首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many natural populations, hosts are found to be infected by more than one parasite species. When these parasites have different host exploitation strategies and transmission modes, a conflict among them may arise. Such a conflict may reduce the success of both parasites, but could work to the benefit of the host. For example, the less‐virulent parasite may protect the host against the more‐virulent competitor. We examine this conflict using the waterflea Daphnia magna and two of its sympatric parasites: the blood‐infecting bacterium Pasteuria ramosa that transmits horizontally and the intracellular microsporidium Octosporea bayeri that can concurrently transmit horizontally and vertically after infecting ovaries and fat tissues of the host. We quantified host and parasite fitness after exposing Daphnia to one or both parasites, both simultaneously and sequentially. Under conditions of strict horizontal transmission, Pasteuria competitively excluded Octosporea in both simultaneous and sequential double infections, regardless of the order of exposure. Host lifespan, host reproduction and parasite spore production in double infections resembled those of single infection by Pasteuria. When hosts became first vertically (transovarilly) infected with O. bayeri, Octosporea was able to withstand competition with P. ramosa to some degree, but both parasites produced less transmission stages than they did in single infections. At the same time, the host suffered from reduced fecundity and longevity. Our study demonstrates that even when competing parasite species utilize different host tissues to proliferate, double infections lead to the expression of higher virulence and ultimately may select for higher virulence. Furthermore, we found no evidence that the less‐virulent and vertically transmitting O. bayeri protects its host against the highly virulent P. ramosa.  相似文献   

2.
    
Multiple infections of a host by different strains of the same microparasite are common in nature. Although numerous models have been developed in an attempt to predict the evolutionary effects of intrahost competition, tests of the assumptions of these models are rare and the outcome is diverse. In the present study we examined the outcome of mixed-isolate infections in individual hosts, using a single clone of the waterflea Daphnia magna and three isolates of its semelparous endoparasite Pasteuria ramosa . We exposed individual Daphnia to single- and mixed-isolate infection treatments, both simultaneously and sequentially. Virulence was assessed by monitoring host mortality and fecundity, and parasite spore production was used as a measure of parasite fitness. Consistent with most assumptions, in multiply infected hosts we found that the virulence of mixed infections resembled that of the more virulent competitor, both in simultaneous multiple infections and in sequential multiple infections in which the virulent isolate was first to infect. The more virulent competitor also produced the vast majority of transmission stages. Only when the less virulent isolate was first to infect, the intrahost contest resembled scramble competition, whereby both isolates suffered by producing fewer transmission stages. Surprisingly, mixed-isolate infections resulted in lower fecundity-costs for the hosts, suggesting that parasite competition comes with an advantage for the host relative to single infections. Finally, spore production correlated positively with time-to-host-death. Thus, early-killing of more competitive isolates produces less transmission stages than less virulent, inferior isolates. Our results are consistent with the idea that less virulent parasite lines may be replaced by more virulent strains under conditions with high rates of multiple infections.  相似文献   

3.
    
The degree of specificity in host-parasite interactions has important implications for ecology and evolution. Unfortunately, specificity can be difficult to determine when parasites cannot be cultured. In such cases, studies often use isolates of unknown genetic composition, which may lead to an underestimation of specificity. We obtained the first clones of the unculturable bacterium Pasteuria ramosa, a parasite of Daphnia magna. Clonal genotypes of the parasite exhibited much more specific interactions with host genotypes than previous studies using isolates. Clones of P. ramosa infected fewer D. magna genotypes than isolates and host clones were either fully susceptible or fully resistant to the parasite. Our finding enhances our understanding of the evolution of virulence and coevolutionary dynamics in this system. We recommend caution when using P. ramosa isolates as the presence of multiple genotypes may influence the outcome and interpretation of some experiments.  相似文献   

4.
    
