首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas carnivore communities were affected by forbs of small stature, grasses and legumes. Contrasting patterns in the abundance of dominant species imply different levels of resource specialization for dominant herbivores (narrow food spectrum) and carnivores (broad food spectrum). That in turn could heavily affect ecosystem functions mediated by herbivorous and carnivorous arthropods, such as herbivory or biological pest control.  相似文献   

2.
Host and parasite richness are generally positively correlated, but the stability of this relationship in response to global change remains poorly understood. Rapidly changing biotic and abiotic conditions can alter host community assembly, which in turn, can alter parasite transmission. Consequently, if the relationship between host and parasite richness is sensitive to parasite transmission, then changes in host composition under various global change scenarios could strengthen or weaken the relationship between host and parasite richness. To test the hypothesis that host community assembly can alter the relationship between host and parasite richness in response to global change, we experimentally crossed host diversity (biodiversity loss) and resource supply to hosts (eutrophication), then allowed communities to assemble. As previously shown, initial host diversity and resource supply determined the trajectory of host community assembly, altering post‐assembly host species richness, richness‐independent host phylogenetic diversity, and colonization by exotic host species. Overall, host richness predicted parasite richness, and as predicted, this effect was moderated by exotic abundance—communities dominated by exotic species exhibited a stronger positive relationship between post‐assembly host and parasite richness. Ultimately, these results suggest that, by modulating parasite transmission, community assembly can modify the relationship between host and parasite richness. These results thus provide a novel mechanism to explain how global environmental change can generate contingencies in a fundamental ecological relationship—the positive relationship between host and parasite richness.  相似文献   

3.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

4.
1. Different groups of specialised herbivores often exhibit highly variable responses to host plant traits and phylogeny. Gall‐forming insects and mites on willows are highly adapted to their hosts and represent one of the richest communities of gallers associated with a single genus of host plants. 2. The present study evaluated the effects of host plant secondary metabolites (salicylates, flavonoids, condensed tannins), physical traits (trichome density), nutrient content (N:C) and phylogeny on the abundance and richness of gall‐forming arthropods associated with eight willow species and Populus tremula. 3. Galler abundance was affected by N:C rather than by willow defensive traits or phylogeny, suggesting that gallers respond differently to host plant traits than to less specialised guilds, such as leaf‐chewing insects. None of the studied defensive traits had a significant effect on gall abundance. Gall morphospecies richness was correlated with the host phylogeny, mainly with the nodes representing the inner division of the willow subgenus Vetrix. This suggests that the radiation of some willow taxa could have been important for the speciation of gallers associated with willows. 4. In conclusion, it is shown that whereas willow traits, such as nutrient content, appeared to affect abundances of gallers, it is probably willow radiation that drives galler speciation.  相似文献   

5.
Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio‐temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the specific requirements of arthropods when applying grazing management and to include arthropods in monitoring schemes. Conservation strategies aiming at maximizing heterogeneity, including regulation of herbivore densities (through human interventions or top‐down control), maintenance of different types of management in close proximity and rotational grazing regimes, are the most promising options to conserve arthropod diversity.  相似文献   

6.
Insect–plant interactions occur in several ways and have considerable environmental and ecological importance. Many feeding strategies have evolved among herbivorous insects, with host–herbivore systems likely being influenced by trophobionts with ants. We investigated how these interactions vary across elevation gradients by evaluating the structure of the herbivorous insect community and ants associated with Baccharis dracunculifolia at three distinct elevations (800, 1100, and 1400 m a.s.l.) on a mountain in southeastern Brazil. Moreover, we evaluated the diversity and specialisation of interactions between herbivores and host plants along the elevational gradient. We sampled herbivores and ants on 60 plants at each elevation (totalling 180 plant individuals). Herbivore species composition differed among elevations, as did interaction diversity and specialisation. Richness and abundance of chewing insects increased with elevation, while β‐diversity among patches of the host plant was higher at the lowest elevation, probably due to the patchy occurrence of B. dracunculifolia. Richness and abundance of sap‐sucking insects were higher at the intermediate elevation, possibly due to local environmental conditions. We observed a positive relationship between ant and herbivore trophobiont richness on B. dracunculifolia. We found that interactions were more specialised and less diverse at higher elevations compared to the lowest elevation. Changes in vegetation and environmental variables shaped species distributions and their ecological interactions along the elevation gradient. Our study demonstrates that increased elevation changes the structure and patterns of interactions of the herbivore insect guilds associated with the host plant B. dracunculifolia. Ant effects depend on the context, the environment, and the species of ants involved, and are essential for the presence of insect trophobionts.  相似文献   

