首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Effective seed storage after sourcing (harvesting or purchasing) is critical to restoration practitioners and native seed producers, as it is key to maintaining seed viability. Inadequate seed storage can lead to a waste of both natural and economic resources when seeds of poor quality are sown. When working with native species with unknown storage behavior, general assumptions can be made based on studies on related species, and standard practices may be applied with caution; however, an investigation should be conducted to understand if specific storage requirements are needed and for how long seeds can be stored before they lose significant viability. In this paper of the Special Issue Standards for Native Seeds in Ecological Restoration, we provide an overview of the key concepts in seed storage and the steps to take for effective storage of native seeds for restoration use.  相似文献   

2.
Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long‐term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed‐bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance–exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.  相似文献   

3.
1. The ability of seeds to survive periods of drying and wetting that do not lead to seed production will determine the potential species pool for future plant communities of temporary wetlands. I investigated characteristics of the seed banks in sediment from Australian temporary wetlands that might contribute to the ability of aquatic plants to re‐establish after extended drought. 2. Experimental investigation into germination from sediment from six sites in five Australian temporary wetlands, with various water regimes, examined two sources of seed bank depletion: (i) length of time dry (longevity up to 12 years) and (ii) successive annual wetting and germination events (up to seven) with intervening periods dry (leaving a residual seed bank), both without any opportunity for replenishment of the seed bank. 3. These wetlands had species‐rich, long‐lived seed banks that were not exhausted by successive germination events. After three years of dry storage, 90% of the original seed bank species germinated, after six years 75% and after 12 years 20%. After seven successive wetting and drying events without seed bank replenishment, 48% of the original species still germinated. The mean survival time dry for seed bank species, 7.4 years, was longer than the duration of recent droughts. 4. Seed bank composition varied among wetlands and over time; most species did not occur in all wetlands and many occurred in one wetland only. The germination patterns of different species, although differing in detail, tended to be consistent in that all species could survive long dry periods and several wetting and drying events. However, experimental drought significantly diminished species richness and abundance, indicating limits to seed bank persistence. 5. Data from such long‐term studies of seed bank persistence should allow prediction of the species richness and composition of the germinating communities in a wetland whose water regime is intentionally or unintentionally altered. This ability to forecast may become particularly important under climate change and the need to predict future wetland conditions.  相似文献   

4.
Seeds from ten terrestrial orchid species, nine from the south‐west Australian biodiversity hotspot (Caladenia arenicola, Caladenia flava, Caladenia huegelii, Diuris laxiflora, Microtis media ssp. media, Pterostylis recurva, Pterostylis sanguinea, Thelymitra crinita and Thelymitra macrophylla) and one from south‐east Australia (Diuris fragrantissima), were placed into experimental storage to assess their relative longevity and likely optimal conditions for long‐term conservation seed banking. Seeds from all species were desiccation tolerant, germinating after drying at 23% relative humidity (C. arenicola, C. huegelii, P. sanguinea and T. macrophylla) or 5% relative humidity (C. flava, D. laxiflora, M. media ssp. media, P. recurva and T. crinita) at 23 °C. From automatedly determined moisture adsorption and desorption isotherms at 23 °C, these equate to tolerance of drying to 0.03–0.06 g water g?1 dry weight or 0.013–0.028 g water g?1 dry weight, respectively. Results of storage experiments at a range of moisture contents and temperatures suggest conventional seed bank storage at ?18 °C after equilibration at c. 23% relative humidity (at 23 °C) may be suitable for most of the species, although there was higher germination of P. recurva seeds stored at ?80 °C and of M. media ssp. media seeds equilibrated at 75% relative humidity. However, there was considerable variation in germination of seeds sampled after different storage periods, making it difficult to identify optimal storage conditions definitively. Results of comparative longevity storage experiments at 60% relative humidity and 40 °C suggest seeds from these orchid species are short‐lived compared with non‐orchid species, and with Australian species in particular. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 26–41.  相似文献   

