首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Levin DA 《Annals of botany》2012,109(3):613-620
BACKGROUND: The trailing edges of species ranges are becoming a subject of increasing interest as the environment changes due to global warming. Trailing edge populations are likely to face extinction because of a decline in numbers and an inability to evolve new adaptations with sufficient speed. Discussions of character change in the trailing edge have focused on physiological, exomorphic and phenological traits. The mating pattern within populations has not been part of the discourse, in spite of the fact that the mating pattern may affect the ability of populations to respond to environmental change and to maintain their sizes. In this paper, the case is made that a substantial increase in self-fertilization rates may occur via plastic responses to stress. SCOPE AND CONCLUSIONS: Small populations on the trailing edge are especially vulnerable to environmental change because of inadequate levels of cross-fertilization. Evidence is presented that a deficiency of cross-seed production is due to inadequate pollinator services and a paucity of self-incompatibility alleles within populations. Evidence also is presented that if plants are self-compatible, self-fertilization may compensate in part for this deficiency through a stress-induced increase in levels of self-compatibility and stress-induced alterations in floral morphology that elevate self-pollination. Whereas increased self-fertility may afford populations the time to adapt to their changing environments, it can be concluded that increased selfing is not a panacea for the ills of environmental change, because it will lead to substantial reductions in genetic diversity, which may render adaptation unlikely.  相似文献   

4.
While it is generally recognized that noncontiguous (long‐distance) dispersal of small numbers of individuals is important for range expansion over large geographic areas, it is often assumed that colonization on more local scales proceeds by population expansion and diffusion dispersal (larger numbers of individuals colonizing adjacent sites). There are few empirical studies of dispersal modes at the front of expanding ranges, and very little information is available on dispersal dynamics at smaller geographic scales where we expect contiguous (diffusion) dispersal to be prevalent. We used highly polymorphic genetic markers to characterize dispersal modes at a local geographic scale for populations at the edge of the range of a newly invasive grass species (Brachypodium sylvaticum) that is undergoing rapid range expansion in the Pacific Northwest of North America. Comparisons of Bayesian clustering of populations, patterns of genetic diversity, and gametic disequilibrium indicate that new populations are colonized ahead of the invasion front by noncontiguous dispersal from source populations, with admixture occurring as populations age. This pattern of noncontiguous colonization was maintained even at a local scale. Absence of evidence for dispersal among adjacent pioneer sites at the edge of the expanding range of this species suggests that pioneer populations undergo an establishment phase during which they do not contribute emigrants for colonization of neighbouring sites. Our data indicate that dispersal modes change as the invasion matures: initial colonization processes appear to be dominated by noncontiguous dispersal from only a few sources, while contiguous dispersal may play a greater role once populations become established.  相似文献   

5.
Plant range boundaries are generally considered to reflect abiotic conditions; however, a rise in negative or decline in positive species interactions at range margins may contribute to these stable boundaries. While evidence suggests that pollinator mutualisms may decline near range boundaries, little is known about other important plant mutualisms, including microbial root symbionts. Here, we used molecular methods to characterize root‐associated fungal communities in populations of two related temperate tree species from across the species’ range in the eastern United States. We found that ectomycorrhizal fungal richness on plant roots declined with distance from the centre of the host species range. These patterns were not evident in nonmycorrhizal fungal communities on roots nor in fungal communities in bulk soil. Climatic and soil chemical variables could not explain these biogeographic patterns, although these abiotic gradients affected other components of the bulk soil and rhizosphere fungal community. Depauperate ectomycorrhizal fungal communities may represent an underappreciated challenge to marginal tree populations, especially as rapid climate change pushes these populations outside their current climate niche.  相似文献   

6.
Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predictors of range size, but macroecological patterns can also be distorted by human activities. Here, we analyse the role of extrinsic (biogeography, habitat state, climate, human pressure) and intrinsic (biology) variables in predicting range size of the world's terrestrial mammals. In particular, our aim is to compare the predictive ability of human pressure vs. species biology. We evaluated the ability of 19 intrinsic and extrinsic variables in predicting range size for 4867 terrestrial mammals. We repeated the analyses after excluding restricted‐range species and performed separate analyses for species in different biogeographic realms and taxonomic groups. Our model had high predictive ability and showed that climatic variables and human pressures are the most influential predictors of range size. Interestingly, human pressures predict current geographic range size better than biological traits. These findings were confirmed when repeating the analyses on large‐ranged species, individual biogeographic regions and individual taxonomic groups. Climatic and human impacts have determined the extinction of mammal species in the past and are the main factors shaping the present distribution of mammals. These factors also affect other vertebrate groups globally, and their influence on range size may be similar as well. Measuring climatic and human variables can allow to obtain approximate range size estimations for data‐deficient and newly discovered species (e.g. hundreds of mammal species worldwide). Our results support the need for a more careful consideration of the role of climate change and human impact – as opposed to species biological characteristics – in shaping species distribution ranges.  相似文献   

