首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat loss and degradation, driven largely by agricultural expansion and intensification, present the greatest immediate threat to biodiversity. Tropical forests harbour among the highest levels of terrestrial species diversity and are likely to experience rapid land-use change in the coming decades. Synthetic analyses of observed responses of species are useful for quantifying how land use affects biodiversity and for predicting outcomes under land-use scenarios. Previous applications of this approach have typically focused on individual taxonomic groups, analysing the average response of the whole community to changes in land use. Here, we incorporate quantitative remotely sensed data about habitats in, to our knowledge, the first worldwide synthetic analysis of how individual species in four major taxonomic groups—invertebrates, ‘herptiles’ (reptiles and amphibians), mammals and birds—respond to multiple human pressures in tropical and sub-tropical forests. We show significant independent impacts of land use, human vegetation offtake, forest cover and human population density on both occurrence and abundance of species, highlighting the value of analysing multiple explanatory variables simultaneously. Responses differ among the four groups considered, and—within birds and mammals—between habitat specialists and habitat generalists and between narrow-ranged and wide-ranged species.  相似文献   

2.
Despite the hegemony of pastoralism over most of Australia’s tropical savannas, its impacts upon biodiversity are poorly known. There is even less knowledge about the impacts of military training, a recent, but rapidly expanding, alternative land use. We compare impacts of these land uses upon mammals, birds, reptiles and frogs at a site in north‐eastern Australia, with sampling from 24 quadrats stratified by four landscape positions (upper slope to riparian) and three current land‐use types (pastoralism, military training and undisturbed). Prior to exclusion in 1967, the whole study area had been subjected to grazing over the course of approximately 100 years, so differences observed strictly reflect responses to changed land use (largely cessation from grazing) over the period of 32 years subsequent to the imposition of the present regime. The four classes of vertebrates showed contrasting responses. Frog distribution was unrelated to land use, but strongly associated with landscape position. Reptiles showed a very strong response to land‐use type but not to landscape position. The total abundance and richness of reptiles was greater in ungrazed (i.e. military and undisturbed) than in grazed quadrats. The total abundance and species richness of birds varied strongly with landscape position but was unrelated to land use. However, many individual bird species showed significant responses to land‐use type, and bird species composition was significantly related to both land‐use type and landscape position. The richness of the mammal fauna was weakly related to landscape position and not related to land‐use type. A few individual mammal species showed significant responses to either or both factors, but mammal species composition was significantly (albeit weakly) related only to land‐use type. With due regard to some interpretative constraints in the study design, and the history of the site prior to this study, these results suggest that pastoralism leads to a substantial rearrangement of the vertebrate fauna, and particularly so for reptiles and those mammals and birds associated with the ground and understorey layers. Given the extent of pastoralism across the tropical savannas, these results suggest that this industry has contributed to major and widespread change in the savanna fauna. In contrast to pastoralism, military land use (at least at the relatively low intensity examined here) produced little change in vertebrate assemblages.  相似文献   

3.
The world is currently experiencing a period of rapid, human‐driven biodiversity loss. Over the past decade, numerous metrics for biodiversity have been used to create indicators to track change in biodiversity. However, our ability to predict future changes has been limited. In this study, we use two very different models to predict the status and possible futures for the composition and diversity of ecological assemblages in African tropical grasslands and savannas under land‐use change. We show that ecological assemblages are affected more by land use in African grasslands and savannas than in other biomes. We estimate that average losses of assemblage composition and diversity are already between 9.7 and 42.0%, depending on the model and measure used. If current socio‐economic trajectories continue (‘business‐as‐usual’), the likely associated land‐use changes are predicted to lead to a further 5.6–12.3% loss of assemblage composition and diversity. In contrast, a scenario that assumes more efficient use of agricultural areas (thus requiring a smaller total area) could be associated with a partial reversal ? of as much as 3.2% ? of past losses. While the agriculture that causes the majority of land‐use change is an important source of economic growth, projections of the effects of land use on ecological assemblages can allow for more informed decisions.  相似文献   

4.

Aim

Climate and land use changes are two major pervasive and growing global causes of rapid changes in the distribution patterns of biodiversity, challenging the future effectiveness of protected areas (PAs), which were mainly designed based on a static view of biodiversity. Therefore, evaluating the effectiveness of protected areas for protecting the species threatened by climate and land use change is critical for future biodiversity conservation.

Location

China.