Many infectious diseases display strong seasonal dynamics. When both hosts and parasites are influenced by seasonal variables, it is unclear if the start of an epidemic is limited by host or parasite factors or both. The Daphnia–Pasteuria host–parasite system exhibits seasonal epidemics. We aimed to ascertain how temperature contributes to the timing of P. ramosa epidemics in early spring. To this aim, we experimentally disentangled this effect from the effects of temperature on host development and phenology and from that of host traits on parasite time to visible infection. We hypothesized that the parasite is additionally directly limited by low temperatures beyond its need for available hosts. We found that parasite time to visible infection decreased with increasing temperature at a faster rate than host time to hatching and maturity did, consistent with this hypothesis. We also found that hosts hatched from sexual resting stages are less likely to become infected than those produced clonally, and that hosts resistant to many known parasite strains are slower to show signs of visible infection compared to those susceptible to many. Together, these results imply that climate change could lead to earlier seasonal epidemics for this host–parasite system, which may also impact longer-term population dynamics.  相似文献   

5.
    
A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges.  相似文献   

6.
    
In invertebrate–parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host–parasite system with a well‐established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host–parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity.  相似文献   

7.
    
Although natural populations may evolve resistance to anthropogenic stressors such as pollutants, this evolved resistance may carry costs. Using an experimental evolution approach, we exposed different Daphnia magna populations in outdoor containers to the carbamate pesticide carbaryl and control conditions, and assessed the resulting populations for both their resistance to carbaryl as well as their susceptibility to infection by the widespread bacterial microparasite Pasteuria ramosa. Our results show that carbaryl selection led to rapid evolution of carbaryl resistance with seemingly no cost when assessed in a benign environment. However, carbaryl-resistant populations were more susceptible to parasite infection than control populations. Exposure to both stressors reveals a synergistic effect on sterilization rate by P. ramosa, but this synergism did not evolve under pesticide selection. Assessing costs of rapid adaptive evolution to anthropogenic stress in a semi-natural context may be crucial to avoid too optimistic predictions for the fitness of the evolving populations.  相似文献   

8.
    
Because parasitism is thought to play a major role in shaping host genomes, it has been predicted that genomic regions associated with resistance to parasites should stand out in genome scans, revealing signals of selection above the genomic background. To test whether parasitism is indeed such a major factor in host evolution and to better understand host–parasite interaction at the molecular level, we studied genome‐wide polymorphisms in 97 genotypes of the planktonic crustacean Daphnia magna originating from three localities across Europe. Daphnia magna is known to coevolve with the bacterial pathogen Pasteuria ramosa for which host genotypes (clonal lines) are either resistant or susceptible. Using association mapping, we identified two genomic regions involved in resistance to P. ramosa, one of which was already known from a previous QTL analysis. We then performed a naïve genome scan to test for signatures of positive selection and found that the two regions identified with the association mapping further stood out as outliers. Several other regions with evidence for selection were also found, but no link between these regions and phenotypic variation could be established. Our results are consistent with the hypothesis that parasitism is driving host genome evolution.  相似文献   

9.
    
The link between long-term host–parasite coevolution and genetic diversity is key to understanding genetic epidemiology and the evolution of resistance. The model of Red Queen host–parasite coevolution posits that high genetic diversity is maintained when rare host resistance variants have a selective advantage, which is believed to be the mechanistic basis for the extraordinarily high levels of diversity at disease-related genes such as the major histocompatibility complex in jawed vertebrates and R-genes in plants. The parasites that drive long-term coevolution are, however, often elusive. Here we present evidence for long-term balancing selection at the phenotypic (variation in resistance) and genomic (resistance locus) level in a particular host–parasite system: the planktonic crustacean Daphnia magna and the bacterium Pasteuria ramosa. The host shows widespread polymorphisms for pathogen resistance regardless of geographic distance, even though there is a clear genome-wide pattern of isolation by distance at other sites. In the genomic region of a previously identified resistance supergene, we observed consistent molecular signals of balancing selection, including higher genetic diversity, older coalescence times, and lower differentiation between populations, which set this region apart from the rest of the genome. We propose that specific long-term coevolution by negative-frequency-dependent selection drives this elevated diversity at the host''s resistance loci on an intercontinental scale and provide an example of a direct link between the host’s resistance to a virulent pathogen and the large-scale diversity of its underlying genes.  相似文献   