7.
The distinct processes of gene flow via seeds and pollen in hermaphrodite plants provide a biological basis for interpreting their different roles in expanding a species' range. A species' range is primarily expanded through the colonization process by seed dispersal and followed by the joint effects of both seed and pollen flow. Here we examined the effects of seed and pollen flow on shaping a species' distribution in one-dimensional space. Our results demonstrate that pollen flow can enhance range expansion when immigrating genes are adaptive to recipient populations, but can shrink a species' range when immigrating genes are maladaptive. The incompletely purging of maladaptive genes from immigrating pollen grains at the gametophyte stage can reinforce the biological barrier to range expansion. The linkage disequilibria attained by immigrating seeds and pollen grains indirectly amplify the effects of the reaction component and further limit a species' range. The cumulative effect from multiple loci each with a small effect can be substantial on altering a species' range when these genes are maladaptive. These theoretical predictions can help understand the role of pollen flow that is incapable of colonizing new habitats in range expansion.  相似文献   

8.
9.
10.
Range dynamics causes mismatches between a species’ geographical distribution and the set of suitable environments in which population growth is positive (the Hutchinsonian niche). This is because source–sink population dynamics cause species to occupy unsuitable environments, and because environmental change creates non‐equilibrium situations in which species may be absent from suitable environments (due to migration limitation) or present in unsuitable environments that were previously suitable (due to time‐delayed extinction). Because correlative species distribution models do not account for these processes, they are likely to produce biased niche estimates and biased forecasts of future range dynamics. Recently developed dynamic range models (DRMs) overcome this problem: they statistically estimate both range dynamics and the underlying environmental response of demographic rates from species distribution data. This process‐based statistical approach qualitatively advances biogeographical analyses. Yet, the application of DRMs to a broad range of species and study systems requires substantial research efforts in statistical modelling, empirical data collection and ecological theory. Here we review current and potential contributions of these fields to a demographic understanding of niches and range dynamics. Our review serves to formulate a demographic research agenda that entails: (1) advances in incorporating process‐based models of demographic responses and range dynamics into a statistical framework, (2) systematic collection of data on temporal changes in distribution and abundance and on the response of demographic rates to environmental variation, and (3) improved theoretical understanding of the scaling of demographic rates and the dynamics of spatially coupled populations. This demographic research agenda is challenging but necessary for improved comprehension and quantification of niches and range dynamics. It also forms the basis for understanding how niches and range dynamics are shaped by evolutionary dynamics and biotic interactions. Ultimately, the demographic research agenda should lead to deeper integration of biogeography with empirical and theoretical ecology.  相似文献   

11.
Species–area curves from islands and other isolates often differ in shape from sample‐area curves generated from mainlands or sections of isolates (or islands), especially at finer scales. We examine two explanations for this difference: (1) the small‐island effect (SIE), which assumes the species–area curve is composed of two distinctly different curve patterns; and (2) a sigmoid or depressed isolate species–area curve with no break‐points (in arithmetic space). We argue that the application of Ockham’s razor – the principle that the simplest, most economical explanation for a hypothesis should be accepted over less parsimonious alternatives – leads to the conclusion that the latter explanation is preferable. We hold that there is no reason to assume the ecological factors or patterns that affect the shapes of isolate (or island) curves cause two distinctly different patterns. This assumption is not required for the alternative, namely that these factors cause a single (though depressed) isolate species–area curve with no break‐points. We conclude that the theory of the small‐island effect, despite its present standing as an accepted general pattern in nature, should be abandoned.  相似文献   

