共查询到20条相似文献,搜索用时 27 毫秒
1.
The relationship between niche and distribution, and especially the role of biotic interactions in shaping species' geographic distributions, has gained increasing interest in the last two decades. Most ecological research has focused on negative species interactions, especially competition, predation and parasitism. Yet the relevance of positive interactions – mutualisms and commensalisms – have been brought to the fore in recent years by an increasing number of empirical studies exploring their impact on range limits. Based on a review of 73 studies from a Web of Science search, we found strong evidence that positive interactions can influence the extent of species' geographic or ecological ranges through a diversity of mechanisms. More specifically, we found that while obligate interactions, and especially obligate mutualisms, tend to constrain the ranges of one or both partners, facultative positive interactions tend to widen ranges. Nonetheless, there was more variation in effects of facultative interactions on range limits, pointing to important context-dependencies. Therefore, we propose that conceptual development in this field will come from studying ecological interactions in the context of networks of many species across environmental gradients, since pairwise interactions alone might overlook the indirect and environmentally-contingent effects that species have on each other in communities of many interacting species. Finally, our study also revealed key data gaps that limit our current understanding of the pervasiveness of effects that positive interactions have on species' ranges, highlighting potential avenues for future theoretical and experimental work. 相似文献
2.
The effects of turbidity, size and the presence of conspecifics on the functional response, feeding latency and activity in the three-spined stickleback Gasterosteus aculeatus were examined. A significant interaction between standard length and presence of conspecifics demonstrated an increase in attack rates of larger individuals in the presence of conspecifics. Attack rate was also higher in turbid water. Feeding latency decreased with prey concentration and presence of conspecifics, but was not affected by turbidity. Activity level did not change with prey levels, but increased with turbidity. These results can help to better understand how individual flexibility in the functional response can affect prey mortality according to environmental perturbation and social interaction at the level of the predator. 相似文献
3.
A population of African tigerfish Hydrocynus vittatus from the Schroda Dam, actively prey on barn swallows Hirundo rustica in flight. This behaviour was discovered during a radio telemetry study and documented using a motion picture video camera. These results show that an avivorous diet is a part of the feeding biology of H. vittatus, and may occur in other populations. 相似文献
4.
Christopher J. Lortie Eva Gruber Alex Filazzola Taylor Noble Michael Westphal 《Ecology and evolution》2018,8(1):706-715
Deserts are increasing in extent globally, but existing deserts are decreasing in health. The basic biology and ecology of foundation plant species in deserts are limited. This is a direct study that provides an estimate of the capacity for a locally dominant foundation shrub species in California to recover from damage. Desert shrubs are cleared and damaged by humans for many purposes including agriculture, oil and gas production, and sustainable energy developments; we need to know whether foundation species consistently facilitate the abundance and diversity of other plants in high‐stress ecosystems and whether they can recover. A total of 20 Ephedra californica shrubs were clipped to the ground at a single site and systematically resampled for regrowth 2 years later. These shrubs were damaged once and regrew rapidly, and relatively, larger shrubs were not more resilient. This study provides evidence for what we termed the “Groot Effect” because smaller individuals of this shrub species can recover from significant aboveground damage and continue to have positive effects on other plant species (similar to the popular culture reference to a benefactor tree species). The density of other plant species was consistently facilitated while effects on diversity varied with season. These findings confirm that E. californica is a foundation species that can be an important restoration tool within the deserts of California in spite of extreme cycles of drought and physical damage to its canopy. 相似文献
5.
The vast majority of interspecific interactions are competitive or exploitative. Yet, some positive interspecies interactions exist, where one (commensalism) or both (mutualism) species benefit. One such interaction is cleaning mutualisms, whereby a cleaner removes parasites from a client. In this note, we document the novel observation of a black‐cheeked waxbill (Brunhilda charmosyna) appearing to clean a Kirk''s dik‐dik (Madoqua kirkii), at the Mpala Research Centre in Laikipia County, Kenya. The purported cleaning took place for over one minute and is notable firstly for the dik‐dik remaining still for the duration of cleaning and secondly for involving two species that are much smaller than those traditionally involved in bird–mammal cleaning interactions. Unfortunately, no further cleaning events were subsequently observed, raising questions about whether this record was opportunistic or a regular occurrence. Future observations may reveal whether this behavior is widespread and whether it involves other small passerines. 相似文献
6.