5.
  • Good‐quality dry seeds of some orchids have the potential to survive for decades under conventional seed bank conditions, but further research is needed to fill existing gaps in knowledge regarding seed behaviour under long‐term dry storage. The objectives of this study were to evaluate germination ability on two asymbiotic culture media with different nitrogen source; to assess seed desiccation tolerance needed for the storage at sub‐zero temperatures; and to study the effects of dry storage at low temperature.
  • Asymbiotic seed germination tests of four Anacamptis species were carried out to evaluate the effects of different culture media, dehydration and dry storage on germination ability. Viability of 4‐year‐stored seeds was assessed by means of the tetrazolium test.
  • Generalised linear model (GLM) analysis detected significant effects (P < 0.01) of the species, medium and storage time on total germination, while dehydration did not significantly affect it. Except for A. palustris, germination percentage was minimum after 1‐month storage and increased with longer storage periods. Tetrazolium viability tests detected high percentages of viable seed (>90%) following 4‐year storage in three out of four species.
  • Seeds of the four Anacamptis species proved to be desiccation tolerant and have orthodox storage behaviour. The consequence of these findings is of interest to practical conservation approaches for orchids in seed‐banking. The results highlight the importance of multiple assessments of seed quality, both viability and germination, to understand seed storage behaviour.
  相似文献   

6.
  • The growing number of restoration projects worldwide increases the demand for seed material of native species. To meet this demand, seeds are often produced through large‐scale cultivation on specialised farms, using wild‐collected seeds as the original sources. However, during cultivation, plants experience novel environmental conditions compared to those in natural populations, and there is a danger that the plants in cultivation are subject to unintended selection and lose their adaptation to natural habitats. Although the propagation methods are usually designed to maintain as much natural genetic diversity as possible, the effectiveness of these measures have never been tested.
  • We obtained seed of five common grassland species from one of the largest native seed producers in Germany. For each species, the seeds were from multiple generations of seed production. We used AFLP markers and a common garden experiment to test for genetic and phenotypic changes during cultivation of these plants.
  • The molecular markers detected significant evolutionary changes in three out of the five species and we found significant phenotypic changes in two species. The only species that showed substantial genetic and phenotypic changes was the short‐lived and predominantly selfing Medicago lupulina, while in the other, mostly perennial and outcrossing species, the observed changes were mostly minor.
  • Agricultural propagation of native seed material for restoration can cause evolutionary changes, at least in some species. We recommend caution, particularly in selfing and short‐lived species, where evolution may be more rapid and effects may thus be more severe.
  相似文献   

7.
Trembleya laniflora is an endemic shrub from neotropical montane rocky savannas of southeastern Brazil. It has been indicated as a potential candidate for ecological restoration of abandoned iron‐ore mines due to heavy metal accumulation. Here, we evaluated the seed germination requirements of T. laniflora. Seeds collected in 2005 and 2008 were set to germinate under a broad range of temperature and light conditions. Seed viability was estimated by dissecting seeds under a dissecting microscope for embryo presence/absence. Seeds were photoblastic and optimum temperature range was 20–25°C, coinciding with the onset of the rainy season. Seeds were viable after 42 months of storage, which together with small seeds that easily get buried and light requirement for germination suggest formation of soil seed banks. Except the large fraction of embryoless seeds, almost all tested seeds germinated when incubated under light conditions; therefore, T. laniflora should be regarded to have nondormant seeds. Easiness of burial resulting from small seed size and positive photoblastism may both contribute to incorporation into soil seed banks. Our data suggest that the long‐term storage of T. laniflora seeds provides a useful strategy for plant reintroduction.  相似文献   

