共查询到20条相似文献,搜索用时 0 毫秒
1.
Lucy Alford Françoise Burel Joan van Baaren 《Entomologia Experimentalis et Applicata》2016,159(1):61-69
The ability to accurately assess thermal tolerance in the laboratory without compromising ecological relevance is essential to predict the impacts of global climate change on phytophagous pest insects such as the phloem‐feeding aphids. One method to study thermal tolerance employs a temperature‐controlled column to measure critical thermal limits. However, assessments are commonly made with little relation to the natural environment of the study species. This study measured critical thermal minima (CTmin) for three cereal aphids – Sitobion avenae (Fabricius), Metopolophium dirhodum (Walker), and Rhopalosiphum padi (L.) (all Hemiptera: Aphididae) – in the absence and presence of host plant material to determine the best experimental design. Results revealed that CTmin measured in the presence of the host plant was significantly lower, suggesting that performing the measurement in the absence of the host plant could result in an underestimation of insect thermal tolerance. In addition, the study highlights the importance of understanding how an insect interacts with its environment, as this can reveal behavioural variation integral to differential survival at unfavourable temperatures. 相似文献
2.
I. Finiti M. O. Leyva J. López‐Cruz B. Calderan Rodrigues B. Vicedo C. Angulo A. B. Bennett M. Grant P. García‐Agustín C. González‐Bosch 《Plant biology (Stuttgart, Germany)》2013,15(5):819-831
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses. 相似文献
3.
4.
Rachel A. Steward Lydia M. Fisher Carol L. Boggs 《Entomologia Experimentalis et Applicata》2019,167(4):292-305
Evolutionary traps arise when organisms use novel, low‐quality or even lethal resources based on previously reliable cues. Persistence of such maladaptive interactions depends not only on how individuals locate important resources, such as host plants, but also the mechanisms underlying poor performance. Pieris macdunnoughii (Remington) (Lepidoptera: Pieridae) lays eggs on a non‐native mustard, Thlaspi arvense (L.) (Brassicaceae), which is lethal to the larvae. We first tested whether larval feeding behavior was affected before (pre‐) ingestion or following (post‐) ingestion of leaf material, indicating activity of feeding deterrents, toxins, or both in this evolutionary trap. Neonates were less likely to start feeding and eventually fed more slowly on T. arvense than on the native host plant Cardamine cordifolia (Gray) (Brassicaceae) in both laboratory and field. Starvation was a primary cause of mortality, indicating the role of a feeding deterrent. Feeding did not differ between larvae from invaded and uninvaded population. Second, T. arvense defensive chemistry is dominated by the glucosinolate sinigrin (allyl or 2‐propenyl glucosinolate). Adding sinigrin to the leaves of T. arvense and native hosts C. cordifolia and Descurainia incana (Bernhardi ex Fischer & Meyer) (Brassicaceae) delayed the onset of feeding, caused larvae to feed more slowly, and decreased survival on the native hosts. This evolutionary trap may not be driven by a novel deterrent, but rather by a change in the concentration of a deterrent found in native hosts. Many insects have adapted to evolutionary traps posed by invasive plants, incorporating the new plant into their diets. Thlaspi arvense remains lethal to P. macdunnoughii, and pre‐ingestive deterrents such as excess sinigrin may contribute to persistent maladaptation. 相似文献
5.
