首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
1. Although divergence via host‐plant shifting is a common theme in the speciation of some phytophagous insects, it is not clear whether host shifts are typically initiators of speciation or if they instead contribute to divergence events already in progress. While host shifts appear to be generally associated with speciation events for flies in the genus Strauzia, three sympatric varieties of the sunflower fly [Strauzia longipennis (Wiedemann)] co‐occur on the same host plant in the Midwestern United States and may have evolved reproductive barriers without a host shift. 2. The strength of two prezygotic reproductive barriers was compared among the three S. longipennis varieties: one barrier that is often associated with divergent ecological selection (allochronic isolation), and another that is more likely to be independent of ecological selection (pre‐copulatory sexual isolation). The presence and relative strength of each barrier between fly varieties were evaluated using microsatellites, no choice mating experiments, studies of allochronic isolation, and field collection data. 3. Evidence for both allochronic isolation and pre‐copulatory sexual isolation was detected between the three varieties of S. longipennis. The measure of isolation calculated for each barrier between the three varieties was lower than measures calculated between different species of Strauzia found on different hosts, suggesting that subsequent host shifts may increase the degree of reproductive isolation. For Strauzia and other specialist insects, some reproductive isolation may evolve prior to, and indeed may facilitate, host shifts.  相似文献   

2.
 The different paramagnetic shifts of the four methyl groups in ferriheme proteins have been described as being due to the effect of the axial ligand nodal plane orientation. An equation, heuristically found and theoretically explained, describing the relation between contact and pseudocontact shifts and the position of the axial ligand(s) has been derived for bis-histidine ferriheme proteins and for cyanide-histidine ferriheme proteins. The values of the heuristic parameters contained in the equations were found by fitting the shifts of bovine cytochrome b 5 and several bis-histidine cytochromes c 3 and histidine-cyanide systems. The agreement between the observed and the calculated shifts was found to be good. Therefore, by taking advantage of this study, information on the position of the axial ligands, that can be used as a constraint for structure determination, can be obtained from the shifts of the methyl protons. Received: 13 April 1999 / Accepted: 4 June 1999  相似文献   

3.
Host shifts by specialist insects can lead to reproductive isolation between insect populations that use different hosts, promoting diversification. When both a phytophagous insect and its ancestrally associated parasitoid shift to the same novel host plant, they may cospeciate. However, because adult parasitoids are free living, they can also colonize novel host insects and diversify independent of their ancestral host insect. Although shifts of parasitoids to new insect hosts have been documented in ecological time, the long‐term importance of such shifts to parasitoid diversity has not been evaluated. We used a genus of flies with a history of speciation via host shifting (Rhagoletis [Diptera: Tephritidae]) and three associated hymenopteran parasitoid genera (Diachasma, Coptera and Utetes) to examine cophylogenetic relationships between parasitoids and their host insects. We inferred phylogenies of Rhagoletis, Diachasma, Coptera and Utetes and used distance‐based cophylogenetic methods (ParaFit and PACo) to assess congruence between fly and parasitoid trees. We used an event‐based method with a free‐living parasitoid cost model to reconstruct cophylogenetic histories of each parasitoid genus and Rhagoletis. We found that the current species diversity and host–parasitoid associations between the Rhagoletis flies and parasitoids are the primary result of ancient cospeciation events. Parasitoid shifts to ancestrally unrelated hosts primarily occur near the branch tips, suggesting that host shifts contribute to recent parasitoid species diversity but that these lineages may not persist over longer time periods. Our analyses also stress the importance of biologically informed cost models when investigating the coevolutionary histories of hosts and free‐living parasitoids.  相似文献   