8.
  • Dormancy cycling is a key mechanism that contributes to the maintenance of long‐term persistent soil seed banks, but has not been recorded in long‐lived woody shrub species from fire‐prone environments. Such species rely on seed banks and dormancy break as important processes for post‐fire recruitment and recovery.
  • We used germination experiments with smoke treatments on fresh seeds and those buried for 1 year (retrieved in spring) and 1.5 years (retrieved the following late autumn) to investigate whether Asterolasia buxifolia, a shrub from fire‐prone south‐eastern Australia with physiologically dormant seeds, exhibited dormancy cycling.
  • All seeds had an obligation for winter seasonal temperatures and smoke to promote germination, even after ageing in the soil. A high proportion of germination was recorded from fresh seeds. but germination after the first retrieval was significantly lower, despite high seed viability. After the second retrieval, germination returned to the initial level. This indicates a pattern of annual dormancy cycling; one of the few observations, to our knowledge, for a perennial species. Additionally, A. buxifolia’s winter temperature and smoke requirements did not change over time, highlighting the potential for seeds to remain conditionally dormant (i.e. restricted to a narrow range of germination conditions) for long periods.
  • For physiologically dormant species, such as A. buxifolia, we conclude that dormancy cycling is an important driver of successful regeneration, allowing seed bank persistence, sometimes for decades, during fire‐free periods unsuitable for successful recruitment, while ensuring that a large proportion of seeds are available for recruitment when a fire occurs.
  相似文献   

9.
Seed production and seed quality in a calcareous grassland in elevated CO2   总被引:2,自引:1,他引:1  
In diverse plant communities the relative contribution of species to community biomass may change considerably in response to elevated CO2. Along with species‐specific biomass responses, reproduction is likely to change as well with increasing CO2 and might further accelerate shifts in species composition. Here, we ask if, after 5 years of CO2 exposure, seed production and seed quality in natural nutrient‐poor calcareous grassland are affected by elevated CO2 (650 μ L L?1 vs 360 μ L L?1) and how this might affect long‐term community dynamics. The effect of elevated CO2 on the number of flowering shoots (+ 24%, P < 0.01) and seeds (+ 29%, P = 0.06) at the community level was similar to above ground biomass responses in this year, suggesting that the overall allocation to sexual reproduction remained unchanged. Compared among functional groups of species we found a 42% increase in seed number (P < 0.01) of graminoids, a 33% increase (P = 0.07) in forbs, and no significant change in legumes (? 38%, n.s.) under elevated CO2. Large responses particularly of two graminoid species and smaller responses of many forb species summed up to the significant or marginally significant increase in seed number of graminoids and forbs, respectively. In several species the increase in seed number resulted both from an increase in flowering shoots and an increase in inflorescence size. In most species, seeds tended to be heavier (+ 12%, P < 0.01), and N‐concentration of seeds was significantly reduced in eight out of 13 species. The fraction of germinating seeds did not differ between seeds produced in ambient and elevated CO2, but time to germination was significantly shortened in two species and prolonged in one species when seeds had been produced in elevated CO2. Results suggest that species specific increases in seed number and changes in seed quality will exert substantial cumulative effects on community composition in the long run.  相似文献   

10.
Maximising seed longevity is crucial for genetic resource preservation and longevity of orthodox seeds is determined by environmental conditions (water content and temperature). The effect of water content (down to 0.01 g·H2O·g?1) on seed viability was studied at different temperatures for a 5‐year storage period in taxonomically related species. Seeds of seven Brassicaceae species (Brassica repanda, Eruca vesicaria, Malcolmia littorea, Moricandia arvensis, Rorippa nasturtium‐aquaticum, Sinapis alba, Sisymbrium runcinatum) were stored at 48 environments comprising a combination of eight water contents, from 0.21 to 0.01 g·H2O·g?1 DW and six temperatures (45, 35, 20, 5, ?25, ?170 °C). Survival curves were modelled and P50 calculated for those conditions where germination was reduced over the 5‐year assay period. Critical water content for storage of seeds of six species at 45 °C ranged from 0.02 to 0.03 g·H2O·g?1. The effect of extreme desiccation at 45 °C showed variability among species: three species showed damaging effects of drying below the critical water content, while for three species it was neither detrimental nor beneficial to seed longevity. Lipid content could be related to longevity, depending on the storage conditions. A variable seed longevity response to water content among taxonomically related species was found. The relative position of some of the species as long‐ or short‐lived at 45 °C varied depending on the humidity at which storage behaviour was evaluated. Therefore, predictions of survival under desiccated conditions based on results obtained at high humidity might be problematic for some species.  相似文献   

