首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneous environments are typically expected to maintain more genetic variation in fitness within populations than homogeneous environments. However, the accuracy of this claim depends on the form of heterogeneity as well as the genetic basis of fitness traits and how similar the assay environment is to the environment of past selection. Here, we measure quantitative genetic (QG) variance for three traits important for fitness using replicated experimental populations of Drosophila melanogaster evolving under four selective regimes: constant salt‐enriched medium (Salt), constant cadmium‐enriched medium (Cad), and two heterogeneous regimes that vary either temporally (Temp) or spatially (Spatial). As theory predicts, we found that Spatial populations tend to harbor more genetic variation than Temp populations or those maintained in a constant environment that is the same as the assay environment. Contrary to expectation, Salt populations tend to have more genetic variation than Cad populations in both assay environments. We discuss the patterns for QG variances across regimes in relation to previously reported data on genome‐wide sequence diversity. For some traits, the QG patterns are similar to the diversity patterns of ecological selected SNPs, whereas the QG patterns for some other traits resembled that of neutral SNPs.  相似文献   

2.
Environmental heterogeneity may be a general explanation for both the quantity of genetic variation in populations and the ecological niche width of individuals. To evaluate this hypothesis, I review the literature on selection experiments in heterogeneous environments. The niche width usually – but not invariably – evolves to match the amount of environmental variation, specialists evolving in homogeneous environments and generalists evolving in heterogeneous environments. The genetics of niche width are more complex than has previously been recognized, particularly with respect to the magnitude of costs of adaptation and the putative constraints on the evolution of generalists. Genetic variation in fitness is more readily maintained in heterogeneous environments than in homogeneous environments and this diversity is often stably maintained through negative frequency‐dependent selection. Moreover environmental heterogeneity appears to be a plausible mechanism for at least two well‐known patterns of species diversity at the landscape scale. I conclude that environmental heterogeneity is a plausible and possibly very general explanation for diversity across the range of scales from individuals to landscapes.  相似文献   

3.
4.
Abiotic environmental heterogeneity can promote the evolution of diverse resource specialists, which in turn may increase the degree of host–parasite specialization. We coevolved Pseudomonas fluorescens and lytic phage ?2 in spatially structured populations, each consisting of two interconnected subpopulations evolving in the same or different nutrient media (homogeneous and heterogeneous environments, respectively). Counter to the normal expectation, host–parasite specialization was significantly lower in heterogeneous compared with homogeneous environments. This result could not be explained by dispersal homogenizing populations, as this would have resulted in the heterogeneous treatments having levels of specialization equal to or greater than that of the homogeneous environments. We argue that selection for costly generalists is greatest when the coevolving species are exposed to diverse environmental conditions and that this can provide an explanation for our results. A simple coevolutionary model of this process suggests that this can be a general mechanism by which environmental heterogeneity can reduce rather than increase host–parasite specialization.  相似文献   

5.
A fundamental question in evolutionary biology is what promotes genetic variation at nonneutral loci, a major precursor to adaptation in changing environments. In particular, balanced polymorphism under realistic evolutionary models of temporally varying environments in finite natural populations remains to be demonstrated. Here, we propose a novel mechanism of balancing selection under temporally varying fitnesses. Using forward‐in‐time computer simulations and mathematical analysis, we show that cyclic selection that spatially varies in magnitude, such as along an environmental gradient, can lead to elevated levels of nonneutral genetic polymorphism in finite populations. Balanced polymorphism is more likely with an increase in gene flow, magnitude and period of fitness oscillations, and spatial heterogeneity. This polymorphism‐promoting effect is robust to small systematic fitness differences between competing alleles or to random environmental perturbation. Furthermore, we demonstrate analytically that protected polymorphism arises as spatially heterogeneous cyclic fitness oscillations generate a type of storage effect that leads to negative frequency dependent selection. Our findings imply that spatially variable cyclic environments can promote elevated levels of nonneutral genetic variation in natural populations.  相似文献   

