首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Native pollinators are increasingly needed on conventional farms yet rarely fostered via management. One solution is habitat restoration in marginal areas, but colonization may be constrained if resident pollinator richness is low or if restored areas fail to provide sufficient floral or nesting resources. We quantified restoration outcomes for native bees, and associated resources, on three conventional farms with forb‐grass prairie plantings on marginal areas of varying sizes, in a heavily farmed region of central North America. We tested bee abundance and richness in restored prairie versus the dominant habitats of the region—crops, forest remnants, and edges of fields and roads. Restored prairie supported 2× more species (95 of 119 total species) and 3× more bees (72% of captured individuals) compared to the other cover types. All richness and abundance differences among habitat types were associated with higher floral resources in restored prairie. Thirty percent of the bee species were unique to prairie, consistent with long‐distance dispersal but begging the question of origin given the absence of prairie regionally. Our results suggest that road and field edges may be the source, as these areas had more floral and nesting resources than forest or crop fields combined and supported 55% of all species despite covering only approximately 5% of the sampled farms. Habitat scarcity is not the only constraint on native bees in agricultural landscapes, with increasing concern over disease and chemicals. However, we observed that restored areas on marginal lands of conventional farms can support abundant and species‐rich populations of native bees.  相似文献   

2.
A major challenge in habitat restoration is targeting the key aspects of a species' niche for enhancement, particularly for species that use a diverse set of habitat features. However, restoration that focuses on limited aspects of a species' niche may neglect other resources that are critical to population persistence. We evaluated the ability of native plant hedgerows, planted to increase pollen and nectar resources for wild bees in agricultural landscapes, to provide suitable nesting habitat and enhance nesting rates of ground‐nesting bees. We found that, when compared to unmanaged field edges (controls), hedgerows did not augment most indicators of nest habitat quality (bare ground, soil surface irregularity, and soil hardness), although coarser soils were associated with higher incidence and richness of nesting bees. Hedgerows did not augment nesting rates when compared to control edges. Although all the bee species we detected nesting were also found foraging on floral resources, the foraging versus nesting assemblages found within a site were highly dissimilar. These results may reflect sampling error; or, species found foraging but not nesting in hedgerows could be utilizing hedgerows as “partial habitats,” nesting outside hedgerow plantings but foraging on the floral resources they provide. We conclude that although hedgerows are known to provide critical floral resources to wild bees especially in resource‐poor intensive agricultural landscapes, simply increasing vegetative diversity and structure may not be simultaneously enhancing nesting habitat for ground‐nesting bees.  相似文献   

3.
Several agri-environment schemes aim to improve pollinator diversity and abundance, including the sowing of wildflower areas. These seed mixes are often either low in floral diversity and target few pollinator species (mainly social bees), or high in floral diversity but with limited evidence of good establishment of the component species. In order to support a greater diversity of wild bees in farmland, we need more diverse seed mixes, containing species shown to support a wide diversity of insect pollinators, with good establishment and long flowering periods. Here we trialled two typical seed mixes, a low-diversity Fabaceae-heavy mix (FAB) and a more diverse wildflower mix (WF), against two novel wildflower mixes, one based on literature sources (LT), and one based on first-hand surveys of pollinator attraction to flowers growing on a wildflower farm (WB). Both new mixes were focussed on plants attractive to wild bee species. Replicated field plots were set up on two farms and monitored over three years. Our novel wildflower mixes had higher floral diversity and abundance than the FAB mix, and began flowering earlier, reaching their floral peak before the FAB mix, potentially providing forage for a broader range of pollinators or those with earlier flight seasons. The high floral abundance in LT and WB was driven by annuals in the first year, and then multiple perennials in the second and third year. We identified five perennials from four families (Daucus carota, Leucanthemum vulgare, Geranium pyrenaicum, Lotus corniculatus and Trifolium hybridum) that established well on both farms, are known to be attractive to a diversity of bee species, and thus could be considered as providing a more taxonomically diverse base for creating future mixes. However, the mixes provided few floral resources in April (needed by early-flying wild bees), and more research is required in this area.  相似文献   