11.
Current fuel loads and distribution suggest that fire events are infrequent and of a low intensity in the regenerated dry sclerophyll forests of the Victorian box‐ironbark ecosystem. However, many box‐ironbark species possess traits consistent with fire‐cued regeneration. It is unclear the degree to which human disturbance may have altered fire regimes in these forests. The infrequent and low‐intensity fire regime suggested by current fuel dynamics may pose a threat to the persistence of fire‐cued species. Obligate seeders such as those of the Fabaceae and Mimosaceae, common in box‐ironbark understoreys, may be particularly vulnerable if inter‐fire intervals exceed seed longevity. This study used seed burial trials to examine seed dormancy and longevity in five legume species to explore their capacity to regenerate under an infrequent, low‐intensity fire regime. All species displayed dormancy and longevity patterns consistent with other south‐east Australian legumes. Before burial, dormancy levels were high for all species (98–100%). After 3 years, storage under in situ and ex situ conditions, dormancy in Pultenaea prostrata remained at pre‐burial levels with virtually no seed becoming non‐dormant. Over time, some Acacia seed became non‐dormant under both in situ and ex situ storage, with the pattern varying among species. Longevity also varied between species. Variation in the dormancy and longevity patterns observed in these obligate seeder legumes suggests two strategies: (i) releasing a portion of soil‐stored seed from dormancy during the inter‐fire period to permit inter‐fire recruitment; and (ii) retaining most soil‐stored seed as dormant during the inter‐fire interval. Both strategies represent potential weaknesses under a long fire interval regime. The first relies on dormancy release translating to successful recruitment and requires ongoing inter‐fire input into the soil seed bank. The second relies on seed longevity exceeding the inter‐fire interval. Whether either is more suitable to coping with long‐term infrequent fire requires long‐term monitoring.  相似文献   

12.
Prescribed fire is an important management tool for reducing the dominance of non‐native species in annual grasslands; both annual and perennial native species show strong vegetative responses in the subsequent growing season. However, although the post‐fire contribution of native species to the seed bank is assumed to be larger than in pretreatment years, the effects on seed quality, particularly viability and longevity, are not well understood. In this study, I germinated Nassella pulchra (purple needlegrass) seed that had been stored for 10 years after collection from target plants receiving treatment combinations of summer burning and grazing by sheep. Seeds from burned plants were larger and had higher germinability than seed from unburned plants. Seeds from plants that were both burned and grazed had the highest germination. The strong relationship between long‐term viability and seed size suggests greater maternal provisioning and increased seed quality subsequent to burning and grazing. I conclude that managing for seed quality may be a useful approach for conservation of native species in California's critically endangered grassland habitats.  相似文献   

13.
Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols (TAG), i.e. the storage lipids. Phospholipase D (PLD) catalyses the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild‐type (WT) seeds stored for 33 months were non‐viable, 30%–50% of PLDα‐knockdown (PLD‐KD) soybean seeds stored for 33 months germinated. WT and PLD‐KD seeds increased in lysophospholipid levels and in TAG fatty acid unsaturation during ageing, but the levels of lysophospholipids increased more in WT than in PLD‐KD seeds. The loss of viability of WT seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural ageing, PLDα affects the soybean phospholipid profile and the TAG profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long‐term storage.  相似文献   