6.
Recent studies in plant populations have found that environmental heterogeneity and phenotypic selection vary at local spatial scales. In this study, I ask if there is evolutionary change in response to environmental heterogeneity and, if so, whether the response occurs for characters or character plasticities. I used vegetative clones of Mimulus guttatus to create replicate populations of 75 genotypes. These populations were planted into the natural habitat where they differed in mean growth, flowering phenology, and life span. This phenotypic variation was used to define selective environments. There was variation in fitness (flower production) among genotypes across all planting sites and in genotype response to the selective environment. Offspring from each site were grown in the greenhouse in two water treatments. Because each population initially had the same genetic composition, variation in the progeny between selective environments reveals either evolutionary change in response to environmental heterogeneity or environmental maternal effects. Plants from experimental sites that flowered earlier, had shorter life spans and were less productive, produced offspring that had more flowers, on average, and were less plastic in vegetative allocation than offspring of longer-lived plants from high-productivity areas. However, environmental maternal effects masked phenotypic differences in flower production. Therefore, although there was evidence of genetic differentiation in both life-history characters and their plasticities in response to small-scale environmental heterogeneity, environmental maternal effects may slow evolutionary change. Response to local-scale selective regimes suggests that environmental heterogeneity and local variation in phenotypic selection may act to maintain genetic variation.  相似文献   

7.
Detecting adaptation involves comparing the performance of populations evolving in different environments. This detection may be confounded by effects due to the environment experienced by organisms prior to the test. We tested whether such confounding effects occur, using spider-mite selection lines on two novel hosts and one ancestral host, after 15 generations of selection. Mites were either sampled directly from the selection lines or subjected to a common juvenile or to a common maternal environment, mimicking the most frequent environmental manipulations. These environments strongly affected all life-history traits. Moreover, the detection of adaptation and correlated responses on the ancestral host was inconsistent among environments in almost 20% of the cases. Indeed, we did not detect responses unambiguously for any life-history trait. This inconsistency was due to differential environmental effects on lines from different selection regimes. Therefore, the detection of adaptation requires a careful control of these environmental effects.  相似文献   

8.
Gene flow is often considered to be one of the main factors that constrains local adaptation in a heterogeneous environment. However, gene flow may also lead to the evolution of phenotypic plasticity. We investigated the effect of gene flow on local adaptation and phenotypic plasticity in development time in island populations of the common frog Rana temporaria which breed in pools that differ in drying regimes. This was done by investigating associations between traits (measured in a common garden experiment) and selective factors (pool drying regimes and gene flow from other populations inhabiting different environments) by regression analyses and by comparing pairwise FST values (obtained from microsatellite analyses) with pairwise QST values. We found that the degree of phenotypic plasticity was positively correlated with gene flow from other populations inhabiting different environments (among‐island environmental heterogeneity), as well as with local environmental heterogeneity within each population. Furthermore, local adaptation, manifested in the correlation between development time and the degree of pool drying on the islands, appears to have been caused by divergent selection pressures. The local adaptation in development time and phenotypic plasticity is quite remarkable, because the populations are young (less than 300 generations) and substantial gene flow is present among islands.  相似文献   

9.
Environmental heterogeneity has often been implicated in the maintenance of genetic variation. However, previous research has not considered how environmental heterogeneity might affect the rate of adaptation to a novel environment. In this study, I used an insect-plant system to test the hypothesis that heterogeneous environments maintain more genetic variation in fitness components in a novel environment than do uniform environments. To manipulate recent ecological history, replicate populations of the dipteran leafminer Liriomyza trifolii were maintained for 20 generations in one of three treatments: a heterogeneous environment that contained five species of host plant, and two uniform environments that contained either a susceptible chrysanthemum or tomato. The hypothesis that greater genetic variance for survivorship and developmental time on a new host plant (a leafminer-resistant chrysanthemum) would be maintained in the heterogeneous treatment relative to the uniform environments was then tested with a sib-analysis and a natural selection experiment. Populations from the heterogeneous host plant treatment had no greater genetic variance in either larval survivorship or developmental time on the new host than did populations from either of the other treatments. Moreover, the rate of adaptation to the new host did not differ between the ecological history treatments, although the populations from the uniform chrysanthemum treatment had higher mean survivorship throughout the selection experiment. The estimates of the heritability of larval survivorship from the sib-analysis and selection experiment were quite similar. These results imply that ecologically realistic levels of environmental heterogeneity will not necessarily maintain more genetic variance than uniform environments when traits expressed in a particular novel environment are considered.  相似文献   