4.
Reducing uncertainty in projections of extinction risk from climate change   总被引:10,自引:2,他引:8  
Aim Concern over the implications of climate change for biodiversity has led to the use of species–climate ‘envelope’ models to forecast risks of species extinctions under climate change scenarios. Recent studies have demonstrated significant variability in model projections and there remains a need to test the accuracy of models and to reduce uncertainties. Testing of models has been limited by a lack of data against which projections of future ranges can be tested. Here we provide a first test of the predictive accuracy of such models using observed species’ range shifts and climate change in two periods of the recent past. Location Britain. Methods Observed range shifts for 116 breeding bird species in Britain between 1967 and 1972 (t1) and 1987–91 (t2) are used. We project range shifts between t1 and t2 for each species based on observed climate using 16 alternative models (4 methods × 2 data parameterizations × 2 rules to transform probabilities of occurrence into presence and absence records). Results Modelling results were extremely variable, with projected range shifts varying both in magnitude and in direction from observed changes and from each other. However, using approaches that explore the central tendency (consensus) of model projections, we were able to improve agreement between projected and observed shifts significantly. Conclusions Our results provide the first empirical evidence of the value of species–climate ‘envelope’ models under climate change and demonstrate reduction in uncertainty and improvement in accuracy through selection of the most consensual projections.  相似文献   

5.
 The effect of axial ligand nodal plane orientation on the contact and pseudocontact shifts of a symmetrical low-spin octamethylferriheme center has been calculated as a function of the angle of the axial ligand. Simple Hückel techniques have been used to estimate the contact contribution, and values obtained from model hemes, together with counter-rotation of the g-tensor, have been used to estimate the pseudocontact contribution, for the eight β-pyrrole methyl and four meso-H positions. It is found that the maximum and minimum contact shifts occur when the axial ligand is aligned at an angle of ±15° to the meso-H axes of the heme, rather than when the axial ligand plane lies along the porphyrin nitrogens, as assumed previously by some investigators. For systems having one planar axial ligand or two ligands in parallel planes, the contact and pseudocontact contributions at the meso-H positions are comparable in size (at least on the basis of simple Hückel estimates), while the contact contribution clearly dominates the isotropic shifts of the heme methyls. Allowing for the substituent effect of the 2,4-vinyls of protohemin, or the 2,4-thioethers of hemin c, as well as the average diamagnetic shifts of the heme methyls and meso-H, plots of the predicted shifts as a function of axial ligand nodal plane orientation have been constructed for hemin b- and c-containing proteins. Excellent agreement in the order of shifts, and reasonable agreement in the sizes of the observed shifts, is observed in the majority of the ferriheme proteins for which the methyl and meso-H resonances have been assigned and proton shifts reported. Plots have also been constructed for hemin c-containing proteins having the two axial ligand nodal planes oriented at relative angles of 40°, 70°, and 80°. Excellent agreement in the order of shifts, and reasonable agreement in the magnitudes of the observed shifts, is observed in all cases of bacterial cytochromes which do not fit the plots that assume the ligands are in parallel planes, except one – the cytochrome c-552 of Nitrosomonas europae. Except for this case, where the order of the predicted methyl shifts at any angle of the axial ligands disagrees with the observed, the reasons can usually be attributed to a large dihedral angle between two axial ligand nodal planes, to strong H-bonding interactions involving His and/or CN ligands, or to off-axis binding of one (or both) axial ligand(s). Ruffling of the porphyrin ring may also contribute to the contact shift in as yet undefined ways. Hence, despite the simplicity of the calculations, the agreement with observed data is highly satisfying and the concept of the importance of axial ligand plane orientation on the observed proton shifts of heme proteins is fully confirmed. Received: 15 June 1998 / Accepted: 6 August 1998  相似文献   

6.
Cycloramphus and Zachaenus Neotropical frogs breed in rocky streams (saxicolous breeding) or in terrestrial environments. In their recent work, de Sá et al. investigate shifts between these habitats and the impact that these shifts have on body size and sexual size dimorphism (SSD). The researchers found that terrestrial breeding evolved on three occasions. Additionally, there was an association between habitat and SSD, with decreases in male body size correlating with shifts toward terrestrial breeding.  相似文献   