14.
A number of studies show contrasting results in how plant species with specific life‐history strategies respond to fragmentation, but a general analysis on whether traits affect plant species occurrences in relation to habitat area and isolation has not been performed. We used published data from forests and grasslands in north‐central Europe to analyse if there are general patterns of sensitivity to isolation and dependency of area for species using three traits: life‐span, clonality, and seed weight. We show that a larger share of all forest species was affected by habitat isolation and area as compared to grassland species. Persistence‐related traits, life‐span and clonality, were associated to habitat area and the dispersal and recruitment related trait, seed weight, to isolation in both forest and grassland patches. Occurrence of clonal plant species decreased with habitat area, opposite to non‐clonal plant species, and long‐lived plant species decreased with grassland area. The directions of these responses partly challenge some earlier views, suggesting that further decrease in habitat area will lead to a change in plant species community composition, towards relatively fewer clonal and long‐lived plants with large seeds in small forest patches and fewer clonal plants with small seeds in small grassland patches. It is likely that this altered community has been reached in many fragmented European landscapes consisting of small and isolated natural and semi‐natural patches, where many non‐clonal and short‐lived species have already disappeared. Our study based on a large‐scale dataset reveals general and useful insights concerning area and isolation effects on plant species composition that can improve the outcome of conservation and restoration efforts of plant communities in rural landscapes.  相似文献   

15.
Globally, over 7.4 million accessions of crop seeds are stored in gene banks, and conservation of genotypic variation is pivotal for breeding. We combined genetic and biochemical approaches to obtain a broad overview of factors that influence seed storability and ageing in barley (Hordeum vulgare). Seeds from a germplasm collection of 175 genotypes from four continents grown in field plots with different nutrient supply were subjected to two artificial ageing regimes. Genome‐wide association mapping revealed 107 marker trait associations, and hence, genotypic effects on seed ageing. Abiotic and biotic stresses were found to affect seed longevity. To address aspects of abiotic, including oxidative, stress, two major antioxidant groups were analysed. No correlation was found between seed deterioration and the lipid‐soluble tocochromanols, nor with oil, starch and protein contents. Conversely, the water‐soluble glutathione and related thiols were converted to disulphides, indicating a strong shift towards more oxidizing intracellular conditions, in seeds subjected to long‐term dry storage at two temperatures or to two artificial ageing treatments. The data suggest that intracellular pH and (bio)chemical processes leading to seed deterioration were influenced by the type of ageing or storage. Moreover, seed response to ageing or storage treatment appears to be significantly influenced by both maternal environment and genetic background.  相似文献   

16.
  • Soil seed banks are essential elements of plant population dynamics, enabling species to maintain genetic variability, withstand periods of adversity and persist over time, including for cactus species. However knowledge of the soil seed bank in cacti is scanty. In this study, over a 5‐year period we studied the seed bank dynamics, seedling emergence and nurse plant facilitation of Polaskia chende, an endemic columnar cactus of central Mexico.
  • P. chende seeds were collected for a wild population in Puebla, Mexico. Freshly collected seeds were sown at 25 °C and 12‐h photoperiod under white light, far‐red light and darkness. The collected seeds were divided in two lots, the first was stored in the laboratory and the second was use to bury seeds in open areas and beneath a shrub canopy. Seeds were exhumed periodically over 5 years. At the same time seeds were sown in open areas and beneath shrub canopies; seedling emergence and survival were recorded over different periods of time for 5 years.
  • The species forms long‐term persistent soil seed banks. The timing of seedling emergence via germination in the field was regulated by interaction between light, temperature and soil moisture. Seeds entered secondary dormancy at specific times according to the expression of environmental factors, demonstrating irregular dormancy cycling.
  • Seedling survival of P. chende was improved under Acacia constricta nurse plants. Finally, plant facilitation affected the soil seed bank dynamics as it promoted the formation of a soil seed bank, but not its persistence.
  相似文献   