4.
Floral foraging resources are valuable for pollinator conservation on farmland, and their provision is encouraged by agri‐environment schemes in many countries. Across Europe, wildflower seed mixtures are widely sown on farmland to encourage pollinators, but the extent to which key pollinator groups such as solitary bees exploit and benefit from these resources is unclear. We used high‐throughput sequencing of 164 pollen samples extracted from the brood cells of six common cavity‐nesting solitary bee species (Osmia bicornis, Osmia caerulescens, Megachile versicolor, Megachile ligniseca, Megachile centuncularis and Hylaeus confusus) which are widely distributed across the UK and Europe. We documented their pollen use across 19 farms in southern England, UK, revealing their forage plants and examining the structure of their pollen transport networks. Of the 32 plant species included currently in sown wildflower mixes, 15 were recorded as present within close foraging range of the bees on the study farms, but only Ranunculus acris L. was identified within the pollen samples. Rosa canina L. was the most commonly found of the 23 plant species identified in the pollen samples, suggesting that, in addition to providing a nesting resource for Megachile leafcutter bees, it may be an important forage plant for these species. Higher levels of connectance and nestedness were characteristic of pollen transport networks on farms with abundant floral resources, which may increase resilience to species loss. Our data suggest that plant species promoted currently by agri‐environment schemes are not optimal for solitary bee foraging. If a diverse community of pollinators is to be supported on UK and European farmland, additional species such as R. canina should be encouraged to meet the foraging requirements of solitary bees.  相似文献   

5.
Introduced plants may be important foraging resources for honey bees and wild pollinators, but how often and why pollinators visit introduced plants across an entire plant community is not well understood. Understanding the importance of introduced plants for pollinators could help guide management of these plants and conservation of pollinator habitat. We assessed how floral abundance and pollinator preference influence pollinator visitation rate and diversity on 30 introduced versus 24 native plants in central New York. Honey bees visited introduced and native plants at similar rates regardless of floral abundance. In contrast, as floral abundance increased, wild pollinator visitation rate decreased more strongly for introduced plants than native plants. Introduced plants as a group and native plants as a group did not differ in bee diversity or preference, but honey bees and wild pollinators preferred different plant species. As a case study, we then focused on knapweed (Centaurea spp.), an introduced plant that was the most preferred plant by honey bees, and that beekeepers value as a late‐summer foraging resource. We compared the extent to which honey bees versus wild pollinators visited knapweed relative to coflowering plants, and we quantified knapweed pollen and nectar collection by honey bees across 22 New York apiaries. Honey bees visited knapweed more frequently than coflowering plants and at a similar rate as all wild pollinators combined. All apiaries contained knapweed pollen in nectar, 86% of apiaries contained knapweed pollen in bee bread, and knapweed was sometimes a main pollen or nectar source for honey bees in late summer. Our results suggest that because of diverging responses to floral abundance and preferences for different plants, honey bees and wild pollinators differ in their use of introduced plants. Depending on the plant and its abundance, removing an introduced plant may impact honey bees more than wild pollinators.  相似文献   

6.
Large‐scale spatial variability in plant–pollinator communities (e.g. along geographic gradients, across different landscapes) is relatively well understood. However, we know much less about how these communities vary at small scales within a uniform landscape. Plants are sessile and highly sensitive to microhabitat conditions, whereas pollinators are highly mobile and, for the most part, display generalist feeding habits. Therefore, we expect plants to show greater spatial variability than pollinators. We analysed the spatial heterogeneity of a community of flowering plants and their pollinators in 40 plots across a 40‐km2 area within an uninterrupted Mediterranean scrubland. We recorded 3577 pollinator visits to 49 plant species. The pollinator community (170 species) was strongly dominated by honey bees (71.8% of the visits recorded). Flower and pollinator communities showed similar beta‐diversity, indicating that spatial variability was similar in the two groups. We used path analysis to establish the direct and indirect effects of flower community distribution and honey bee visitation rate (a measure of the use of floral resources by this species) on the spatial distribution of the pollinator community. Wild pollinator abundance was positively related to flower abundance. Wild pollinator visitation rate was negatively related to flower abundance, suggesting that floral resources were not limiting. Pollinator and flower richness were positively related. Pollinator species composition was weakly related to flower species composition, reflecting the generalist nature of flower–pollinator interactions and the opportunistic nature of pollinator flower choices. Honey bee visitation rate did not affect the distribution of the wild pollinator community. Overall, we show that, in spite of the apparent physiognomic uniformity, both flowers and pollinators display high levels of heterogeneity, resulting in a mosaic of idiosyncratic local communities. Our results provide a measure of the background of intrinsic heterogeneity within a uniform habitat, with potential consequences on low‐scale ecosystem function and microevolutionary patterns.  相似文献   