7.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

8.
Neighbouring heterospecific plants are often observed to reduce the probability of herbivore attack on a given focal plant. While this pattern of associational resistance is frequently reported, experimental evidence for underlying mechanisms is rare particularly for potential plant species diversity effects on focal host plants and their physical environment. Here, we used an established forest diversity experiment to determine whether tree diversity effects on an important insect pest are driven by concomitant changes in host tree growth or the light environment. We examined the effects of tree species richness, canopy cover and tree growth on the probability of occurrence, the abundance, and volume of galls caused by the pineapple gall adelgid Adelges abietis on Norway spruce. Although tree diversity had no effect on gall abundance, we observed that both the probability of gall presence and gall volume (an indicator of maternal fecundity) decreased with tree species richness and canopy cover around host spruce trees. Structural equation models revealed that effects of tree species richness on gall presence and volume were mediated by concurrent increases in canopy cover rather than changes in tree growth or host tree density. As canopy cover did not influence tree or shoot growth, patterns of associational resistance appear to be driven by improved host tree quality or more favourable microclimatic conditions in monocultures compared to mixed‐stands. Our study therefore demonstrates that changes in forest structure may be critical to understanding the responses of herbivores to plant diversity and may underpin associational effects in forest ecosystems.  相似文献   

9.
Aim To examine the composition and structure of the arthropod community on the invasive weed Lepidium draba in its native, expanded and introduced ranges, in order to elucidate the lack of a biotic constraint that may facilitate invasion. Location Europe and western North America. Methods Identical sampling protocols were used to collect data from a total of 35 populations of L. draba in its native (Eastern European), expanded (Western European) and introduced (western US) ranges. A bootstrapping analysis was used to compare herbivore richness, diversity and evenness among the regions. Core species groups (monophages, oligophages and polyphages) on the plant were defined and their abundances and host utilization patterns described. Results Species richness was greatest in the native range, while species diversity and evenness were similar in the native and expanded range, but significantly greater than in the introduced range of L. draba. Specialist herbivore abundance was greater in the native and expanded compared with the introduced range. Oligophagous Brassicaceae‐feeders were equally abundant in all three ranges, and polyphagous herbivore abundance was significantly greater in the introduced range. Overall herbivore abundance was greater in the introduced range. Host utilization was more complete in the two European ranges due to monophagous herbivores that do not exist in the introduced range. Root feeders and gall formers were completely absent from the introduced range, which was dominated by generalist sap‐sucking herbivores. However, one indigenous stem‐mining weevil, Ceutorhynchus americanus, occurred on L. draba in the introduced range. Main conclusions This is, to our knowledge, the first study documenting greater herbivore abundance on an invasive weed in its introduced, compared with its native, range. However, greater abundance does not necessarily translate to greater impact. We argue that, despite the greater total herbivore abundance in the introduced range, differences in the herbivore community structure (specialist vs. generalist herbivory) may contribute to the invasion success of L. draba in the western USA.  相似文献   

10.
Many biotic interactions influence community structure, yet most distribution models for plants have focused on plant competition or used only abiotic variables to predict plant abundance. Furthermore, biotic interactions are commonly context‐dependent across abiotic gradients. For example, plant–plant interactions can grade from competition to facilitation over temperature gradients. We used a hierarchical Bayesian framework to predict the abundances of 12 plant species across a mountain landscape and test hypotheses on the context‐dependency of biotic interactions over abiotic gradients. We combined field‐based estimates of six biotic interactions (foliar herbivory and pathogen damage, fungal root colonization, fossorial mammal disturbance, plant cover and plant diversity) with abiotic data on climate and soil depth, nutrients and moisture. All biotic interactions were significantly context‐dependent along temperature gradients. Results supported the stress gradient hypothesis: as abiotic stress increased, the strength or direction of the relationship between biotic variables and plant abundance generally switched from negative (suggesting suppressed plant abundance) to positive (suggesting facilitation/mutualism). For half of the species, plant cover was the best predictor of abundance, suggesting that the prior focus on plant–plant interactions is well‐justified. Explicitly incorporating the context‐dependency of biotic interactions generated novel hypotheses about drivers of plant abundance across abiotic gradients and may improve the accuracy of niche models.  相似文献   

11.
Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom–up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top–down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.  相似文献   