Methods

Here, using distributions of 200 Chinese Theaceae species and ensemble species distribution models, we identified species threatened by future climate and land use change (i.e. species with predicted loss of suitable habitat ≥30%) under scenarios incorporating climate change, land use change and dispersal. We then estimate the richness distribution patterns of threatened species and identify priority conservation areas and conservation gaps of the current PA network.

Results

Our results suggest that 36.30%–51.85% of Theaceae species will be threatened by future climate and land use conditions and that although the threatened species are mainly distributed at low latitudes in China under both current and future periods, the mean richness of the threatened species per grid cell will decline by 0.826–3.188 species by the 2070s. Moreover, we found that these priority conservation areas are highly fragmented and that the current PA network only covers 14.21%–20.87% of the ‘areas worth exploring’ and 6.91%–7.91% of the ‘areas worth attention’.

Main Conclusions

Our findings highlight the necessity of establishing new protected areas and ecological corridors in priority conservation areas to protect the threatened species. Moreover, our findings also highlight the importance of taking into consideration the potential threatened species under future climate and land use conditions when designating priority areas for biodiversity conservation.  相似文献   

5.
Aim Human‐related pressures are growing in species‐rich regions and pose a threat to the conservation of biodiversity. Here, we use the available data for five taxonomic groups (ferns, monocotyledons, dicotyledons, birds and monkeys) to exemplify a procedure directed to discriminate the degree of conflict between human actions and biodiversity. Location Bioko island, Equatorial Guinea. Methods Using bioclimatic envelope modelling techniques devoted to produce estimations of the potential distributions, we generated geographical representations of the variation in the total number of species as well as in the number of endemic and threatened species. We then employed partial regression techniques to determine how and to what extent current environmental, habitat and human‐derived variables are associated with these potential species richness values. Results Although the type of associations we looked for was sometimes difficult to discern since the same patterns could be explained by different types of variables, our results show that potential species richness values are generally positively associated with human‐related factors (mainly agriculture and bushmeat hunting activities), suggesting that the localities with environmental conditions favourable to higher species richness tend to be those exploited by humans. Main conclusions We propose that the combined use of distribution models and partial regression techniques can support a better understanding of the relationship between species occurrences/preferences and human‐related factors and inform future conservation initiatives, particularly in small but hyperdiverse territories, in which dispersal limitations do not play a prominent role.  相似文献   

6.
Global warming and land‐use change are expected to be additive threats to global diversity, to which insects contribute the highest proportion. Insects are strongly influenced by temperature but also require specific habitat resources, and thus interaction between the two factors is likely. We selected saproxylic beetles as a model group because their life cycle depends on dead wood, which is highly threatened by land use. We tested the extent to which higher temperatures compensate for the negative effects of low amounts of dead wood on saproxylic beetle species richness (Temperature–Dead wood compensation hypothesis) on both a macroclimate and a topoclimate scale (north‐ and south‐facing slopes). We analyzed 1404 flight‐interception trap catches across Europe to test for interaction effects of temperature and dead‐wood amount on species richness. To experimentally test our findings from the activity trap data, we additionally reared beetles from 80 bundles of dead wood initially exposed at high and low elevations. At the topoclimate scale, we analyzed trap catches and reared beetles from dead wood exposed in 20 forest stands on south‐facing and north‐facing slopes in one region. On the macroscale, both temperature and dead‐wood amount positively affected total and threatened species richness independently, but their interaction was significantly negative, indicating compensation. On both scales and irrespective of the method, species richness decreased with temperature decline. Our observation that increasing temperature compensates for lower amounts of dead wood has two important implications. First, managers of production forests should adapt their dead‐wood enrichment strategy to site‐specific temperature conditions. Second, an increase in temperature will compensate at least partially for poor habitat conditions in production forests. Such a perspective contrasts the general assumption of reinforcing impacts of global warming and habitat loss on biodiversity, but it is corroborated by recent range expansions of threatened beetle species.  相似文献   