Edwin Bellota Raul F. Medina Julio S. Bernal 《Entomologia Experimentalis et Applicata》2013,149(2):185-195
Plant anti‐herbivore defenses are known to be affected by life‐history evolution, as well as by domestication and breeding in the case of crop species. A suite of plants from the maize genus Zea (Poaceae) and the specialist herbivore Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) were used to test the hypothesis that anti‐herbivore defenses are affected by plant life‐history evolution and human intervention through domestication and breeding for high yield. The suite of plants included a maize (Zea mays ssp. mays L.) commercial hybrid, a maize landrace, two populations of the annual Balsas teosinte (Z. mays ssp. parviglumis Iltis & Doebley), and perennial teosinte (Z. diploperennis Iltis, Doebley & Guzman). Leaf toughness, pubescence, and oviposition preference were compared among the suite of host plants looking for effects of transitions in life history (i.e., from perennial to annual life cycle), domestication (i.e., from wild annual to domesticated annual), and breeding (i.e., from landrace to hybrid maize) on defense against D. maidis. Results on leaf toughness suggested that the life‐history and domestication transitions weakened the plant's resistance to penetration by the mouthparts and ovipositor of D. maidis, whereas results on pubescence suggested that this putative defense was strengthened with the breeding transition, contrary to expectations. Results on oviposition preference of D. maidis coincided with the expectation that life‐history and domestication transitions would lead to preference for Balsas teosinte over perennial teosinte, and of landrace maize over Balsas teosinte. Also, a negative correlation suggested that oviposition preference is significantly influenced by leaf toughness. Overall, the results suggested that Zea defenses against the specialist herbivore D. maidis were variably affected by plant life‐history evolution, domestication, and breeding, and that chemical defense may play a role in Zea defense against D. maidis because leaf toughness and pubescence only partially explained its host preferences. 相似文献
6.
7.
Intra‐ and interspecific interactions between aphidophagous ladybirds: the role of prey in predator coexistence 下载免费PDF全文
Margarita Rocca Estefanía Rizzo Nancy Greco Norma Sánchez 《Entomologia Experimentalis et Applicata》2017,162(3):284-292
Cannibalism (CANN) and intraguild predation (IGP) may provide energy and nutrients to individuals and eliminate potential competitors. These negative competitive interactions could also affect the coexistence of predatory species. The co‐occurrence of aphidophagous ladybird species in crops creates opportunities for CANN and IGP, especially when aphids become scarce. The Lotka–Volterra model predicts the coexistence of two species if intraspecific competition is stronger than interspecific interference interactions. Cycloneda sanguinea L. and Eriopis connexa (Germar) (both Coleoptera: Coccinellidae) coexist in sweet pepper crops in La Plata (Argentina) consuming mainly Myzus persicae (Sulzer) (Hemiptera: Aphididae). The present study used laboratory experiments to estimate levels of CANN and IGP by adults and larvae on eggs, and by adults on larvae, in both the presence and absence of prey (i.e., M. persicae), to explain the effect of prey on coexistence of these two predators. Levels of CANN by C. sanguinea and E. connexa were high in the absence of aphids, and decreased when prey was present. Intraguild predation was bidirectional and asymmetric. Adults and larvae of E. connexa were more voracious IG predators of C. sanguinea than vice versa, the former being the stronger IG predator and interference competitor. Eriopis connexa always won when larvae of the same instar were compared, whereas the larger larva always won when larvae were of different instars, regardless of species. In the presence of prey, CANN by both species decreased, but IGP by E. connexa on C. sanguinea remained high, suggesting that E. connexa could displace C. sanguinea via interspecific interference competition. Other factors potentially affecting the coexistence of C. sanguinea and E. connexa in sweet pepper crops are discussed. 相似文献
8.
Gabriele Rondoni Isabel Borges Jana Collatz Eric Conti Alejandro C. Costamagna Franois Dumont Edward W. Evans Audrey A. Grez Andy G. Howe Eric Lucas Julie‐lonore Maisonhaute Antnio Onofre Soares Tania Zaviezo Matthew J.W. Cock 《Entomologia Experimentalis et Applicata》2021,169(1):6-27
Since the late 19th century, exotic ladybirds (Coleoptera: Coccinellidae) have been used extensively for suppressing herbivorous insects of economic importance. In recent decades, the introduction of non‐native biological control (BC) agents has been greatly limited due to the awareness of the potential non‐target effects of introductions. Nonetheless, recent episodes of biological invasions of economically important pests have raised the need to carefully consider whether the expected benefits of pest control go beyond the possible environmental risks of introduction. To better understand the factors that contributed to successful BC programs, here we review the literature behind classical and augmentative BC using exotic ladybirds. Additionally, by means of case studies, we discuss the BC efficacy of selected exotic species, e.g., Coccinella septempunctata L., Harmonia axyridis (Pallas), and Hippodamia variegata (Goeze), and their position within the communities of predators in the introduced areas of USA, Canada, and Chile. In Europe, much of the research on exotic ladybirds has been conducted on the undesired impact of H. axyridis. Therefore, we summarize the risk assessment data for this species and review the field research investigating the ecological impact on European aphidophagous predators. According to the BIOCAT database of classical BC programs, 212 ladybird species belonging to 68 genera have been released in about 130 years of BC activity, with 14.6% of introductions having resulted in partial, substantial, or complete control of the target pest. However, because post‐release evaluation of establishment and BC success has not always been conducted, this rate could underestimate the successful cases. Among other factors, ladybird establishment and pest suppression mostly depend on (1) intrinsic factors, i.e., high voracity, synchronized predator‐prey life cycle, and high dispersal ability, and (2) extrinsic factors, i.e., adaptability to the new environment and landscape composition. This review contributes to improved understanding of ladybirds as exotic BC agents. 相似文献
9.