10.
SUMMARY Natural selection requires genetically based phenotypic variation to facilitate its action and cause adaptive evolution. It has become increasingly recognized that morphological development can become canalized likely as a result of selection. However, it is largely unknown how selection may influence canalization over ontogeny and differing environments. Changes in environments or colonization of a novel one is expected to result in adaptive divergence from the ancestral population when selection favors a new phenotypic optimum. In turn, a novel environment may also expose variation previously hidden from natural selection. We tested for changes in phenotypic variation over ontogeny and environments among ecomorphs of Arctic charr (Salvelinus alpinus) from two Icelandic lakes. Populations represented varying degrees of ecological specialization, with one lake population possessing highly specialized ecomorphs exhibiting a large degree of phenotypic divergence, whereas the other displayed more subtle divergence with more ecological overlap. Here we show that ecomorphs hypothesized to be the most specialized in each lake possess significant reductions in shape variation over ontogeny regardless of environmental treatment suggesting canalized development. However, environments did change the amount of shape variation expressed in these ecomorphs, with novel environments slowing the rate at which variation was reduced over ontogeny. Thus, environmental conditions may play an important role in determining the type and amount of genetically based phenotypic variation exposed to natural selection.  相似文献   

11.
The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions.  相似文献   

12.
The northern acorn barnacle Semibalans banlanoides occupies several intertidal microhabitats which vary greatly in their degree of physical stress. This environmental heterogeneity creates distinct selection regimes which can maintain genetic variation in natural populations. Despite considerable attention placed on the link between spatial variation in fitness and balancing selection at specific loci, experimental manipulations and fitness estimates for molecular polymorphisms have rarely been conducted in the wild. The aim of this transplant experiment was to manipulate the level of physical stress experienced by a cohort of barnacles in the field and then investigate the spatial variation in fitness for genotypes at three loci: two candidate allozymes and the mitochondrial DNA control region. The viability of mannose-6-phosphate isomerase (Mpi) genotypes was dependent on the level of physical stress experienced in the various treatments; alternative homozygotes were favoured in alternative high stress-low stress environments. In contrast, the fitness of genotypes at other loci was equivalent among treatments and unaffected by the manipulation. Evaluated in the light of balancing selection models, these data indicate that the presence of multiple environmental niches is sufficient to promote a stable Mpi polymorphism in barnacle populations and that allelic variation at this locus reflects the process of adaptation to the heterogeneous intertidal landscape.  相似文献   

13.
Adaptation of natural populations to variable environmental conditions may occur by changes in trait means and/or in the levels of plasticity. Theory predicts that environmental heterogeneity favors plasticity of adaptive traits. Here we investigated the performance in several traits of three sympatric Drosophila species freshly collected in two environments that differ in the heterogeneity of environmental conditions. Differences in trait means within species were found in several traits, indicating that populations differed in their evolutionary response to the environmental conditions of their origin. Different species showed distinct adaptation with a very different role of plasticity across species for coping with environmental changes. However, geographically distinct populations of the same species generally displayed the same levels of plasticity as induced by fluctuating thermal regimes. This indicates a weak and trait‐specific effect of environmental heterogeneity on plasticity. Furthermore, similar levels of plasticity were found in a laboratory‐adapted population of Drosophila melanogaster with a common geographic origin but adapted to the laboratory conditions for more than 100 generations. Thus, this study does not confirm theoretical predictions on the degree of adaptive plasticity among populations in relation to environmental heterogeneity but shows a very distinct role of species‐specific plasticity.  相似文献   