12.
Abstract: To study the abundance and occurrence of herbivore insects on plants it is important to consider plant characteristics that may control the insects. In this study the following hypotheses were tested: (i) an increase of plant architecture increases species richness and abundance of gall‐inducing insects and (ii) plant architecture increases gall survival and decreases parasitism. Two hundred and forty plants of Baccharis pseudomyriocephala Teodoro (Asteraceae) were sampled, estimating the number of shoots, branches and their biomass. Species richness and abundance of galling insects were estimated per module, and mortality of the galls was assessed. Plant architecture influenced positively species richness, abundance and survival of galls. However, mortality of galling insects by parasitoids was low (13.26%) and was not affected by plant architecture, thus suggesting that other plant characteristics (a bottom‐up pressure) might influence gall‐inducing insect communities more than parasitism (a top‐down pressure). The opposite effect of herbivore insects on plant characteristics must also be considered, and such effects may only be assessed through manipulative experiments.  相似文献   

13.
Large‐scale habitat destruction and climate change result in the non‐random loss of evolutionary lineages, reducing the amount of evolutionary history represented in ecological communities. Yet, we have limited understanding of the consequences of evolutionary history on the structure of food webs and the services provided by biological communities. Drawing on 11 years of data from a long‐term plant diversity experiment, we show that evolutionary history of plant communities – measured as phylogenetic diversity – strongly predicts diversity and abundance of herbivorous and predatory arthropods. Effects of plant species richness on arthropods become stronger when phylogenetic diversity is high. Plant phylogenetic diversity explains predator and parasitoid richness as strongly as it does herbivore richness. Our findings indicate that accounting for evolutionary relationships is critical to understanding the severity of species loss for food webs and ecosystems, and for developing conservation and restoration policies.  相似文献   

14.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   

15.
Herbivory and nutrient limitation can increase the resistance of temperature‐limited systems to invasions under climate warming. We imported seeds of lowland species to tundra under factorial treatments of warming, fertilization, herbivore exclusion and biomass removal. We show that warming alone had little impact on lowland species, while exclusion of native herbivores and relaxation of nutrient limitation greatly benefitted them. In contrast, warming alone benefitted resident tundra species and increased species richness; however, these were canceled by negative effects of herbivore exclusion and fertilization. Dominance of lowland species was associated with low cover of tundra species and resulted in decreased species richness. Our results highlight the critical role of biotic and abiotic filters unrelated to temperature in protecting tundra under warmer climate. While scarcity of soil nutrients and native herbivores act as important agents of resistance to invasions by lowland species, they concurrently promote overall species coexistence. However, when these biotic and abiotic resistances are relaxed, invasion of lowland species can lead to decreased abundance of resident tundra species and diminished diversity.  相似文献   

16.
Genotypic diversity within host‐plant populations has been linked to the diversity of associated arthropod communities, but the temporal dynamics of this relationship, along with the underlying mechanisms, are not well understood. In this study, we employed a common garden experiment that manipulated the number of genotypes within patches of Solidago altissima, tall goldenrod, to contain 1, 3, 6 or 12 genotypes m?2 and measured both host‐plant and arthropod responses to genotypic diversity throughout an entire growing season. Despite substantial phenological changes in host plants and in the composition of the arthropod community, we detected consistent positive responses of arthropod diversity to host‐plant genotypic diversity throughout all but the end of the growing season. Arthropod richness and abundance increased with genotypic diversity by up to~65%. Furthermore, arthropod responses were non‐additive for most of the growing season, with up to 52% more species occurring in mixtures than the number predicted by summing the number of arthropods associated with component genotypes in monoculture. Non‐additive arthropod responses were likely driven by concurrent non‐additive increases in host‐plant aboveground biomass. Qualitative differences among host‐plant genotypes were also important early in the season, when specialist herbivores dominated the arthropod community. Neither arthropod diversity nor flower number was associated with genotypic diversity at the end of the growing season, when generalist floral‐associated herbivores dominated. Taken together, these results show that focusing on the temporal dynamics in the quantity and quality of co‐occurring host‐plant genotypes and associated community composition can help uncover the mechanisms that link intraspecific host‐plant diversity to the structure of arthropod communities. Furthermore, consistent non‐additive effects in genotypically diverse plots may limit the predictability of the arthropod community based solely on the genetic make‐up of a host‐plant patch.  相似文献   

17.
Habitat fragmentation reduces the available habitat area and increases both the distance between fragments and the amount of fragment edges. Therefore, there are more probabilities of plant population size reduction and species extinction. In the same way, biotic and abiotic changes associated with forest fragmentation can dramatically alter plant growth and phenological patterns. We conducted a 3-year study to analyze effects of habitat fragmentation and seasonal variation on host plant quality (quantity of leaves, diameter at breast height, tree height), gall abundance and species richness in a temperate oak forest. Our results show that host plant quality was significantly higher in isolated oaks and small fragments, increasing the abundance and species richness of oak gall wasp species in most fragmented habitats. Oak canopy cover is altered by forest fragmentation, there being higher production of leaves on trees that are more exposed to fragmentation, and can provide important resources for maintaining gall wasp species diversity in a fragmented landscape. We found higher gall wasp richness and abundance in autumn than in the spring, which matches with the higher quantity of leaves in this season.  相似文献   