7.
Long‐term variation in the population density of honey bees Apis mellifera across landscapes has been shown to correlate with variation in the floral traits of plant populations in these landscapes, suggesting that variations in pollinator population density and foraging rates can drive floral trait evolution of their host plants. However, it remained to be determined whether this variation in plant traits is associated with adaptive variation in plant reproductive strategies under conditions of high and low pollinator densities. Here we conducted a reciprocal transplant experiment to examine how this variation in floral traits, under conditions of either high and low pollinator density, impacted seed production in the Tibetan lotus Saussurea nigrescens. In 2014 and 2015, we recorded the floral traits, pollinator visitation rates, and seed production of S. nigrescens populations grown in both home sites and foreign sites, where sites varied in honey bee population density. Our results demonstrated that the floral traits reflected those of their original population, regardless of their current location. However, seed production varied with both population origin and transplant site. Seed number was positively correlated with flower abundance in the pollinator‐rich sites, but with nectar production in the pollinator‐poor sites. Pollinator visitation rate was also positively correlated with flower number at pollinator‐rich sites, and with nectar volume at pollinator‐poor sites. Overall, the local genotype had higher seed production than nonlocal genotypes in home sites. However, when pollen is hand‐supplemented, plants from pollinator‐rich populations had higher seed production than plants from pollinator‐poor populations, regardless of whether they were transplanted to pollinator‐rich or ‐poor sites. These results suggest that the plant genotypic differences primarily drive variation in pollinator attraction, and this ultimately drives variation in seed: ovule ratio. Thus, our results suggest that flowering plant species use different reproductive strategies to respond to high or low pollinator densities.  相似文献   

8.
The occurrence and extent of multiple paternity is an important component of variation in plant mating dynamics. However, links between pollinator activity and multiple paternity are generally lacking, especially for plant species that attract functionally diverse floral visitors. In this study, we separated the influence of two functionally distinct floral visitors (hawkmoths and solitary bees) and characterized their impacts on multiple paternity in a self‐incompatible, annual forb, Oenothera harringtonii (Onagraceae). We also situated pollinator‐mediated effects in a spatial context by linking variation in multiple paternity to variation in plant spatial isolation. We documented pronounced differences in the number of paternal sires as function of pollinator identity: on average, the primary pollinator (hawkmoths) facilitated mating with nearly twice as many pollen donors relative to the secondary pollinator (solitary bees). This effect was consistent for both isolated and nonisolated individuals, but spatial isolation imposed pronounced reductions on multiple paternity regardless of pollinator identity. Considering that pollinator abundance and pollen dispersal distance did not vary significantly with pollinator identity, we attribute variation in realized mating dynamics primarily to differences in pollinator morphology and behaviour as opposed to pollinator abundance or mating incompatibility arising from underlying spatial genetic structure. Our findings demonstrate that functionally distinct pollinators can have strongly divergent effects on polyandry in plants and further suggest that both pollinator identity and spatial heterogeneity have important roles in plant mating dynamics.  相似文献   

9.
10.
Tropical forest loss and fragmentation can change bee community dynamics and potentially interrupt plant–pollinator relationships. While bee community responses to forest fragmentation have been investigated in a number of tropical regions, no studies have focused on this topic in Australia. In this study, we examine taxonomic and functional diversity of bees visiting flowers of three tree species across small and large rainforest fragments in Australian tropical landscapes. We found lower taxonomic diversity of bees visiting flowers of trees in small rainforest fragments compared with large forest fragments and show that bee species in small fragments were subsets of species in larger fragments. Bees visiting trees in small fragments also had higher mean body sizes than those in larger fragments, suggesting that small‐sized bees may be less likely to persist in small fragments. Lastly, we found reductions in the abundance of eusocial stingless bees visiting flowers in small fragments compared to large fragments. These results suggest that pollinator visits to native trees living in small tropical forest remnants may be reduced, which may in turn impact on a range of processes, potentially including forest regeneration and diversity maintenance in small forest remnants in Australian tropical countryside landscapes.  相似文献   