12.
1. The increase of species richness with the area of the habitat sampled, that is the species–area relationship, and its temporal analogue, the species–time relationship (STR), are among the few general laws in ecology with strong conservation implications. However, these two scale‐dependent phenomena have rarely been considered together in biodiversity assessment, especially in freshwater systems. 2. We examined how the spatial scale of sampling influences STRs for a Central‐European stream fish assemblage (second‐order Bernecei stream, Hungary) using field survey data in two simulation‐based experiments. 3. In experiment one, we examined how increasing the number of channel units, such as riffles and pools (13 altogether), and the number of field surveys involved in the analyses (12 sampling occasions during 3 years), influence species richness. Complete nested curves were constructed to quantify how many species one observes in the community on average for a given number of sampling occasions at a given spatial scale. 4. In experiment two, we examined STRs for the Bernecei fish assemblage from a landscape perspective. Here, we evaluated a 10‐year reach level data set (2000–09) for the Bernecei stream and its recipient watercourse (third‐order Kemence stream) to complement results on experiment one and to explore the mechanisms behind the observed patterns in more detail. 5. Experiment one indicated the strong influence of the spatial scale of sampling on the accumulation of species richness, although time clearly had an additional effect. The simulation methodology advocated here helped to estimate the number of species in a diverse combination of spatial and temporal scale and, therefore, to determine how different scale combinations influence sampling sufficiency. 6. Experiment two revealed differences in STRs between the upstream (Bernecei) and downstream (Kemence) sites, with steeper curves for the downstream site. Equations of STR curves were within the range observed in other studies, predominantly from terrestrial systems. Assemblage composition data suggested that extinction–colonisation dynamics of rare, non‐resident (i.e. satellite) species influenced patterns in STRs. 7. Our results highlight that the determination of species richness can benefit from the joint consideration of spatial and temporal scales in biodiversity inventory surveys. Additionally, we reveal how our randomisation‐based methodology may help to quantify the scale dependency of diversity components (α, β, γ) in both space and time, which have critical importance in the applied context.  相似文献   

13.
Predictions of climate‐related shifts in species ranges have largely been based on correlative models. Due to limitations of these models, there is a need for more integration of experimental approaches when studying impacts of climate change on species distributions. Here, we used controlled experiments to identify physiological thresholds that control poleward range limits of three species of mangroves found in North America. We found that all three species exhibited a threshold response to extreme cold, but freeze tolerance thresholds varied among species. From these experiments, we developed a climate metric, freeze degree days (FDD), which incorporates both the intensity and the frequency of freezes. When included in distribution models, FDD accurately predicted mangrove presence/absence. Using 28 years of satellite imagery, we linked FDD to observed changes in mangrove abundance in Florida, further exemplifying the importance of extreme cold. We then used downscaled climate projections of FDD to project that these range limits will move northward by 2.2–3.2 km yr?1 over the next 50 years.  相似文献   

14.
15.
Climate changes during the Pleistocene produced shifts, reductions, and expansions of biomes that, in turn, have been hypothesized to have driven speciation and extinction and shaped patterns of biodiversity. Here, we explore effects of Late Pleistocene climatic changes on environmentally and geographically cohesive areas mimicking species’ distributions. We analyzed persistence of these ‘species’ over the transition from the warm Last Interglacial period to the cool Last Glacial Maximum period to warm present‐day conditions, for four levels of environmental restriction (5, 10, 15 and 20% of overall variation; akin to niche breadths). African environments were overall much less conserved over these periods than those of South America, matching diversity contrasts between the two continents. Results thus indicate that biodiversity patterns relate closely to historical patterns of environmental grain and their stability through time; this view is a step toward an integral understanding of the role of environmental and geographic factors in the process of biological diversification.  相似文献   

16.
Reproductive success and its determinants are difficult to infer for wild populations of species with no parental care where behavioural observations are difficult or impossible. In this study, we characterized the breeding system and provide estimates of individual reproductive success under natural conditions for an exhaustively sampled stream‐resident brown trout (Salmo trutta) population. We inferred parentage using a full probability Bayesian model that combines genetic (microsatellite) with phenotypic data. By augmenting the potential parents file with inferred parental genotypes from sib‐ship analysis in cases where large families had unsampled parents, we could make more precise inference on variance of family size. We observed both polygamous and monogamous matings and large reproductive skew for both sexes, particularly in males. Correspondingly, we found evidence for sexual selection on body size for both sexes. We show that the mating system of brown trout has the potential to be very flexible and we conjecture that environmental uncertainty could be driving the evolution and perhaps select for the maintenance of plasticity of the mating system in this species.  相似文献   

17.
We studied home ranges, habitat use and survival of radio‐tagged Nahan’s Francolin in Budongo Forest Reserve, Uganda during July 1998–December 1999. We studied Nahan’s Francolin in an unlogged nature reserve, in a compartment logged in 1947–1952 and in a compartment logged twice, in 1963–1964 and 1996–1997. Mean home range was 14.22 ± 1.35 ha (n = 17). The home range was significantly larger in the nature reserve than in the recently logged compartment. Birds spent more time during the day in areas with high understorey vegetation density but preferred to roost and nest between buttresses of large trees. Understorey vegetation density and canopy openness were significantly greater in the logged forest than in the nature reserve. Annual survival of adult Nahan’s Francolins was 20.09 ± 7.33% (n = 23). Our results suggest that the maintenance of large trees and areas with high understorey vegetation density are both important for Nahan’s Francolin.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号