7.
Species–area relationships (SARs) provide an avenue to model patterns of species richness and have recently been shown to vary substantially across regions of different climate, vegetation, and land cover. Given that a large proportion of the globe has been converted to agriculture, and considering the large variety in agricultural management practices, a key question is whether global SARs vary across gradients of agricultural intensity. We developed SARs for mammals that account for geographic variation in biomes, land cover and a range of land‐use intensity indicators representing inputs (e.g. fertilizer, irrigation), outputs (e.g. yields) and system‐level measures of intensity (e.g. human appropriation of net primary productivity – HANPP). We systematically compared the resulting SARs in terms of their predictive ability. Our global SAR with a universal slope was significantly improved by the inclusion of any one of the three variable types: biomes, land cover, and land‐use intensity. The latter, in the form of human appropriation of net primary productivity (HANPP), performed as well as biomes and land‐cover in predicting species richness. Other land‐use intensity indicators had a lower predictive ability. Our main finding that land‐use intensity performs as well as biomes and land cover in predicting species richness emphasizes that human factors are on a par with environmental factors in predicting global patterns of biodiversity. While our broad‐scale study cannot establish causality, human activity is known to drive species richness at a local scale, and our findings suggest that this may hold true at a global scale. The ability of land‐use intensity to explain variation in SARs at a global scale had not previously been assessed. Our study suggests that the inclusion of land‐use intensity in SAR models allows us to better predict and understand species richness patterns.  相似文献   

8.
Ecosystems are under increasing pressure from human activities, with land use and land‐use change at the forefront of the drivers that provoke global and regional biodiversity loss. The first step in addressing the challenge of how to reverse the negative outlook for the coming years starts with measuring environmental loss rates and assigning responsibilities. Pinpointing the global pressures on biodiversity is a task best addressed using holistic models such as Life Cycle Assessment (LCA). LCA is the leading method for calculating cradle‐to‐grave environmental impacts of products and services; it is actively promoted by many public policies, and integrated as part of environmental information systems within private companies. LCA already deals with the potential biodiversity impacts of land use, but there are significant obstacles to overcome before its models grasp the full reach of the phenomena involved. In this review, we discuss some pressing issues that need to be addressed. LCA mainly introduces biodiversity as an endpoint category modeled as a loss in species richness due to the conversion and use of land over time and space. The functional and population effects on biodiversity are mostly absent due to the emphasis on species accumulation with limited geographic and taxonomical reach. Current land‐use modeling activities that use biodiversity indicators tend to oversimplify the real dynamics and complexity of the interactions of species among each other and with their habitats. To identify the main areas for improvement, we systematically reviewed LCA studies on land use that had findings related to global change and conservation ecology. We provide suggestion as to how to address some of the issues raised. Our overall objective was to encourage companies to monitor and take concrete steps to address the impacts of land use on biodiversity on a broader geographical scale and along increasingly globalized supply chains.  相似文献   

9.
Forestry plantations represent about 4 % of the global land cover and demand for wood is steadily increasing worldwide. Impacts of forest plantations on biodiversity are controversial; forest plantations could positively influence biodiversity by producing a buffer zone between native forests and agriculture, while replacement of native forests with plantations could reduce biodiversity. Chile is one of the main producers of wood worldwide, and production is largely based on intensively managed monocultures of exotic tree species. Only a few studies have looked at the effects of forestry plantations on biodiversity in Chile, mainly focusing on pine plantations. The aim of this study was to characterize habitat use and richness of bats between native forests, eucalyptus plantations and grasslands in a biodiversity hotspot in southern Chile to determine how land use affects an important mammalian taxa. We found no difference in use or richness of bats in eucalyptus plantations versus native forests. Regional context within the larger Valdivian watershed (Andes, central valley, coastal range) had a stronger influence on bat activity and richness than land use type (native forest, plantation, grassland), with the Andean region being the most diverse and where most bat activity is concentrated. Our results suggest that the composition and structure of the surrounding landscape mosaic may be fundamental to determine the impacts of forestry and human land use on biodiversity.  相似文献   

10.
The growing human enterprise has sparked greater interest in identifying ecological thresholds in land use conversion beyond which populations or communities demonstrate abrupt nonlinear or substantive change in species composition. Such knowledge remains fundamental to understanding ecosystem resilience to environmental degradation and informing land use planning into the future. Confronting this challenge has been largely limited to inferring thresholds in univariate metrics of species richness and indices of biotic integrity and has largely ignored how land use legacies of the past may shape community responses of today. By leveraging data for 13,069 riverine sites from temperate, subtropical, and boreal climate zones on four continents, we characterize patterns of community change along diverse gradients of urbanization and agricultural land use, and identity threshold values beyond which significant alterations in species composition exists. Our results demonstrate the apparent universality by which freshwater fish communities are sensitive to even low levels of watershed urbanization (range of threshold values: 1%–12%), but consistently higher (and more variable) levels of agricultural development (2%–37%). We demonstrated that fish community compositional thresholds occurred, in general, at lower levels of watershed urbanization and agriculture when compared to threshold responses in species richness. This supports the notion that aggregated taxon‐specific responses may better reflect the complexity of assemblage responses to land use development. We further revealed that the ghost of land use past plays an important role in moderating how current‐day fish communities respond to land use intensification. Subbasins of the United States experiencing greater rates of past land use change demonstrated higher current‐day thresholds. Threshold responses of community composition, such as those identified in our study, illustrate the need for globally coordinated efforts to prioritize country‐specific management and policy initiatives that ensure that freshwater fish diversity is not inevitably lost in the future.  相似文献   