14.
Intraspecific trait variation within natural populations (i.e. intra‐population trait variation, IPTV) is the basic source for selection and can have significant ecological consequences. Higher IPTV may increase a population's niche breath and benefit interspecies competition under a resource‐limited environment, thus affecting the ability of a species to move into novel habitats. However, the reciprocal influences of variation in environmental conditions and phenotypic trait expression in spreading plant populations are not clearly defined. We propose that during invasion, IPTV and its relative change in response to key resource enrichment may increase with the resource deficit of invaded sites, and that this relationship may facilitate plant invasions into resource‐limited environments. We analyzed the invasion trend, IPTV and its response to water enrichment, and moisture variability among populations of an annual grass Brachypodium hybridum in California, United States. We incorporated a genotyping‐by‐sequencing approach, a common garden experiment that had two water level treatments, and public plant and climate databases. Our hypothesis was supported by the observation that for populations that invaded sites with higher spring moisture deficit, both their seed biomass IPTV (for the water‐enriched treatment only) and relative change of the IPTV across water treatments were larger when examined in the common garden experiment. A generally north to south spreading direction was found in these B. hybridum populations, towards a drier and warmer climate exhibiting higher moisture deficit for plant growth. Our results suggest a role for interactions between IPTV (rather than trait means) and environmental resource availability in promoting plant invasions, providing new insights into the significance of IPTV in shaping plant geographic distributions.  相似文献   

15.
Mexico has higher mammalian diversity than expected for its size and geographic position. High environmental hetero geneity throughout Mexico is hypothesized to promote high turnover rates (β‐diversity), thus contributing more to observed species richness and composition than within‐habitat (α) diversity. This is true if species are strongly associated with their environments, such that changes in environmental attributes will result in changes in species composition. Also, greater heterogeneity in an area will result in greater species richness. This hypothesis has been deemed false for bats, as their ability to fly would reduce opportunities for habitat specialization. If so, we would expect no significant relationships between 1) species composition and environmental variables, 2) species richness and environmental heterogeneity, 3) β‐diversity and environmental heterogeneity. We tested these predictions using 31 bat assemblages distributed across Mexico. Using variance partitioning we evaluated the relative contribution of vegetation, climate, elevation, horizontal heterogeneity (a variate including vegetation, climate, and elevational heterogeneity), spatial variation (lat‐long), and vertical hetero geneity (of vegetation strata) to variation in bat species composition and richness. Variation in vegetation explained 92% of the variation in species composition and was correlated with all other variables examined, indicating that bats respond directly to habitat composition and structure. Beta‐diversity and vegetational heterogeneity were significantly correlated. Bat species richness was significantly correlated with vertical, but not horizontal, heterogeneity. Nonetheless, neither horizontal nor vertical heterogeneity were random; both were related to latitude and to elevation. Variation in bat community composition and richness in Mexico were primarily explained by local landscape heterogeneity and environmental factors. Significant relationships between β‐diversity and environmental variation reveal differences in habitat specialization by bats, and explain their high diversity in Mexico. Understanding mechanisms acting along environmental or geographic gradients is as important for understanding spatial variation in community composition as studying mechanisms that operate at local scales.  相似文献   