17.
Sperm commonly compete within females to fertilize ova, but research has focused on short‐term sperm storage: sperm that are maintained in a female for only a few days or weeks before use. In nature, females of many species store sperm for months or years, often during periods of environmental stress, such as cold winters. Here we examine the outcome of sperm competition in the fruit fly Drosophila pseudoobscura, simulating the conditions in which females survive winter. We mated females to two males and then stored the female for up to 120 days at 4°C. We found that the outcome of sperm competition was consistent when sperm from two males was stored for 0, 1 or 30 days, with the last male to mate fathering most of the offspring. However, when females were stored in the cold for 120 days, the last male to mate fathered less than 5% of the offspring. Moreover, when sperm were stored long term the first male fathered almost all offspring even when he carried a meiotic driving sex chromosome that drastically reduces sperm competitive success under short‐term storage conditions. This suggests that long‐term sperm storage can radically alter the outcome of sperm competition.  相似文献   

18.
Abstract Analysis was performed of the richness and abundance of woody species, forbs, and annual grasses in the easily germinating soil seed bank (henceforth seed bank) in a mediterranean shrubland of central Chile. The effects of successional development after fire and by microsite type (underneath or outside shrubs) on the density of seeds in the soil, and the relationship of species abundance in the seed bank with its abundance in the above‐ground vegetation was examined. A total of 64 plant species were recorded in the seed bank, of which 44 were annual or biannual. Eight species were woody and another eight were perennial herbs. Four could not be identified to species level. The highest richness of established herbaceous species was recorded in late spring, with 31 species. The regeneration of the herbaceous vegetation was driven by the annual production of seeds and by a reserve of short‐lived propagules in the soil. Density of all germinating seeds was significantly higher during late spring and late summer. Density of grass seeds was greater during late spring, while that of all other species was greater during late summer. Annual grass seeds accumulated in higher proportion at exposed microsites rather than under woody canopy, and in young (< 5 years old) and intermediate‐age patches (10–20 years old) rather than in mature vegetation (30–50 years old). The abundance of established woody and herb species was uncorrelated with that of the seed bank.  相似文献   

19.
Haloxylon salicornicum and Salsola vermiculata (Amaranthaceae) are two perennial shrubs producing fruits with differently coloured perianths (yellow vs pink) on separate individuals. To test the impact of different storage periods (four, eight and twelve months) and temperature conditions (freezing, room temperature and natural field temperatures) on the seed germination of the two seed categories, germination tests were carried out on both species. For both species, collected from wild plants in the Arabian desert (Qatar), seed germination was tested under two photoperiods (light 12/12; dark 24 hours) at 20/30°C for winged (intact) and de‐winged seeds. For each species, all the considered factors (perianth colour, wing presence, photoperiod, storage period and storage conditions) had significant effects on seed germination (p < 0.001), while the interactions among factors varied in their level of significance depending on the species. In both species, yellow seeds germinated considerably better than the pink ones, the presence of wings slowed the germination, and both storage period and temperature conditions highly influenced their germination ability. Our results indicate that seeds from different perianth colours have different germination strategies to delay their germination and distribute the species through time by escaping germination time by imposing some kind of after‐ripening or seed dormancy. The variation in storage time and storage conditions might help in extending their germination period, where one set of seeds germinate immediately, and the other set of seeds becomes dormant and thus contributes to the formation of a soil seed bank for the long‐term recruitment of seedlings. This study highlights an ecological advantageous strategy for these two species growing in the unpredictable desert habitat.  相似文献   

20.
The spatial and temporal variability in the seed bank of a semiarid grassland in Colorado was evaluated using soil cores. Spatial variability in the soil storage of germinable seeds was assessed by sampling two shortgrass plant communities on sites with the same climatic conditions but differing in soil texture. Differences between communities were largely the result of annual plant seeds. Eight sampling dates over two years were used to assess temporal variability, which was more important to the storage of germinable seeds than spatial variability. Differences in the numbers of seeds stored were found between the two sampling years, and seasonally within years. The number of seedlings that emerged from the samples ranged from 122–2,748/m2. A poor correspondence was found between the species composition of the plant communities and the storage of germinable seeds; however, the species composition of the seeds produced on the sites tended to have a high similarity with the seedlings that emerged. Most of the species had a transient rather than a persistent presence in the seed bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号