlying mechanisms affecting individual species are still poorly understood. The power of climate envelopes to predict future ranges has been seriously questioned in recent studies. Amongst others, an improved understanding of the effects of current weather on population trends is required. We analysed the relation between butterfly abundance and the weather experienced during the life cycle for successive years using data collected within the framework of the Dutch Butterfly Monitoring Scheme for 40 species over a 15-year period and corresponding climate data. Both average and extreme temperature and precipitation events were identified, and multiple regression was applied to explain annual changes in population indices. Significant weather effects were obtained for 39 species, with the most frequent effects associated with temperature. However, positive density-dependence suggested climatic independent trends in at least 12 species. Validation of the short-term predictions revealed a good potential for climate-based predictions of population trends in 20 species. Nevertheless, data from the warm and dry year of 2003 indicate that negative effects of climatic extremes are generally underestimated for habitat specialists in drought-susceptible habitats, whereas generalists remain unaffected. Further climatic warming is expected to influence the trends of 13 species, leading to an improvement for nine species, but a continued decline in the majority of species. Expectations from climate envelope models overestimate the positive effects of climate change in northwestern Europe. Our results underline the challenge to include population trends in predicting range shifts in response to climate change.  相似文献   

16.
Cascade J. B. Sorte 《Oikos》2013,122(2):161-170
Synthesis Impending climate changes beg the question: which populations and species will go extinct and which will persist under future environmental conditions? When tolerance in situ is not possible, then species must undergo range shifts to avoid extinction. This synthesis explores ways in which directional air and water flow could impede such redistribution and the characteristics that might allow species to disperse against the flow. Considering flow patterns in tandem with climate and range projections has the potential to improve predictions of persistence for the earth’s many non‐moving foundation and basal species as well as the communities and food webs that they support. Predicting which populations and species will persist (i.e. avoid extinction and continue to exist) in the face of climate change requires an understanding of mechanisms that allow species to cope with altered environmental conditions. When processes of tolerance, acclimation, and adaptation are insufficient to allow persistence in situ, redistribution is required for population or species persistence. Here, I review evidence that directional flows of water and air have the potential to restrict species’ range boundaries under ambient conditions, the spread of introduced species, and the redistribution of native species under changing climatic conditions. I develop the hypothesis that flow patterns, such as the speed and directionality (i.e. poleward vs equatorward) of asymmetric air and water currents, may need to be considered when assessing the vulnerability of populations and species to climate change. To the degree that directional flows are found to limit redistribution, there may be disproportionate losses of diversity where the dominant flow direction opposes that of shifting climate space. Within this context, I highlight flow conditions and life‐history traits that could help the most passively‐dispersed species redistribute to track changing climate. These predictions merit further examination in order to better anticipate which populations, species, and associated communities are likely to persist under climate change.  相似文献   

17.
Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution.  相似文献   

18.
Recent studies highlight the potential of climate change refugia (CCR) to support the persistence of biodiversity in regions that may otherwise become unsuitable with climate change. However, a key challenge in using CCR for climate resilient management lies in how CCR may intersect with existing forest management strategies, and subsequently influence how landscapes buffer species from negative impacts of warming climate. We address this challenge in temperate coastal forests of the Pacific Northwestern United States, where declines in the extent of late-successional forests have prompted efforts to restore old-growth forest structure. One common approach for doing so involves selectively thinning forest stands to enhance structural complexity. However, dense canopy is a key forest feature moderating understory microclimate and potentially buffering organisms from climate change impacts, raising the possibility that approaches for managing forests for old-growth structure may reduce the extent and number of CCR. We used remotely sensed vegetation indices to identify CCR in an experimental forest with control and thinned (restoration) treatments, and explored the influence of biophysical variables on buffering capacity. We found that remotely sensed vegetation indices commonly used to identify CCR were associated with understory temperature and plant community composition, and thus captured aspects of landscape buffering that might instill climate resilience and be of interest to management. We then examined the interaction between current restoration strategies and CCR, and found that selective thinning for promoting old-growth structure had only very minor, if any, effects on climatic buffering. In all, our study demonstrates that forest management approaches aimed at restoring old-growth structure through targeted thinning do not greatly decrease buffering capacity, despite a known link between dense canopy and CCR. More broadly, this study illustrates the value of using remote sensing approaches to identify CCR, facilitating the integration of climate change adaptation with other forest management approaches.  相似文献   

19.
Our planet is facing a variety of serious threats from climate change that are unfolding unevenly across the globe. Uncovering the spatial patterns of ecosystem stability is important for predicting the responses of ecological processes and biodiversity patterns to climate change. However, the understanding of the latitudinal pattern of ecosystem stability across scales and of the underlying ecological drivers is still very limited. Accordingly, this study examines the latitudinal patterns of ecosystem stability at the local and regional spatial scale using a natural assembly of forest metacommunities that are distributed over a large temperate forest region, considering a range of potential environmental drivers. We found that the stability of regional communities (regional stability) and asynchronous dynamics among local communities (spatial asynchrony) both decreased with increasing latitude, whereas the stability of local communities (local stability) did not. We tested a series of hypotheses that potentially drive the spatial patterns of ecosystem stability, and found that although the ecological drivers of biodiversity, climatic history, resource conditions, climatic stability, and environmental heterogeneity varied with latitude, latitudinal patterns of ecosystem stability at multiple scales were affected by biodiversity and environmental heterogeneity. In particular, α diversity is positively associated with local stability, while β diversity is positively associated with spatial asynchrony, although both relationships are weak. Our study provides the first evidence that latitudinal patterns of the temporal stability of naturally assembled forest metacommunities across scales are driven by biodiversity and environmental heterogeneity. Our findings suggest that the preservation of plant biodiversity within and between forest communities and the maintenance of heterogeneous landscapes can be crucial to buffer forest ecosystems at higher latitudes from the faster and more intense negative impacts of climate change in the future.  相似文献   

20.
Spatial responses of species to past climate change depend on both intrinsic traits (climatic niche breadth, dispersal rates) and the scale of climatic fluctuations across the landscape. New capabilities in generating and analysing population genomic data, along with spatial modelling, have unleashed our capacity to infer how past climate changes have shaped populations, and by extension, complex communities. Combining these approaches, we uncover lineage diversity across four codistributed lizards from the Australian Monsoonal Tropics and explore how varying climatic tolerances interact with regional climate history to generate common vs. disparate responses to late Pleistocene change. We find more divergent spatial structuring and temporal demographic responses in the drier Kimberley region compared to the more mesic and consistently suitable Top End. We hypothesize that, in general, the effects of species’ traits on sensitivity to climate fluctuation will be more evident in climatically marginal regions. If true, this points to the need in climatically marginal areas to craft more species‐(or trait)‐specific strategies for persistence under future climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号