11.
Wildflower strips (WFS) are amongst the most commonly applied measures to promote pollinators and natural enemies of crop pests in agroecosystems. Their potential to enhance these functionally important insect groups may vary substantially with time since establishment of WFS. However, knowledge on their temporal dynamics remains scarce, hampering recommendations for optimized design and management. We therefore examined temporal dynamics of taxonomic and functional groups of bees and hoverflies in perennial WFS ranging from one to ≥6 years since sowing with a standardized species-rich seed mixture of flowering plants in 18 agricultural landscapes in Switzerland. The abundance of wild bees, honeybees and hoverflies declined after the second year by 89%, 62% and 72%, respectively. Declines in bee abundance and hoverfly species richness were linear and those of aphidophagous hoverflies exponential, while wild bee species richness peaked in the third year. Declines over time generally paralleled decreases in flower abundance (-83%) and flowering species richness (-61%) and an increase in grass cover (+70%) in WFS. Flowering plant species richness showed strong positive relationships with dominant crop-visiting wild bees and aphidophagous hoverflies. Furthermore, dominant crop-visiting wild bees, but not aphidophagous hoverflies, were positively related to the proportion of (semi-)open semi-natural habitat in the surrounding landscape (500 m radius), but negatively with forest. We conclude that the effectiveness of perennial WFS to promote pollinator diversity, crop-pollinating bees and aphidophagous hoverflies through foraging resources decreases after the first two to three years, probably due to a decline of diverse and abundant floral resources. Although older perennial WFS may still provide valuable nesting and overwintering opportunities for pollinators and natural enemies, our findings indicate that regular re-sowing of perennial WFS may be necessary to maintain adequate floral resource provisioning for effective pollinator conservation and promotion of crop pollination and natural pest control services in agricultural landscapes.  相似文献   

12.
The production of diverse and affordable agricultural crop species depends on pollination services provided by bees. Indeed, the proportion of pollinator‐dependent crops is increasing globally. Agriculture relies heavily on the domesticated honeybee; the services provided by this single species are under threat and becoming increasingly costly. Importantly, the free pollination services provided by diverse wild bee communities have been shown to be sufficient for high agricultural yields in some systems. However, stable, functional wild bee communities require floral resources, such as pollen and nectar, throughout their active season, not just when crop species are in flower. To target floral provisioning efforts to conserve and support native and managed bee species, we apply network theoretical methods incorporating plant and pollinator phenologies. Using a two‐year dataset comprising interactions between bees (superfamily Apoidea, Anthophila) and 25 native perennial plant species in floral provisioning habitat, we identify plant and bee species that provide a key and central role to the stability of the structure of this community. We also examine three specific case studies: how provisioning habitat can provide temporally continuous support for honeybees (Apis mellifera) and bumblebees (Bombus impatiens), and how resource supplementation strategies might be designed for a single genus of important orchard pollinators (Osmia). This framework could be used to provide native bee communities with additional, well‐targeted floral resources to ensure that they not only survive, but also thrive.  相似文献   

13.
1. Resource pulses, narrow periods of high resource availability, can elicit strong behavioural responses across diverse taxa. Mass‐flowering agricultural crops are an example of a resource pulse that insect pollinators exploit. However, the underlying mechanism behind changes in pollinator behaviour associated with mass‐flowering crops is still relatively unexplored. 2. The present study quantified the behavioural response of bumble bees, an important wild pollinator, to commercial cranberry bloom, an important mass‐flowering crop in Wisconsin, U.S.A. Over a 2‐year period, foraging trip duration was measured using radio frequency identification at 14 farms situated across landscape contexts, ranging from high to low natural area (woodland amount). Using transect surveys, floral resource abundance at a landscape scale was estimated. 3. It was found that bumble bees were highly sensitive to temporal changes in landscape‐level resource abundance associated with the onset of cranberry bloom, during which they decreased foraging trip duration by 22% and increased the number of foraging trips during bloom by 24% on average relative to the period before and after bloom. This phenomenon was consistent across colonies, individual bees, and landscape contexts, despite a higher abundance of flowers in low woodland landscapes. Bumble bee colonies growing in low‐ and high‐woodland landscapes exhibited a similar performance. 4. As mass‐flowering crops are probably a factor influencing bumble bee foraging behaviour in agricultural regions, investigations should continue into how variable resource landscapes, particularly those offering resource pulses, affect wild pollinators and the pollination services they provide.  相似文献   