Predators in the plant–soil feedback loop: aboveground plant‐associated predators may alter the outcome of plant–soil interactions 下载免费PDF全文
Lauren M. Smith‐Ramesh 《Ecology letters》2018,21(5):646-654
Plant–soil feedback (PSF) can structure plant communities, promoting coexistence (negative PSF) or monodominance (positive PSF). At higher trophic levels, predators can alter plant community structure by re‐allocating resources within habitats. When predator and plant species are spatially associated, predators may alter the outcome of PSF. Here, I explore the influence of plant‐associated predators on PSF using a generalised cellular automaton model that tracks nutrients, plants, herbivores and predators. I explore key contingencies in plant–predator associations such as whether predators associate with live vs. senesced vegetation. Results indicate that plant‐associated predators shift PSF to favour the host plant when predators colonise live vegetation, but the outcome of PSF will depend upon plant dispersal distance when predators colonise dead vegetation. I apply the model to two spider‐associated invasive plants, finding that spider predators should shift PSF dynamics in a way that inhibits invasion by one forest invader, but exacerbates invasion by another. 相似文献
10.
Pathogenicity and repulsion for toxin‐producing bacteria of dominant bacteria on the surface of American pine wood nematodes 下载免费PDF全文
Bacteria were isolated from the surface of two samples of American pine wood nematodes to identify methods of controlling pine wilt disease. The dominant bacterial strains were identified, and their toxicity and pathogenicity, in addition to their competitiveness with other pathogenic bacteria, were measured to ascertain how bacteria on the surface of American pine wood nematodes might be used to prevent and control pine wilt disease. The bacterial isolates show that the dominant bacteria carried by the two samples of pine wood nematodes are US4, US5, Smal‐007 and Rrad‐006. Based on routine staining, morphological observation and 16S rDNA sequence analysis, the four strains were identified as Delftia lacustris, Pseudomonas putida, Stenotrophomonas maltophilia and Rhizobium nepotum. The incubation of four dominant bacterial strains and Chinese dominant bacterial strains on the surface of aseptic nematodes and in nutrient broth showed that Smal‐007 and Rrad‐006 have strong competitiveness on the surface of pine wood nematodes. Using a bacterial culture medium to measure the propensity of pine seedlings to wilt, all the American dominant bacterial strains were shown to be less toxic than the Chinese dominant strains. If pine seedlings are inoculated with both bacterial and aseptic pine wood nematodes, American dominant bacterial strains present less pathogenicity than the Chinese dominant bacterial strains. In particular, Smal‐007 and Rrad‐006 show the lowest pathogenicity. If pine seedlings are inoculated with both bacterial and wild pine wood nematodes, American dominant bacterial strains significantly reduce the pathogenicity of wild pine wood nematodes isolated from Zhejiang Province, China. The effects of Smal‐007 and Rrad‐006 are confirmed as the most prominent. The American dominant strains Smal‐007 and Rrad‐006 satisfy two main requirements: excellent repulsion performance and low pathogenicity. Therefore, they can be used as candidate strains for biocontrol bacteria. 相似文献
11.