10.
The maintenance of genetic variation for infection-related traits is often attributed to coevolution between hosts and parasites, but it can also be maintained by environmental variation if the relative fitness of different genotypes changes with environmental variation. To gain insight into how infection-related traits are sensitive to environmental variation, we exposed a single host genotype of the freshwater crustacean Daphnia magna to four parasite isolates (which we assume to represent different genotypes) of its naturally co-occurring parasite Pasteuria ramosa at 15, 20 and 25 degrees C. We found that the cost to the host of becoming infected varied with temperature, but the magnitude of this cost did not depend on the parasite isolate. Temperature influenced parasite fitness traits; we found parasite genotype-by-environment (G x E) interactions for parasite transmission stage production, suggesting the potential for temperature variation to maintain genetic variation in this trait. Finally, we tested for temperature-dependent relationships between host and parasite fitness traits that form a key component of models of virulence evolution, and we found them to be stable across temperatures.  相似文献   

11.
    
A popular theory explaining the maintenance of genetic recombination (sex) is the Red Queen Theory. This theory revolves around the idea that time‐lagged negative frequency‐dependent selection by parasites favors rare host genotypes generated through recombination. Although the Red Queen has been studied for decades, one of its key assumptions has remained unsupported. The signature host‐parasite specificity underlying the Red Queen, where infection depends on a match between host and parasite genotypes, relies on epistasis between linked resistance loci for which no empirical evidence exists. We performed 13 genetic crosses and tested over 7000 Daphnia magna genotypes for resistance to two strains of the bacterial pathogen Pasteuria ramosa. Results reveal the presence of strong epistasis between three closely linked resistance loci. One locus masks the expression of the other two, while these two interact to produce a single resistance phenotype. Changing a single allele on one of these interacting loci can reverse resistance against the tested parasites. Such a genetic mechanism is consistent with host and parasite specificity assumed by the Red Queen Theory. These results thus provide evidence for a fundamental assumption of this theory and provide a genetic basis for understanding the Red Queen dynamics in the Daphnia–Pasteuria system.  相似文献   

12.
The expression of infectious disease is increasingly recognized to be impacted by maternal effects, where the environmental conditions experienced by mothers alter resistance to infection in offspring, independent of heritability. Here, we studied how maternal effects (high or low food availability to mothers) mediated the resistance of the crustacean Daphnia magna to its bacterial parasite Pasteuria ramosa. We sought to disentangle maternal effects from the effects of host genetic background by studying how maternal effects varied across 24 host genotypes sampled from a natural population. Under low‐food conditions, females produced offspring that were relatively resistant, but this maternal effect varied strikingly between host genotypes, i.e. there were genotype by maternal environment interactions. As infection with P. ramosa causes a substantial reduction in host fecundity, this maternal effect had a large effect on host fitness. Maternal effects were also shown to impact parasite fitness, both because they prevented the establishment of the parasites and because even when parasites did establish in the offspring of poorly fed mothers, and they tended to grow more slowly. These effects indicate that food stress in the maternal generation can greatly influence parasite susceptibility and thus perhaps the evolution and coevolution of host–parasite interactions.  相似文献   

13.
    
Parasites are a major evolutionary force, driving adaptive responses in host populations. Although the link between phenotypic response to parasite-mediated natural selection and the underlying genetic architecture often remains obscure, this link is crucial for understanding the evolution of resistance and predicting associated allele frequency changes in the population. To close this gap, we monitored the response to selection during epidemics of a virulent bacterial pathogen, Pasteuria ramosa, in a natural host population of Daphnia magna. Across two epidemics, we observed a strong increase in the proportion of resistant phenotypes as the epidemics progressed. Field and laboratory experiments confirmed that this increase in resistance was caused by selection from the local parasite. Using a genome-wide association study, we built a genetic model in which two genomic regions with dominance and epistasis control resistance polymorphism in the host. We verified this model by selfing host genotypes with different resistance phenotypes and scoring their F1 for segregation of resistance and associated genetic markers. Such epistatic effects with strong fitness consequences in host–parasite coevolution are believed to be crucial in the Red Queen model for the evolution of genetic recombination.  相似文献   