Tatiane R. Arnhold Jerry Penha Brandon K. Peoples Lúcia A. F. Mateus 《Freshwater Biology》2019,64(5):1029-1039
- Understanding the relative importance of abiotic factors and biotic interactions in determining species co‐occurrence is a fundamental goal in ecology. Most studies of ecology of freshwater fishes have focused on negative biotic interactions (competition and predation), and much less is known about more positive interactions. The goal of this study was to quantify the relative importance of habitat features and biotic interactions (positive and negative) on co‐occurrence of three pairs of feeding‐associative Leporinus (L.) fishes in rivers of central Brazil (L. friderici–L. octomaculatus, L. striatus–L. octomaculatus, L. friderici–L. striatus).
- We sampled 146 sites on two rivers of central Brazil and used two‐species occupancy models to examine the relative importance of habitat features and commensalistic feeding association for determining co‐occurrence of the three species pairs. Using an information–theoretic framework, we compared weight‐of‐evidence for models containing effects of habitat covariates only, biotic interactions only, and their combination.
- Model evidence supported the hypothesis that feeding activity of L. friderici facilitates occurrence of L. octomaculatus and that the interaction is mediated by habitat covariates. In contrast, most evidence suggested that occurrence of L. striatus is independent of L. friderici, and is instead determined entirely by habitat features. Evidence for facilitation of L. octomaculatus by L. striatus was mixed—there is evidence supporting the habitat‐only hypothesis as well as habitat‐mediated facilitation.
- Our results suggest that positive interactions can affect co‐occurrence among freshwater fishes, at least for species that interact strongly. More facultative interactions, such as those between L. friderici and L. striatus, may be less important, at least in certain abiotic contexts. This study indicates that biotic interactions between species of freshwater fish can be evident beyond the microhabitat scale to positively influence species co‐occurrence and adds to evidence from other groups of freshwater organisms indicating the importance of biotic interactions in facilitating species co‐occurrence.
7.
Colette Rivault 《Biological Rhythm Research》2013,44(4):301-313
Abstract Social stimulation is not usually considered to be a circadian synchronizer of activity in insects. We investigated whether it could have any effect on synchronization and resetting capacity in insects with cauterized eyes. Direct continuous observations were carried out in groups of Periplaneta americana composed of two operated animals and eight controls. When night fell at the same time as before surgery, sexual and locomotor activity of operated animals remained synchronized with the activity of control animals. But when nightfall was postponed by 6 h, operated animals were unable to lengthen the activity peak, as long as the activity threshold stayed at its minimum level. Social stimulation resulted in modifications of and interactions with the temporal activity distribution within the threshold limits, but was unable to reset the circadian clock; so it may be questioned whether it should be regarded as a circadian synchronizer in a strict sense. Circadian rhythm of food intake disappeared in operated animals; this unstable character which has already been mentioned by other authors, even in intact animals, is discussed. 相似文献
8.
To determine whether the choice of client fishes in the cleaner fish Labroides dimidiatus was influenced by client size, cleaner fish were given a choice of equal amount of food spread on large and small client redfin butterflyfish Chaetodon trifasciatus models. All large models received bites from cleaners compared to 27% for small models. Seventy‐nine per cent of cleaners took their first bite from the large fish model. The results suggest that client size may affect cleaner fish choice. 相似文献
9.
The evolution of facilitation and mutualism 总被引:1,自引:1,他引:0
Judith L. Bronstein 《Journal of Ecology》2009,97(6):1160-1170
10.
作者采用行为学方法测定了伏击型凶猛鱼类鳜鱼视觉对猎物运动和形状特征的反应特性.鳜鱼对3种不同体形饵料鱼有最强的跟踪反应和攻击反应,对虾则有较强的跟踪反应而几乎没有攻击反应,对蜻蜒幼虫仅有不强的跟踪反应而完全没有攻击反应.它对低速(v≤5cm/s)一连续和等间歇不连续运动的饵料鱼有较强的跟踪反应和攻击反应,对中速和高速(v≥10cm/s)连续运动的饵料鱼有最强的跟踪反应而几乎没有或完全没有攻击反应,对中速和高速等间歇不连续运动的饵料鱼则有最强的跟踪反应和最强的攻击反应.它对不连续运动的a、b、c、d、e、f6种形状均有跟踪反应,但近距离跟踪反应的强度与形状特征有关系,对不连续运动的b、c、d3种形状完全没有攻击反应,而对不连续运动的a、e、f3种形状则有依次增强的攻击反应.鳜鱼视觉可对猎物运动进行远距离的识别,并决定其对猎物的远距离跟踪反应.且其视觉仅能对猎物的大致形状进行近距离识别,并决定其对猎物的近距离跟踪反应和攻击反应. 相似文献
11.