12.
Shun Kumashiro Keiichiro Matsukura Shuhei Adachi Masaya Matsumura Makoto Tokuda 《Entomologia Experimentalis et Applicata》2016,160(1):18-27
Oviposition preferences of herbivorous insects affect offspring performance. Both positive and negative links between oviposition preference and offspring performance have been reported for many species. A gall‐inducing leafhopper, Cicadulina bipunctata Melichar (Hemiptera: Cicadellidae), feeds on various Poaceae plants and induces galls of enhanced nutritional value for their offspring. Although gall induction by C. bipunctata improves nymphal performance, the oviposition preference of females between galled and non‐galled host plants is still unclear. In this paper, the nymphal performance and oviposition and feeding‐site preference of C. bipunctata were investigated using galled wheat, Triticum aestivum L., and non‐galled barley, Hordeum vulgare L., as host plants. The survival rate of C. bipunctata on wheat was significantly higher than on barley. In the choice test, significantly more eggs were laid into barley, whereas the number of eggs deposited on both hosts was not significantly different in the no‐choice test. The number of settling individuals per leaf area was not significantly different between wheat and barley, suggesting no clear preference for oviposition between these plants. Experience as a nymph with a growing host did not affect oviposition preference as adult female. The inconsistent correspondence between offspring performance and oviposition preference of C. bipunctata may reflect the high mobility of nymphs and/or differences in leaf area between host plants. The results indicate that the previous finding that oviposition preference and offspring performance are not always positively correlated in herbivorous insects is applicable to gall‐inducing insects. 相似文献
13.
14.
‘Last In–First Out’: seasonal variations of non‐structural carbohydrates,glucose‐6‐phosphate and ATP in tubers of two Arum species 下载免费PDF全文
E. Petrussa F. Boscutti A. Vianello V. Casolo 《Plant biology (Stuttgart, Germany)》2018,20(2):346-356
- Knowledge on the metabolism of polysaccharide reserves in wild species is still scarce. In natural sites we collected tubers of Arum italicum Mill. and A. maculatum L. – two geophytes with different apparent phenological timing, ecology and chorology – during five stages of the annual cycle in order to understand patterns of reserve accumulation and degradation.
- Both the entire tuber and its proximal and distal to shoot portion were utilised. Pools of non‐structural carbohydrates (glucose, sucrose and starch), glucose‐6‐phosphate and ATP were analysed as important markers of carbohydrate metabolism.
- In both species, starch and glucose content of the whole tuber significantly increased from sprouting to the maturation/senescence stages, whereas sucrose showed an opposite trend; ATP and glucose‐6‐phosphate were almost stable and dropped only at the end of the annual cycle. Considering the two different portions of the tuber, both ATP and glucose‐6‐phosphate concentrations were higher in proximity to the shoot in all seasonal stages, except the flowering stage.
- Our findings suggest that seasonal carbon partitioning in the underground organ is driven by phenology and occurs independently of seasonal climate conditions. Moreover, our results show that starch degradation, sustained by elevated ATP and glucose‐6‐phosphate pools, starts in the peripheral, proximal‐to‐shoot portion of the tuber, consuming starch accumulated in the previous season, as a ‘Last In–First Out’ mechanism of carbohydrate storage.
15.
16.
In this study we used recent (2010) and herbarium material (1980) of six bryophyte species to assess long‐term atmospheric deposition in natural forested areas in northern Spain. For this purpose, tissue nitrogen and carbon content, as well as δ13C and δ15N signatures of samples of Hypnum cupressiforme, Polytrichastrum formosum, Leucobryum juniperoideum, Rhytidiadelphus loreus, Homalothecium lutescens and Diplophyllum albicans were analysed and comparisons made between years and species. In addition, the usefulness of each of the six species was evaluated. The range of values observed was similar to that in other studies carried out in rural areas. Significantly lower values were found in 2010 for N (H. cupressiforme), δ15N (R. loreus and D. albicans), C (R. loreus) and δ13C (all except L. juniperoideum). Our natural areas are thus now less influenced by atmospheric pollutants than they were, most probably due to changes in some traditional local activities. Differences were observed between species for all the four parameters studied, so different species must not be analysed together. Finally, R. loreus and H. lutescens seem to be good bioindicators, sensitive even with a few samples, although further studies are needed to corroborate their usefulness. 相似文献
17.