14.
  总被引:6,自引:1,他引:6  
Abstract.— Models of host‐parasite coevolution assume the presence of genetic variation for host resistance and parasite infectivity, as well as genotype‐specific interactions. We used the freshwater crustacean Daphnia magna and its bacterial microparasite Pasteuria ramosa to study genetic variation for host susceptibility and parasite infectivity within each of two populations. We sought to answer the following questions: Do host clones differ in their susceptibility to parasite isolates? Do parasite isolates differ in their ability to infect different host clones? Are there host clone‐parasite isolate interactions? The analysis revealed considerable variation in both host resistance and parasite infectivity. There were significant host clone‐parasite isolate interactions, such that there was no single host clone that was superior to all other clones in the resistance to every parasite isolate. Likewise, there was no parasite isolate that was superior to all other isolates in infectivity to every host clone. This form of host clone‐parasite isolate interaction indicates the potential for coevolution based on frequency‐dependent selection. Infection success of original host clone‐parasite isolate combinations (i.e., those combinations that were isolated together) was significantly higher than infection success of novel host clone‐parasite isolate combinations (i.e., those combinations that were created in the laboratory). This finding is consistent with the idea that parasites track specific host genotypes under natural conditions. In addition, correspondence analysis revealed that some host clones, although distinguishable with neutral genetic markers, were susceptible to the same set of parasite isolates and thus probably shared resistance genes.  相似文献   

15.
    
The majority of organisms host multiple parasite species, each of which can interact with hosts and competitors through a diverse range of direct and indirect mechanisms. These within‐host interactions can directly alter the mortality rate of coinfected hosts and alter the evolution of virulence (parasite‐induced host mortality). Yet we still know little about how within‐host interactions affect the evolution of parasite virulence in multi‐parasite communities. Here, we modeled the virulence evolution of two coinfecting parasites in a host population in which parasites interacted through cross immunity, immune suppression, immunopathology, or spite. We show (1) that these within‐host interactions have different effects on virulence evolution when all parasites interact with each other in the same way versus when coinfecting parasites have unique interaction strategies, (2) that these interactions cause the evolution of lower virulence in some hosts, and higher virulence in other hosts, depending on the hosts infection status, and (3) that for cross immunity and spite, whether parasites increase or decrease the evolutionarily stable virulence in coinfected hosts depended on interaction strength. These results improve our understanding of virulence evolution in complex parasite communities, and show that virulence evolution must be understood at the community scale.  相似文献   

16.
    
The climate is warming at an unprecedented rate, pushing many species toward and beyond the upper temperatures at which they can survive. Global change is also leading to dramatic shifts in the distribution of pathogens. As a result, upper thermal limits and susceptibility to infection should be key determinants of whether populations continue to persist, or instead go extinct. Within a population, however, individuals vary in both their resistance to both heat stress and infection, and their contributions to vital growth rates. No more so is this true than for males and females. Each sex often varies in their response to pathogen exposure, thermal tolerances, and particularly their influence on population growth, owing to the higher parental investment that females typically make in their offspring. To date, the interplay between host sex, infection, and upper thermal limits has been neglected. Here, we explore the response of male and female Daphnia to bacterial infection and static heat stress. We find that female Daphnia, when uninfected, are much more resistant to static heat stress than males, but that infection negates any advantage that females are afforded. We discuss how the capacity of a population to cope with multiple stressors may be underestimated unless both sexes are considered simultaneously.  相似文献   

17.
    