7.
Cross polarization/magic angle spinning (CP/MAS)13C (solid state high resolution) NMR spectra were observed for chlorosomes and BChlc aggregates. Similarity of both kinds of spectra (except for some signals assignable to proteins and lipids in chlorosomes) indicates that BChlc's in chlorosomes are present just as in synthetic BChlc aggregates. Chemical shifts for C131 carbonyl and C31 hydroxylethyl carbons indicate hydrogen bonding between them. Comparison of solution and solid state13C NMR chemical shifts shows the five coordinated nature of BChlc aggregates. Some chemical shift differences were attributable to ring currents shifts. Their comparisons with calculated ring current shift values predicted structures for the aggregates. Cross polarization dynamics of the CP/MAS13C NMR signals explored dynamic and structural nature of the BChlc aggregates.  相似文献   

8.
Monkeys had nonpolarizable electrodes implanted bilaterally in prefrontal (principal sulcus), precentral, and occipital cortex. They were trained on a spatial delayed-response (DR) task (8-sec intratrial delay), while cortical potentials were recorded. Three groups of monkeys were trained to 90% criterion: (A) 4 monkeys with only the right hand (the left wrist was attached to the testing chair); (B) 2 monkeys with only the left hand; and (C) 2 monkeys with the left and right hands on alternate sessions. Intermanual transfer tests were then given. Averaged steady potential (SP) shifts of several seconds duration were found in prefrontal cortex during cue presentation and the early portion of the intratrial delay and from the precentral area during the choice response. Evaluations of these SP shift magnitudes indicated: (1) Training with only one hand resulted in substantially larger SP shifts in the prefrontal and precentral areas contralateral to the responding hand; (2) alternate hand training resulted in somewhat larger prefrontal SP shifts in the right hemisphere; (3) intermanual transfer had marked effects on the precentral SP shifts, with larger magnitudes in the hemisphere contralateral to the responding hand, but had little effect on the magnitudes of both prefrontal SP shifts. (4) Subsequent training of Group C monkeys with only one hand resulted in greater SP shifts in the prefrontal area contralateral to the responding hand and in decreased SP shifts in the ipsilateral prefrontal area; and (5) additional intermanual transfer tests had no effects on SP shift magnitudes from both prefrontal areas. These findings indicate a dissociation in interhemispheric functions between the precentral and prefrontal cortical areas, with the former implicated in motor organization for the contralateral limb, and the latter in mediation of mnemonic processes, primarily in one hemisphere. This hemispheric specialization is affected by the hand-training procedure, but other endogenous or experiential factors may be involved.  相似文献   

9.
A recent worldwide trend in chemical and petrochemical industries is to extend the duration of shifts. Optimization of the labor force to reduce costs is one reason to increase the length of working time in a shift. Implementation of 12h shifts is a controversial decision for managers and scientists. Literature reviews show alertness is lower during the nighttime hours, and sleep duration is reduced and worse during the daytime. The main objective of this study was to evaluate the impacts of 12h shifts on alertness and sleep. To evaluate the duration and quality of sleep and alertness during work, 22 male shift workers on a continuous rotating schedule at a petrochemical plant completed activity logs and estimated alertness using analog 10-cm scales for 30 consecutive days, three times (at 2h, 6h, and 10h of the shift) every work shift. Statistical tests (analysis of variance [ANOVA] and Tukey) were performed to detect differences between workdays and off days. The shift schedule was 2 days/3 nights/4 off days, followed by 3 days/2 nights/5 off days, followed by 2 days/2 nights/5 off days. Sleep duration varied significantly (p <. 001) among the work shifts and off days. Comparing work nights, the shortest mean sleep occurred after the second night (mean = 311.4 minutes, SD = 101.7 minutes), followed by the third night (mean = 335.3 minutes, SD = 151.2 minutes). All but one shift (sleep after the first work night) were significantly different from sleep after the first 2 workdays (p <. 002). Tukey tests showed no significant differences in sleep quality between workdays and nights, with the exception of sleep after the third day compared to sleep after night shifts. However, significant differences were detected between off days and work nights (p <. 01). ANOVA analysis showed borderline differences among perceived alertness during day shifts (p =. 073) and significant differences among the hours of theshifts(p =. 0005), especially when comparing the 2nd hour of the first day with the 10th hour of all the day shifts. There were no significant differences in perceived alertness during night work among the first, second, and third nights (p =. 573), but there were significant differences comparing the times (2nd, 6th, 10th hour) of the night shifts (p ≤. 001). The evaluation of sleep (duration and quality) and level of alertness have been extensively used in the literature as indicators of possible performance decrements at work. The results of this study show poorer sleep after and significantly decreased alertness during night work. Shifts of 12h are usually implemented for technical and economic reasons. These results point out the necessity of a careful trade-off between the financial and technical gains longer shifts might bring and the possible losses due to incidents or accidents from performance decrements during work. (Chronobiology International, 17(4), 521–537, 2000)  相似文献   