Marco A. Molina-Montenegro R mulo Oses Ian S. Acu a-Rodrí guez Cristian Fardella Ernesto I. Badano Patricio Torres-Morales Jorge Gallardo-Cerda Cristian Torres-Dí az 《Journal of Plant Ecology》2016,9(2):117
Aims Positive interactions are defined as non-trophic interactions where at least one of the interacting species is benefited in terms of fitness and the other remains unaffected. Nevertheless, the bidirectional feedbacks between species may be positive, neutral or negative. Thus, if facilitated species induce negative effects on their 'nurses', the assumed definition of positive interactions could be reconsidered.Methods We assessed if ecological interactions between cushions of Azorella madreporica and their facilitated species are positive. Specifically, we tested if cover of facilitated species has any costs for cushion plants from an ecophysiological perspective, and if these costs increase with the amount of cover of facilitated species. In addition, through pathway analysis and correlations, we assessed if cover and richness of facilitated species have a direct and/or indirect effect on the fitness of cushion plants.Important findings We found that facilitated plant species induced a significant cost for their nurses (cushion plants), and this cost increases with cover of the facilitated species. Additionally, the facilitated species exert a strong direct negative effect on the cushion's fitness and a moderate indirect negative cost evident through the nutrient status and physiological performance of cushion plants. We thus contribute evidence that positive interactions between high mountain cushion plants of central Chile and their 'facilitated' species may be an artifact more than a fact, especially when bidirectional effects are considered; contrasting with the majority of studies that document only one side of the interaction. 相似文献
12.
S.W.J. de Santana J.B. Torres M.G.C. Gondim Jr & R. Barros 《The Annals of applied biology》2009,155(2):277-284
The coconut mite, Aceria guerreronis (Acari: Eriophyidae) and the coconut moth, Atheloca subrufella (Lepidoptera: Phycitidae), exploit the same habitat—meristematic region underneath the coconut fruit perianth. The coconut fruit perianth, however, is a tight structure allowing free colonisation of the meristematic region of the fruit only by small arthropods such as the eriophyid and tarsonemid mites. Fruits infested by the mites develop different levels of necrosis around the perianth providing access to colonising larvae of the coconut moth, which bore the fruit under the perianth resulting in fruit abortion. Based on field observations, we hypothesise that A. subrufella will colonise coconut fruits only if they exhibit damage on the perianth such as the necrosis caused by the coconut mite. Fruits with and without necrosis were collected from different production areas located in three different states along the Brazilian Atlantic coast and inspected for infestation with coconut moth larvae. In the laboratory, coconut fruits with and without necrosis were offered to moths for oviposition preference and tested for colonisation by neonate and third instar larvae. The results showed that the moths showed no preference for fruits with or without necrosis for oviposition and, hence, neonate larvae have to go under the perianth bract to reach the meristematic region of the fruit. However, neonate larvae were unable to colonise fruits without necrosis (0%) compared to 23% and 60% of fruit colonisation success when exhibiting mite necrosis or mechanical damage, respectively. Similar results were found with respect to older coconut moth larvae. Thus, the data support the hypothesis that the indirect interaction through previous fruit colonisation and necrosis caused by the coconut mite allows the larvae of A. subrufella to be a key pest of coconut fruits. 相似文献
13.
14.
15.