Infections that consist of multiple parasite strains or species are common in the wild and are a major public health concern. Theory suggests that these infections have a key influence on the evolution of infectious diseases and, more specifically, on virulence evolution. However, we still lack an overall vision of the empirical support for these predictions. We argue that within‐host interactions between parasites largely determine how virulence evolves and that experimental data support model predictions. Then, we explore the main limitation of the experimental study of such ‘mixed infections’, which is that it draws conclusions on evolutionary outcomes from studies conducted at the individual level. We also discuss differences between coinfections caused by different strains of the same species or by different species. Overall, we argue that it is possible to make sense out of the complexity inherent to multiple infections and that experimental evolution settings may provide the best opportunity to further our understanding of virulence evolution.  相似文献   

18.
Parasite virulence is a leading theme in evolutionary biology. Modeling the course of virulence evolution holds the promise of providing practical insights into the management of infectious diseases and the implementation of vaccination strategies. A key element of virulence modeling is a tradeoff between parasite transmission rate and host lifespan. This assumption is crucial for predicting the level of optimal virulence. Here, I test this assumption using the water flea Daphnia magna and its castrating and obligate‐killing bacterium Pasteuria ramosa. I found that the virulence–transmission relationship holds under diverse epidemiological and ecological conditions. In particular, parasite genotype, absolute and relative parasite dose, and within‐host competition in multiple infections did not significantly affect the observed trend. Interestingly, the relationship between virulence and parasite transmission in this system is best explained by a model that includes a cubic term. Under this relationship, parasite transmission initially peaks and saturates at an intermediate level of virulence, but then it further increases as virulence decreases, surpassing the previous peak. My findings also highlight the problem of using parasite‐induced host mortality as a “one‐size‐fits‐all” measure of virulence for horizontally transmitted parasites, without considering the onset and duration of parasite transmission as well as other equally virulent effects of parasites (e.g., host castration). Therefore, mathematical models may be required to predict whether these particular characteristics of horizontally transmitted parasites can direct virulence evolution into directions not envisaged by existing models.  相似文献   

19.
    
Parasite-mediated selection is potentially of great importance in modulating genetic diversity. Genetic variation for resistance, the fuel for natural selection, appears to be common in host-parasite interactions, but responses to selection are rarely observed. In the present study, we tested whether environmental variation could mediate infection and determine evolutionary outcomes. Temperature was shown to dramatically alter the potential for parasite-mediated selection in two independent laboratory infection experiments at four temperatures. The bacterial parasite, Pasteuria ramosa, was extremely virulent at 20 degrees C and 25 degrees C, sterilizing its host, Daphnia magna, so that females often never produced a single brood. However, at 10 degrees C and 15 degrees C, the host-parasite interaction was much more benign, as nearly all females produced broods before becoming sterile. This association between virulence and temperature alone could stabilize coexistence and lead to the maintenance of diversity, because it would weaken parasite-mediated selection during parts of the season. Additionally, highly significant genotype-by-environment interactions were found, with changes in clone rank order for infection rates at different temperatures. Our results clearly show that the outcome of parasite-mediated selection in this system is strongly context dependent.  相似文献   

20.
    
Knowledge of the genetic architecture of pathogen infectivity and host resistance is essential for a mechanistic understanding of coevolutionary processes, yet the genetic basis of these interacting traits remains unknown for most host–pathogen systems. We used a comparative genomic approach to explore the genetic basis of infectivity in Pasteuria ramosa, a Gram-positive bacterial pathogen of planktonic crustaceans that has been established as a model for studies of Red Queen host–pathogen coevolution. We sequenced the genomes of a geographically, phenotypically, and genetically diverse collection of P. ramosa strains and performed a genome-wide association study to identify genetic correlates of infection phenotype. We found multiple polymorphisms within a single gene, Pcl7, that correlate perfectly with one common and widespread infection phenotype. We then confirmed this perfect association via Sanger sequencing in a large and diverse sample set of P. ramosa clones. Pcl7 codes for a collagen-like protein, a class of adhesion proteins known or suspected to be involved in the infection mechanisms of a number of important bacterial pathogens. Consistent with expectations under Red Queen coevolution, sequence variation of Pcl7 shows evidence of balancing selection, including extraordinarily high diversity and absence of geographic structure. Based on structural homology with a collagen-like protein of Bacillus anthracis, we propose a hypothesis for the structure of Pcl7 and the physical location of the phenotype-associated polymorphisms. Our results offer strong evidence for a gene governing infectivity and provide a molecular basis for further study of Red Queen dynamics in this model host–pathogen system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号