10.
Wolbachia is one of the most abundant endosymbionts on earth, with a wide distribution especially in arthropods. Effective maternal transmission and the induction of various phenotypes in their hosts are two key features of this bacterium. Here, we review our current understanding of another central aspect of Wolbachia's success: their ability to switch from one host species to another. We build on the proposal that Wolbachia host shifts occur in four main steps: (i) physical transfer to a new species; (ii) proliferation within that host; (iii) successful maternal transmission; and (iv) spread within the host species. Host shift can fail at each of these steps, and the likelihood of ultimate success is influenced by many factors. Some stem from traits of Wolbachia (different strains have different abilities for host switching), others on host features such as genetic resemblance (e.g. host shifting is likely to be easier between closely related species), ecological connections (the donor and recipient host need to interact), or the resident microbiota. Host shifts have enabled Wolbachia to reach its enormous current incidence and global distribution among arthropods in an epidemiological process shaped by loss and acquisition events across host species. The ability of Wolbachia to transfer between species also forms the basis of ongoing endeavours to control pests and disease vectors, following artificial introduction into uninfected hosts such as mosquitoes. Throughout, we emphasise the many knowledge gaps in our understanding of Wolbachia host shifts, and question the effectiveness of current methodology to detect these events. We conclude by discussing an apparent paradox: how can Wolbachia maintain its ability to undergo host shifts given that its biology seems dominated by vertical transmission?  相似文献   

11.
The metastable state silk I structures of Bombyx mori silk fibroin in the solid state were studied on the basis of 15N- and 13C-nmr chemical shifts of Ala, Ser, and Gly residues. The 15N cross-polarization magic angle spinning (CP/MAS) nmr spectra of the precipitated fraction after chymotrypsin hydrolysis of B. mori silk fibroin with the silk I and silk II forms were measured to determine the 15N chemical shifts of Gly, Ala, and Ser residues. For comparison, 15N CP/MAS nmr chemical shifts of Ala were measured for [15N] Ala Philosamia cynthia ricini silk fibroin with antiparallel β-sheet and α-helix forms. The 13C CP/MAS nmr chemical shifts of Ala, Ser, and Gly residues of B. mori silk fibroin with the silk I and silk II forms, as well as 13C CP/MAS nmr chemical shifts of Ala residue of P. c. ricini silk fibroin with β-sheet and α-helix forms, are used for the examination of the silk I structure. Both silk I and α-helix peaks are shifted to a lower field than silk II (β-sheet) for the Cα carbons of the Ala residues, while both Cβ carbon peaks are shifted to higher field. However, the silk I peak of the 15N nucleus of the Ala residue is shifted to lower field than the silk II peak, but the α-helix peak is shifted to high field. Thus, the difference in the structure between the silk I and α-helix is reflected in a different manner between the 13C and 15N chemical shifts. The Cα and Cβ chemical shift contour plots for Ala and Ser residues, and the Cα plot for the Gly residue, were prepared from the Protein Data Bank data obtained for 12 proteins and used for discussing the silk I structure quantitatively from the conformation-dependent chemical shifts. The plots reported by Le and Oldfield for 15N chemical shifts were also used for the purpose. All these chemical shift data support Fossey's model (Ala: ϕ = −80°, φ = 150°, Gly: ϕ = −150°, φ = 80°) and do not support Lotz and Keith's model (Ala: ϕ = −104.6°, φ = 112.2°, Gly: ϕ = 79.8°, φ = 49.7° or Ala: ϕ = −124.5°, φ = 88.2°, Gly: ϕ = −49.8°, φ = −76.1°) as the silk I structure. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
The 13C chemical shifts and spin-lattice relaxation times are reported for cyclo(L -Pro-L -Leu) and cyclo(L -Pro-D -Leu). The chemical shifts of the D and L leucyl residues in the cyclic peptides differ from each other by 1.8 and 3.6 parts per million for the α and β carbons, respectively. The α-carbons of the prolyl residues differ by 1.0 ppm as a consequence of proximity to a D or an L leucyl residue. The 13C spin-lattic relaxation time(T1) of the prolyl residues, but not the leucyl residues, in both compounds are indicative of difference in conformational equilibria within the pyrrolidine ring in the L -L isomer as compared to the L -D isomer. Anisotropic overall molecular reorientation is not responsible for the differences observed in the T1 values. The differences in T1 values and chemical shifts between cyclo(L -Pro-L -Leu) and cyclo(L -Pro-D -Leu) appear to result from a difference in conformations of the two diketopiperazine rings.  相似文献   