18.
Loss and fragmentation of natural habitats can lead to alterations of plant–animal interactions and ecosystems functioning. Insect herbivory, an important antagonistic interaction is expected to be influenced by habitat fragmentation through direct negative effects on herbivore community richness and indirect positive effects due to losses of natural enemies. Plant community changes with habitat fragmentation added to the indirect effects but with little predictable impact. Here, we evaluated habitat fragmentation effects on both herbivory and herbivore diversity, using novel hierarchical meta‐analyses. Across 89 studies, we found a negative effect of habitat fragmentation on abundance and species richness of herbivores, but only a non‐significant trend on herbivory. Reduced area and increased isolation of remaining fragments yielded the strongest effect on abundance and species richness, while specialist herbivores were the most vulnerable to habitat fragmentation. These fragmentation effects were more pronounced in studies with large spatial extent. The strong reduction in herbivore diversity, but not herbivory, indicates how important common generalist species can be in maintaining herbivory as a major ecosystem process.  相似文献   

19.
Plant diversity effects on ecosystem functioning usually have been studied from a plant perspective. However, the mechanisms underlying biodiversity–ecosystem functioning relationships may also depend on positive or negative interactions between plants and other biotic and abiotic factors, which remain poorly understood. Here we assessed whether plant–herbivore and/or plant–detritivore interactions modify the biodiversity–ecosystem functioning relationship and the mechanisms underlying biodiversity effects, including complementarity and selection effects, biomass allocation, vertical distribution of roots, and plant survival using a microcosm experiment. We also evaluated to what extent trophic and non‐trophic interactions are affected by abiotic conditions by studying drought effects. Our results show that biotic and abiotic conditions influence the shape of the biodiversity–ecosystem function relationship, varying from hump‐shaped to linear. For instance, total biomass increased linearly with plant richness in the presence of detritivores, but not in the absence of detritivores. Moreover, detritivore effects on belowground plant productivity were highly context dependent, varying in the presence of herbivores. Plant interactions with soil biota, especially with herbivores, influenced the mechanisms underlying diversity effects. Herbivores increased plant complementarity and modified biomass allocation and vertical distribution of roots. Furthermore, biotic–abiotic interactions influenced plant productivity differently across plant functional groups. Our findings emphasize the importance of complex biotic interactions underlying biodiversity effects, and that these biotic interactions may change with abiotic conditions. Despite minor changes in productivity in the short‐term, soil biota‐induced changes in plant–plant interactions and plant survival are likely to have significant long‐term consequences for ecosystem functioning. Considering the context‐dependency of multichannel interactions may contribute to reconciling differences among observed patterns in biodiversity studies. Further, abiotic conditions modified the effects of biotic interactions, suggesting that changes in environmental conditions may not only affect ecosystems directly, but also change the biotic composition of and dynamics within ecosystems.  相似文献   

20.
The response of semiarid grasslands to small, non‐colonial herbivores has received little attention, focusing primarily on the effects of granivore assemblages on annual plant communities. We studied the long‐term effects of both small and large herbivores on vegetation structure and species diversity of shortgrass steppe, a perennial semiarid grassland considered marginal habitat for small mammalian herbivores. We hypothesized that 1) large generalist herbivores would affect more abundant species and proportions of litter‐bare ground‐vegetation cover through non‐selective herbivory, 2) small herbivores would affect less common species through selective but limited consumption, and 3) herbivore effects on plant richness would increase with increasing aboveground net primary production (ANPP). Plant community composition was assessed over a 14‐year period in pastures grazed at moderate intensities by cattle and in exclosures for large (cattle) and large‐plus‐small herbivores (additional exclusion of rabbits and rodents). Exclusion of large herbivores affected litter and bare ground and basal cover of abundant, common and uncommon species. Additional exclusion of small herbivores did not affect uncommon components of the plant community, but had indirect effects on abundant species, decreased the cover of the dominant grass Bouteloua gracilis and total vegetation, and increased litter and species diversity. There was no relationship between ANPP and the intensity of effects of either herbivore body size on richness. Exclusion of herbivores of both body sizes had complementary and additive effects which promoted changes in vegetation composition and physiognomy that were linked to increased abundance of tall and decreased abundance of short species. Our findings show that small mammalian herbivores had disproportionately large effects on plant communities relative to their small consumption of biomass. Even in small‐seeded perennial grasslands with a long history of intensive grazing by large herbivores, non‐colonial small mammalian herbivores should be recognized as an important driver of grassland structure and diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号