A review of planktivorous fishes: Their evolution,feeding behaviours,selectivities, and impacts 总被引:18,自引:20,他引:18
Xavier Lazzaro 《Hydrobiologia》1987,146(2):97-167
The classical approach of limnologists has been to consider the interactions between lake ecosystem components as an unidirectional flow of influence from nutrients to the phytoplankton, to the zooplankton, and finally to the fish, through successive controls by physical, chemical, and biological processes (Strakraba, 1967). The effect of planktivorous fishes on zooplankton and phytoplankton communities was not recognized until the studies of Hrbáek et al. (1961), Hrbáek (1962), Brooks & Dodson (1965) and Strakraba (1965). They showed that (1) in ponds and lakes in the presence of planktivorous fishes the zooplankton communities were composed of smaller bodied species than in those lacking planktivores, and (2) the resulting small-bodied zooplankton communities affected the phytoplankton communities. Although the variability of the phytoplankton response to fish predation showed the importance of other factors (such as nutrient limitation and interspecific competition of algae), these studies emphasized that zooplankton and phytoplankton communities can be affected by the feeding selectivity of planktivorous fishes. During the last two decades, many limnological studies have focused on this dramatic impact of fish on plankton communities. The direct response of zooplankton communities to visual fish predation (i.e. particulate feeding) has been of major interest, whereas the multilevel effects of filter-feeding fish (predation on zooplankton plus grazing on phytoplankton) have been neglected. The objectives of this review are to document fish-plankton interrelationships in order to (1) provide insights into the impact of fish on plankton communities, and (2) outline mechanistic models of planktivory according to the feeding repertory and the selectivity of the fish, the adaptive responses of the plankton, and the environmental conditions.The approach adopted here is based on field and laboratory experimental results derived from the literature on tropical and temperate freshwater (occasionally marine) systems. Four types of planktivorous fish are distinguished: the gape-limited larvae and small fish species, the particulate feeders, the pump filter feeders, and the tow-net filter feeders. For each type of planktivore, the mechanisms of prey selection are analyzed from the point of view of both the predator and the prey. To investigate the main determinants of the predator feeding selectivity, and to discuss its potential effects on prey communities, the predation-act is divided into a sequence of successive events (Holling, 1966): detection, pursuit, capture, retention, and digestion for particulate feeders; and capture, retention, and digestion for filter feeders. The strengths and weaknesses of various measures of selectivity (i.e. electivity indices), as well as their appropriate usages are considered. Available prey selection models and optimal foraging theories are analyzed for the different planktivore feeding modes. Mechanistic models based on Holling's (loc. cit.) approach are proposed for each feeding mode to determine differential prey vulnerabilities and optimal diet breadth.This review has application to several fields, including general ecology, limnology, fisheries management (for example, utilization of planktonic resources, stocking, introduction, or maintenance of natural fish populations), and biological control of the eutrophication processes (biomanipulation approaches). It emphasizes the real need for more knowledge of the feeding selectivity and food utilization of planktivores. It concludes that predator and prey are mutually adapted. Thus, in most cases, study of plankton dynamics and water quality should include the assessment of fish predation and grazing pressures. 相似文献
16.
Human gut microbiome is a diversified, resilient, immuno-stabilized, metabolically active and physiologically essential component of the human body. Scientific explorations have been made to seek in-depth information about human gut microbiome establishment, microbiome functioning, microbiome succession, factors influencing microbial community dynamics and the role of gut microbiome in health and diseases. Extensive investigations have proposed the microbiome therapeutics as a futuristic medicine for various physiological and metabolic disorders. A comprehensive outlook of microbial colonization, host–microbe interactions, microbial adaptation, commensal selection and immuno-survivability is still required to catalogue the essential genetic and physiological features for the commensal engagement. Evolution of a structured human gut microbiome relies on the microbial flexibility towards genetic, immunological and physiological adaptation in the human gut. Key features for commensalism could be utilized in developing tailor-made microbiome-based therapy to overcome various physiological and metabolic disorders. This review describes the key genetics and physiological traits required for host–microbe interaction and successful commensalism to institute a human gut microbiome. 相似文献
17.
Positive Interactions: Crucial Organizers in a Plant Community 总被引:4,自引:0,他引:4
Dong-Liang Cheng Gen-Xuan Wang Bao-Ming Chen Xiao-Ping Wei 《植物学报(英文版)》2006,48(2):128-136
For more than a century, ecologists have concentrated on competition as a crucial process for community organization. However, more recent experimental investigations have uncovered the striking Influence of positive Interactions on the organization of plant communities. Complex combinations of competition and positive interactions operating simultaneously among plant species seem to be widespread In nature. In the present paper, we reviewed the mechanism and ecological importance of positive Interactions In plant communities, emphasizing the certainties and uncertainties that have made It an attractive area of research. Positive Interactions, or facilitation, occur when one species enhances the survival, growth, or richness of another. The Importance of facilitation in plant organization increases with ablotlc stress and the relative Importance of competition decreases. Only by combining plant interactions and the many fields of biology can we fully understand how and when the positive Interactions occur. 相似文献
18.