13.
Stomachs from 511 Raja velezi and 340 Mustelus henlei captured as by‐catch in the commercial trawling fishery (2010–2012) were analysed to examine diet composition, ontogenetic shifts and degree of dietary overlap between species life stages in the Pacific Ocean of Costa Rica. Shrimps were the most important prey categories in the diet of R. velezi, while teleosts and cephalopods dominated the diet of M. henlei. Diet comparisons between different stages of R. velezi and M. henlei revealed clear ontogenetic dietary shifts: crustaceans (mainly shrimps, crabs and stomatopods) dominated the diet of immature individuals, and adults had a higher proportion of teleosts. The results suggest that R. velezi is an epibenthic predator that specializes in shrimps during early life stages, and to a lesser extent, teleosts as it matures, while M. henlei is an opportunistic predator with a highly diverse diet consisting of teleosts, cephalopods, shrimps and stomatopods. This study also found little evidence of dietary overlap between species or life stages and suggests that intra‐ and interspecific competition between R. velezi and M. henlei may be reduced by: (1) diet specialization in immature stages of R. velezi, (2) ontogenetic dietary shifts between immature and mature individuals, (3) prey‐size selectivity in larger individuals of R. velezi and (4) differences in depth utilization in overlapping geographical regions.  相似文献   

14.
The “Bergen Shift Work Sleep Questionnaire” (BSWSQ) was developed to systematically assess discrete sleep problems related to different work shifts (day, evening, night shifts) and rest days. In this study, we assessed the psychometric properties of the BSWSQ using a sample of 760 nurses, all working in a three-shift rotation schedule: day, evening, and night shifts. BSWSQ measures insomnia symptoms using seven questions: >30-min sleep onset latency, >30-min wake after sleep onset, >30-min premature awakenings, nonrestorative sleep, being tired/sleepy at work, during free time on work days, and when not working/on vacation. Symptoms are assessed separately for each work shift and rest days, as “never,” “rarely,” “sometimes,” “often,” “always,” or “not applicable.” We investigated the BSWSQ model fit, reliability (test-retest of a subsample, n?=?234), and convergent and discriminant validity between the BSWSQ and Epworth Sleepiness Scale, Fatigue Questionnaire, and Hospital Anxiety Depression Scale. We also investigated differences in mean scores between the different insomnia symptoms with respect to different work shifts and rest days. BSWSQ demonstrated an adequate model fit using structural equation modeling: root mean square error of approximation?=?.071 (90% confidence interval [CI]?=?.066–.076), comparative fit index?=?.91, and chi-square/degrees of freedom?=?4.41. The BSWSQ demonstrated good reliability (test-retest coefficients p?<?.001). We found good convergent and discriminant validity between BSWSQ and the other scales (all coefficients p?<?.001). There were significant differences between the overall/composite scores of the various work shifts. Night shift showed the highest score compared to day and evening shifts as well as to rest days (all post hoc comparisons p?<?.001). Mean scores of different symptoms also varied significantly within the individual work shifts. We conclude that the BSWSQ meets the necessary psychometric standards, enabling systematic study of discrete insomnia symptoms in different work shifts. (Author correspondence: )  相似文献   