14.
1. In many flowering plants, bumble bees may forage as both pollinators and nectar robbers. This mixed foraging behaviour may be influenced by community context and consequently, potentially affect pollination of the focal plant. 2. Salvia przewalskii is both pollinated and robbed exclusively by bumble bees. In the present study area, it was legitimately visited by two species of bumble bees with different tongue length, Bombus friseanus and Bombus religiosus, but it was only robbed by Bombus friseanus, the shorter‐tongued bumble bee. The intensity of nectar robbing and pollinator visitation rate to the plant were investigated across 26 communities in the Hengduan Mountains in East Himalaya during a 2‐year project. For each of these communities, the floral diversity, and the population size and floral resource of S. przewalskii were quantified. The abundances of the two bumble bee species were also recorded. 3. Both nectar robbing and pollinator visitation rate were influenced by floral diversity. However, pollinator visitation rate was not affected by nectar robbing. The results revealed that relative abundance of the two bumble bee species significantly influenced the incidence of nectar robbing but not the pollinator visitation rate. Increased abundance of B. religiosus, the legitimate visitors, exacerbated nectar robbing, possibly by causing B. friseanus to shift to robbing; however, pollinator visitation remained at a relatively high level. 4. The results may help to explain the persistence of both nectar robbing and pollination, and suggest that, in comparison to pollination, nectar robbing is a more unstable event in a community.  相似文献   

15.
Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio‐temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant–pollinator interactions with an unprecedented spatio‐temporal resolution. We observed four pollinator functional groups (honeybees, bumblebees, solitary bees, and hoverflies) in experimental plots at three different vegetation strata between sunrise and sunset. Visits were modified by plant species richness interacting with time and space. Furthermore, the complementarity of pollinator functional groups in space and time was stronger in species‐rich mixtures. We conclude that high plant diversity should ensure stable pollination services, mediated via spatio‐temporal niche complementarity in flower visitation.  相似文献   

16.
Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting resident wild pollinator populations within agricultural landscapes is to encourage and maintain floral diversity. However, pollinator visitation to crop plants can be affected either positively (facilitation) or negatively (competition) by the presence of co-flowering plants. The strength and direction of the facilitative/competitive relationship is driven by multiple factors, including floral abundance and the degree of overlap in pollinator visitation networks. We sought to determine how plant-pollinator networks, within and surrounding sweet cherry (Prunus avium) orchards, change across key time points during the cherry flowering season, in three growing regions in Australia. We found significant overlap in the suite of flower visitors, with seven taxa (including native bees, flies, hoverflies and introduced honey bees, Apis mellifera) observed visiting cherry and other co-flowering species within the orchard and/or the wider surrounding matrix. We found evidence of pollinator facilitation with significantly more total cherry flower visits with increasing percent cover of co-flowering plants within the wider landscape matrix and increased visitation to cherry by honey bees with increasing co-flowering plant richness within the orchard. During the cherry flowering period there was a significant positive relationship between pollinator richness on cherry and pollinator richness on co-flowering plants within the orchard and the area of native vegetation surrounding orchards. Outside of the crop flowering season, co-flowering plants within the orchard and wider landscape matrix supported the same pollinator taxa that were recorded visiting cherry when the crop was flowering. This shows wild plants help support the pollinators important to crop pollination, outside of the crop flowering season, highlighting the role of co-flowering plants within pollinator-dependent cropping systems.  相似文献   

17.
Traditionally, plant–pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino‐Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC‐MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species‐specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant–pollinator interactions in these Asian Buddleja species.  相似文献   