Sap‐feeding insects on forest trees along latitudinal gradients in northern Europe: a climate‐driven patterns 下载免费PDF全文
Mikhail V. Kozlov Andrey V. Stekolshchikov Guy Söderman Eugenia S. Labina Vitali Zverev Elena L. Zvereva 《Global Change Biology》2015,21(1):106-116
Knowledge of the latitudinal patterns in biotic interactions, and especially in herbivory, is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. We used sap‐feeding insects as a model group to test the hypotheses that the strength of plant–herbivore interactions in boreal forests decreases with latitude and that this latitudinal pattern is driven primarily by midsummer temperatures. We used a replicated sampling design and quantitatively collected and identified all sap‐feeding insects from four species of forest trees along five latitudinal gradients (750–1300 km in length, ten sites in each gradient) in northern Europe (59 to 70°N and 10 to 60°E) during 2008–2011. Similar decreases in diversity of sap‐feeding insects with latitude were observed in all gradients during all study years. The sap‐feeder load (i.e. insect biomass per unit of foliar biomass) decreased with latitude in typical summers, but increased in an exceptionally hot summer and was independent of latitude during a warm summer. Analysis of combined data from all sites and years revealed dome‐shaped relationships between the loads of sap‐feeders and midsummer temperatures, peaking at 17 °C in Picea abies, at 19.5 °C in Pinus sylvestris and Betula pubescens and at 22 °C in B. pendula. From these relationships, we predict that the losses of forest trees to sap‐feeders will increase by 0–45% of the current level in southern boreal forests and by 65–210% in subarctic forests with a 1 °C increase in summer temperatures. The observed relationships between temperatures and the loads of sap‐feeders differ between the coniferous and deciduous tree species. We conclude that climate warming will not only increase plant losses to sap‐feeding insects, especially in subarctic forests, but can also alter plant‐plant interactions, thereby affecting both the productivity and the structure of future forest ecosystems. 相似文献
18.
19.
NbEXPA1, an α‐expansin,is plasmodesmata‐specific and a novel host factor for potyviral infection 下载免费PDF全文
Sang‐Ho Park Fangfang Li Justin Renaud Wentao Shen Yinzi Li Lihua Guo Hongguang Cui Mark Sumarah Aiming Wang 《The Plant journal : for cell and molecular biology》2017,92(5):846-861
Plasmodesmata (PD), unique to the plant kingdom, are structurally complex microchannels that cross the cell wall to establish symplastic communication between neighbouring cells. Viral intercellular movement occurs through PD. To better understand the involvement of PD in viral infection, we conducted a quantitative proteomic study on the PD‐enriched fraction from Nicotiana benthamiana leaves in response to infection by Turnip mosaic virus (TuMV). We report the identification of a total of 1070 PD protein candidates, of which 100 (≥2‐fold increase) and 48 (≥2‐fold reduction) are significantly differentially accumulated in the PD‐enriched fraction, when compared with protein levels in the corresponding healthy control. Among the differentially accumulated PD protein candidates, we show that an α‐expansin designated NbEXPA1, a cell wall loosening protein, is PD‐specific. TuMV infection downregulates NbEXPA1 mRNA expression and protein accumulation. We further demonstrate that NbEXPA1 is recruited to the viral replication complex via the interaction with NIb, the only RNA‐dependent RNA polymerase of TuMV. Silencing of NbEXPA1 inhibits plant growth and TuMV infection, whereas overexpression of NbEXPA1 promotes viral replication and intercellular movement. These data suggest that NbEXPA1 is a host factor for potyviral infection. This study not only generates a PD‐proteome dataset that is useful in future studies to expound PD biology and PD‐mediated virus–host interactions but also characterizes NbEXPA1 as the first PD‐specific cell wall loosening protein and its essential role in potyviral infection. 相似文献