15.
There exists extensive variation in eye size. Much work has provided a connection between light availability and differences in eye size across taxa. Experimental tests of the role of the light environment on the evolution of eye size are lacking. Here, we performed a selection experiment that examined the influence of light availability on shifts in eye size and the connection between eye size and phototactic (anti-predator) behaviour in Daphnia. We set-up replicate experimental populations of Daphnia, repeatedly evaluated phenotypic shifts in eye size during the ~50-day experiment, and performed a common garden experiment at the end of the experiment to test for evolutionary shifts in eye size and behaviour. Our phenotypic analyses showed that eye size rapidly diverged between the light treatments; relative eye size was consistently larger in the low versus high light treatments. Selection on eye size was also modified by variation in density as increases in Daphnia density favoured a larger eye. However, we did not observe differences in eye size between the light treatments following two generations of common garden rearing at the end of the experiment. We instead observed strong shifts in anti-predator behaviour. Daphnia from the low light treatment exhibited decreased phototactic responses to light. Our results show that decreased light relaxes selection on anti-predator behaviour. Such trends provide new insights into selection on eye size and behaviour.  相似文献   

16.
Summary As a prelude to complete structure calculations of both the oxidized and reduced forms of Escherchia coli thioredoxin (Mr 11 700), we have analyzed the NMR data obtained for the two proteins under identical conditions. The complete aliphatic 13C assignments for both oxidized and reduced thioredoxin are reported. Correlations previously noted between 13C chemical shifts and secondary structure are confirmed in this work, and significant differences are observed in the C and C shifts between cis- and trans-proline, consistent with previous work that identifies this as a simple and unambiguous method of identifying cis-proline residues in proteins. Reduction of the disulfide bond in the active-site Cys32-Gly-Pro-Cys35 sequence causes changes in the 1H, 15N and 13C chemical shifts of residues close to the active site, some of them quite far distant in the amino acid sequence. Coupling constants, both backbone and side chain, show some differences between the two proteins, and the NOE connectivities and chemical shifts are consistent with small changes in the positions of several side chains, including the two tryptophan rings (Trp28 and Trp31). These results show that, consistent with the biochemical behavior of thioredoxin, there are minimal differences in backbone configuration between the oxidized and reduced forms of the protein.  相似文献   

17.
Range shifts can rapidly create new areas of geographic overlap between formerly allopatric taxa and evidence is accumulating that this can affect species persistence. We review the emerging literature on the short‐ and long‐term consequences of these geographic range shifts. Specifically, we focus on the evolutionary consequences of novel species interactions in newly created sympatric areas by describing the potential (i) short‐term processes acting on reproductive barriers between species and (ii) long‐term consequences of range shifts on the stability of hybrid zones, introgression and ultimately speciation and extinction rates. Subsequently, we (iii) review the empirical literature on insects to evaluate which processes have been studied, and (iv) outline some areas that deserve increased attention in the future, namely the genomics of hybridisation and introgression, our ability to forecast range shifts and the impending threat from insect vectors and pests on biodiversity, human health and crop production. Our review shows that species interactions in de novo sympatric areas can be manifold, sometimes increasing and sometimes decreasing species diversity. A key issue that emerges is that climate‐induced hybridisations in insects are much more widespread than anticipated and that rising temperatures and increased anthropogenic disturbances are accelerating the process of species mixing. The existing evidence only shows the tip of the iceberg and we are likely to see many more cases of species mixing following range shifts in the near future.  相似文献   