16.
Plants can achieve an appropriate phenotype in particular conditions either constitutively or plastically, depending in part on the grain size of the environmental conditions being considered. Coarse-grained environmental variation should result in selection for local adaptation and no selection on plasticity to novel levels of the coarse-grained environmental factors. We tested the hypotheses that natural populations of the well-studied model system Arabidopsis thaliana are locally adapted to spatially coarse-grained environmental variation, and that the photoperiodic regime per se is at least partially responsible for that local adaptation, by exposing natural populations to photoperiodic regimes characteristic of their native and foreign (novel) environments. We also tested the hypothesis that plasticity to novel photoperiodic regimes should appear random. We found that populations showed evidence of local adaptation at a spatially coarse grain, although not to photoperiodic regime per se. We also found that the plasticities to novel photoperiodic regimes appeared random and did not generally show evidence of adaptive divergence. Our study highlights the need for caution in extrapolating from the finding of local adaptation to the causes of local adaptation.  相似文献   

17.
Niche breadth is predicted to correlate with environmental heterogeneity, such that generalists will evolve in heterogeneous environments and specialists will evolve in environments that vary less over space and time. We tested the hypothesis that lizards in a heterogeneous environment were generalists compared to lizards in a homogeneous environment. We compared niche breadths of greater short‐horned lizards by quantifying resource selection in terms of two different niche axes, diet (prey items and trophic level), and microhabitat (ground cover and shade cover) between two populations occurring at different elevations. We assessed the heterogeneity of dietary and microhabitat resources within each population's environment by quantifying the availability of prey items, ground cover, and shade cover in each environment. Overall, our results demonstrate that despite differences in resource heterogeneity between elevations, resource selection did not consistently differ between populations. Moreover, environmental heterogeneity was not associated with generalization of resource use. The low‐elevation site had a broader range of available prey items, yet lizards at the high‐elevation site demonstrated more generalization in diet. In contrast, the high‐elevation site had a broader range of available microhabitats, but the lizard populations at both sites were similarly generalized for shade cover selection and were similarly specialized for ground cover selection. Our results demonstrate that environmental heterogeneity of a particular resource does not necessarily predict the degree to which organisms specialize on that resource.  相似文献   

18.
Constant environments are often assumed to favor the evolution of specialization whereas exposure to changing environments may favor the evolution of generalists. Here we explored the phenotypic and molecular changes associated with evolving an RNA virus in constant versus fluctuating temperature environments. We used vesicular stomatitis virus (VSV) to determine whether selection at a constant temperature entails a performance trade‐off at an unselected temperature, whether virus populations evolve to be generalists when selected in deterministically changing temperature environments, and whether selection under stochastically changing temperatures prevents evolved generalization, such as by constraining the ability for viruses to adaptively improve. We observed that all VSV lineages evolved at constant temperatures showed fitness gains in their selected temperature with little evidence for trade‐offs in performance in the unselected environment. Evolution in deterministically and stochastically changing temperatures led to populations with the highest and lowest overall fitness gains, respectively. Sequence analysis revealed little evidence for convergent molecular evolution among lineages within the same treatment. Across all temperature treatments, the majority of genome substitutions occurred in the G (glycoprotein) gene, suggesting that this locus for the cell‐binding protein plays a key role in dictating VSV performance under changing temperature.  相似文献   

19.
Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill‐coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.  相似文献   

20.
We conducted 10 mark–recapture experiments in natural populations of Trinidadian guppies to test hypotheses concerning the role of viability selection in geographic patterns of male color variation. Previous work has reported that male guppies are more colorful in low‐predation sites than in high‐predation sites. This pattern of phenotypic variation has been theorized to reflect differences in the balance between natural (viability) selection that disfavors bright male color (owing to predation) and sexual selection that favors bright color (owing to female choice). Our results support the prediction that male color is disfavored by viability selection in both predation regimes. However, it does not support the prediction that viability selection against male color is weaker in low‐predation experiments. Instead, some of the most intense bouts of selection against color occurred in low‐predation experiments. Our results illustrate considerable spatiotemporal variation in selection among experiments, but such variation was not generally correlated with local patterns of color diversity. More complex selective interactions, possibly including the indirect effects of predators on variation in mating behavior, as well as other environmental factors, might be required to more fully explain patterns of secondary sexual trait variation in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号