18.
Plant–pollinator mutualisms are one of the several functional relationships that must be reinstated to ensure the long‐term success of habitat restoration projects. These mutualisms are unlikely to reinstate themselves until all of the resource requirements of pollinators have been met. By meeting these requirements, projects can improve their long‐term success. We hypothesized that pollinator assemblage and structure and stability of plant–pollinator networks depend both on aspects of the surrounding landscape and of the restoration effort itself. We predicted that pollinator species diversity and network stability would be negatively associated with distance from remnant habitat, but that local floral diversity might rescue pollinator diversity and network stability in locations distant from the remnant. We created plots of native prairie on a reclaimed strip mine in central Ohio, U.S.A. that ranged in floral diversity and isolation from the remnant habitat. We found that the pollinator diversity declined with distance from the remnant habitat. Furthermore, reduced pollinator diversity in low floral diversity plots far from the remnant habitat was associated with loss of network stability. High floral diversity, however, compensated for losses in pollinator diversity in plots far from the remnant habitat through the attraction of generalist pollinators. Generalist pollinators increased network connectance and plant‐niche overlap. As a result, network robustness of high floral diversity plots was independent of isolation. We conclude that the aspects of the restoration effort itself, such as floral community composition, can be successfully tailored to incorporate the restoration of pollinators and improve success given a particular landscape context.  相似文献   

19.
Floral orientation may affect pollinator attraction and pollination effectiveness, and its influences may differ among pollinator species. We, therefore, hypothesized that, for plant species with a generalized pollination system, changes in floral orientation would affect the composition of pollinators and their relative contribution to pollination. Geranium refractum, an alpine plant with downward floral orientation was used in this study. We created upward-facing flowers by altering the flower angle. We compared the pollinator diversity, pollination effectiveness, and pollinator importance, as well as female reproductive success between flowers with downward- and upward-facing orientation. Results indicated that the upward-facing flowers were visited by a wider spectrum of pollinators (classified into functional groups), with higher pollinator diversity than natural flowers. Moreover, due to influences on visitation number and pollen removal, the pollinator importance exhibited by the main pollinator groups differed between flower types. Compared with natural flowers, the pollination contribution of principal pollinators (i.e., bumblebees) decreased in upward-facing flowers and other infrequent pollinators, such as solitary bees and muscoid flies, removed more pollen. Consequently, stigmatic pollen loads were lower in upward- than in downward-facing flowers. These findings reveal that floral orientation may affect the level of generalization of a pollination system and the relative importance of diverse pollinators. In this species, the natural downward-facing floral orientation may increase pollen transfer by effective pollinators and reduce interference by inferior pollinators.  相似文献   

20.
Agricultural intensification is a major driver of wild bee decline. Vineyards may be inhabited by plant and animal species, especially when the inter‐row space is vegetated with spontaneous vegetation or cover crops. Wild bees depend on floral resources and suitable nesting sites which may be found in vineyard inter‐rows or in viticultural landscapes. Inter‐row vegetation is managed by mulching, tillage, and/or herbicide application and results in habitat degradation when applied intensively. Here, we hypothesize that lower vegetation management intensities, higher floral resources, and landscape diversity affect wild bee diversity and abundance dependent on their functional traits. We sampled wild bees semi‐quantitatively in 63 vineyards representing different vegetation management intensities across Europe in 2016. A proxy for floral resource availability was based on visual flower cover estimations. Management intensity was assessed by vegetation cover (%) twice a year per vineyard. The Shannon Landscape Diversity Index was used as a proxy for landscape diversity within a 750 m radius around each vineyard center point. Wild bee communities were clustered by country. At the country level, between 20 and 64 wild bee species were identified. Increased floral resource availability and extensive vegetation management both affected wild bee diversity and abundance in vineyards strongly positively. Increased landscape diversity had a small positive effect on wild bee diversity but compensated for the negative effect of low floral resource availability by increasing eusocial bee abundance. We conclude that wild bee diversity and abundance in vineyards is efficiently promoted by increasing floral resources and reducing vegetation management frequency. High landscape diversity further compensates for low floral resources in vineyards and increases pollinating insect abundance in viticulture landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号