18.
Aim Ecosystem engineering polychaetes in the genus Diopatra are undergoing range shifts in western Europe. Here we: (1) assess the species diversity underlying these shifts; (2) link biogeographic patterns to sea surface temperature patterns; and (3) predict possible ecosystem‐level outcomes of Diopatra's northward expansion. Location Western Europe. Methods We use molecular phylogenetic and morphological evidence to assess species diversity and biogeographic ranges. Using regression tree analyses, we assess thermal limits for two Diopatra species. We compare biogeographic patterns with historical sea surface temperature patterns to draw links between range shifts and climate change. Finally, we review published data to predict potential ecological changes as Diopatra invades new habitats. Results The native Diopatra neapolitana range has contracted 130 km to the south. A cryptogenic species, Diopatra sp. A, has extended the northern limit of the genus 350 km to the southern Brittany Peninsula. Both shifts can be explained by historical sea surface temperature anomalies. The Diopatra sp. A expansion is predicted to continue into the English Channel and the North Sea, introducing large tube structures to sheltered sedimentary habitats that currently lack such structures. Main conclusions As climate change intensifies, the sediment‐stabilizing Diopatra sp. A will invade habitats dominated by the bioturbating lugworm Arenicola marina. The resulting interaction between functionally different ecosystem engineers will probably cause ecological changes in northern European coastal waters. Existing data for Diopatra species and arenicolids suggest that the diversity and biomass of macroalgae, vascular plants, infauna and epibenthic fauna may increase, while microbial activity may decrease. Net changes in productivity will depend on the relative rates of these changes.  相似文献   

19.
We recently reported a theoretical characterization of representative ensembles of statistical-coil conformations for tetrapeptides with unblocked termini in aqueous solution, at pH 7. The results showed good agreement between the computed Boltzmann-averaged and experimentally-determined values for both the vicinal coupling constants 3JNH and the -proton chemical shifts. Here, we carry out a cluster analysis of the ensembles of conformations generated in that study, and use them to compute the Boltzmann-averaged values of the quantum-chemical 13C chemical shifts for different amino acids in the unblocked tetrapeptides GGXA (where X stands for Phe, Arg, His, Glu, Ile, Lys, Gln, Tyr, Leu, Thr, Ala, Gly and Val). The values of the 13C chemical shifts in these thirteen amino acids (for which experimental data are available) were computed by using Density Functional Theory with a 6–311+G(2d,p) basis set. Good agreement is found in terms of both the correlation coefficient (R) and standard deviations of the difference between the computed Bolztmann-averaged and the NMR-determined values for the 13C chemical shifts. These results suggest that it may be possible to build a reliable theoretically-derived database of chemical shifts for statistical-coil residues. The results of the current study contribute to our understanding of the relations between chemical shifts, dihedral angles and vicinal coupling constants, 3JNH. In addition, they can shed light as to how the statistical-coilconformation is related to the conformational preference of more structured states, such as the -helical conformation.  相似文献   

20.
Predictions of species responses to climate change often focus on distribution shifts, although responses can also include shifts in body sizes and population demographics. Here, shifts in the distributional ranges (‘climate space’), body sizes (as maximum theoretical body sizes, L∞) and growth rates (as rate at which L∞ is reached, K) were predicted for five fishes of the Cyprinidae family in a temperate region over eight climate change projections. Great Britain was the model area, and the model species were Rutilus rutilus, Leuciscus leuciscus, Squalius cephalus, Gobio gobio and Abramis brama. Ensemble models predicted that the species' climate spaces would shift in all modelled projections, with the most drastic changes occurring under high emissions; all range centroids shifted in a north‐westerly direction. Predicted climate space expanded for R. rutilus and A. brama, contracted for S. cephalus, and for L. leuciscus and G. gobio, expanded under low‐emission scenarios but contracted under high emissions, suggesting the presence of some climate‐distribution thresholds. For R. rutilus, A. brama, S. cephalus and G. gobio, shifts in their climate space were coupled with predicted shifts to significantly smaller maximum body sizes and/or faster growth rates, aligning strongly to aspects of temperature‐body size theory. These predicted shifts in L∞ and K had considerable consequences for size‐at‐age per species, suggesting substantial alterations in population age structures and abundances. Thus, when predicting climate change outcomes for species, outputs that couple shifts in climate space with altered body sizes and growth rates provide considerable insights into the population and community consequences, especially for species that cannot easily track their thermal niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号