During this study (December 2009 to December 2010), underwater visual surveys using the focal animal method were performed in the coastal reefs of Tamandaré, north‐eastern Brazil. The aim was to analyse the effects of the life phase (juvenile and adult) and schooling patterns (school and solitary) on the feeding behaviour (foraging rates and substratum preferences) of four species of the genus Haemulon (Haemulon aurolineatum, Haemulon parra, Haemulon plumieri and Haemulon squamipinna). PERMANOVA analysis (P < 0·05) indicated that ontogenetic changes and schooling patterns directly influence foraging behaviour. Schooling individuals had low foraging rates (mean ± s.d . = 2·3 ± 2·1 bites 10 min?1) and mobility, usually remaining near the bottom; however, solitary fishes had high foraging rates (mean ± s.d . = 12·5 ± 4·6 bites 10 min?1). Juveniles preferred feeding in the water column (75% of the total number of bites), whereas adults foraged mainly in sand (80%) and bare rock (20%). All four Haemulon species displayed similar patterns of feeding behaviour as well as preferences for foraging sites and display competition for food resources. In contrast, little is known about their habitat use and foraging behaviour over the diel cycle, particularly the newly settled and early juvenile stages. 相似文献
19.
1. Intraspecific competition for restricted food resources is considered to play a fundamental part in density dependence of somatic growth and other population characteristics, but studies simultaneously addressing the interrelationships between population density, food acquisition and somatic growth have been missing. 2. We explored the food consumption and individual growth rates of Arctic charr Salvelinus alpinus in a long-term survey following a large-scale density manipulation experiment in a subarctic lake. 3. Prior to the initiation of the experiment, the population density was high and the somatic growth rates low, revealing a severely overcrowded and stunted fish population. 4. During the 6-year period of stock depletion the population density of Arctic charr was reduced with about 75%, resulting in an almost twofold increase in food consumption rates and enhanced individual growth rates of the fish. 5. Over the decade following the density manipulation experiment, the population density gradually rose to intermediate levels, accompanied by corresponding reductions in food consumption and somatic growth rates. 6. The study revealed negative relationships with population density for both food consumption and individual growth rates, reflecting a strong positive correlation between quantitative food intake and somatic growth rates. 7. Both the growth and consumption rate relationships with population density were well described by negative power curves, suggesting that large density perturbations are necessary to induce improved feeding conditions and growth rates in stunted fish populations. 8. The findings demonstrate that quantitative food consumption represents the connective link between population density and individual growth rates, apparently being highly influenced by intraspecific competition for limited resources. 相似文献
20.
Warren Burggren Renato Filogonio Tobias Wang 《Biological reviews of the Cambridge Philosophical Society》2020,95(2):449-471
This review explores the long‐standing question: ‘Why do cardiovascular shunts occur?’ An historical perspective is provided on previous research into cardiac shunts in vertebrates that continues to shape current views. Cardiac shunts and when they occur is then described for vertebrates. Nearly 20 different functional reasons have been proposed as specific causes of shunts, ranging from energy conservation to improved gas exchange, and including a plethora of functions related to thermoregulation, digestion and haemodynamics. It has even been suggested that shunts are merely an evolutionary or developmental relic. Having considered the various hypotheses involving cardiovascular shunting in vertebrates, this review then takes a non‐traditional approach. Rather than attempting to identify the single ‘correct’ reason for the occurrence of shunts, we advance a more holistic, integrative approach that embraces multiple, non‐exclusive suites of proposed causes for shunts, and indicates how these varied functions might at least co‐exist, if not actually support each other as shunts serve multiple, concurrent physiological functions. It is argued that deposing the ‘monolithic’ view of shunting leads to a more nuanced view of vertebrate cardiovascular systems. This review concludes by suggesting new paradigms for testing the function(s) of shunts, including experimentally placing organ systems into conflict in terms of their perfusion needs, reducing sources of variation in physiological experiments, measuring possible compensatory responses to shunt ablation, moving experiments from the laboratory to the field, and using cladistics‐related approaches in the choice of experimental animals. 相似文献