11.
The impacts of humans on biodiversity tend to be exacerbated by the coincidence of human settlement with areas of high biological value, as demonstrated by regional, continental and global analyses. We present a global analysis, intersecting Endemic Bird Areas (EBAs) with fine‐scale data on changes in agricultural land use for the past 300 years and for four scenarios projecting land use up to 2050. The proportion of land in agricultural use is currently greater in EBAs than in the rest of the world (42.0% vs. 37.0%, respectively), has been historically (in 1700: 9.1% vs. 5.7%, through to 1900: 43.4% vs. 32.1%) and looks set to remain so in the future (44.6–56.1% vs. 37.0–43.2%; depending on scenario). However, the future course of agricultural expansion is more scenario‐dependent in EBAs than in the rest of the world, indicating that development policies have considerable potential to either ease or exacerbate the disproportionate impact of agriculture on areas of highest biological value.  相似文献   

12.
Balancing the production of food, particularly meat, with preserving biodiversity and maintaining ecosystem services is a major societal challenge. Research into the contrasting strategies of land sparing and land sharing has suggested that land sparing—combining high‐yield agriculture with the protection or restoration of natural habitats on nonfarmed land—will have lower environmental impacts than other strategies. Ecosystems with long histories of habitat disturbance, however, could be resilient to low‐yield agriculture and thus fare better under land sharing. Using a wider suite of species (birds, dung beetles and trees) and a wider range of livestock‐production systems than previous studies, we investigated the probable impacts of different land‐use strategies on biodiversity and aboveground carbon stocks in the Yucatán Peninsula, Mexico—a region with a long history of habitat disturbance. By modelling the production of multiple products from interdependent land uses, we found that land sparing would allow larger estimated populations of most species and larger carbon stocks to persist than would land sharing or any intermediate strategy. This result held across all agricultural production targets despite the history of disturbance and despite species richness in low‐ and medium‐yielding agriculture being not much lower than that in natural habitats. This highlights the importance, in evaluating the biodiversity impacts of land use, of measuring population densities of individual species, rather than simple species richness. The benefits of land sparing for both biodiversity and carbon storage suggest that safeguarding natural habitats for biodiversity protection and carbon storage alongside promoting areas of high‐yield cattle production would be desirable. However, delivering such landscapes will probably require the explicit linkage of livestock yield increases with habitat protection or restoration, as well as a deeper understanding of the long‐term sustainability of yields, and research into how other societal outcomes vary across land‐use strategies.  相似文献   

13.
Biological diversity can be measured using various metrics, but existing knowledge of spatial patterns of diversity is largely based on species counts. There is increasing evidence that trends in species richness might not match trends in other biodiversity metrics, such as morphological diversity. Here, we use data from a large group of Indo-Pacific gastropods (family Strombidae) to show that the species richness of a region is a poor predictor of the morphological diversity present there. Areas with only a few species can harbour an impressive array of morphologies and, conversely, morphological diversity in the most species-rich regions is no higher than in regions with half their taxonomic diversity. Biological diversity in the Pacific is highly threatened by human activity and our results indicate that, in addition to species richness, morphological diversity metrics need to be incorporated into conservation decisions.  相似文献   

14.
The magnitude of human impact on biodiversity makes producing information on the conservation status of wildlife an urgent matter. Despite the increasingly widespread use of camera trapping for mammal monitoring, there are no assessments on how this tool helps fill specific knowledge gaps. We reviewed studies published between 2000 and 2018 in Mexico, a country with very high mammalian diversity, and analysed their spatial distribution. Specifically, we looked at how the number of studies at the level of the country’s states related to a) each state’s medium/large mammalian species richness and b) each state’s proportion of mammalian species classified as threatened at the national and global level. Moreover, we assessed the occurrence of studies within protected areas, terrestrial ecoregions, and mammal geographic provinces. Finally, we recorded the proportion of studies focused on estimating mammal population density and community richness that incorporated measures of variability and completeness, respectively. Based on a compilation of 191 papers published in 48 journals, we found a weak relationship between the number of studies and mammalian species richness and no clear evidence of a relationship between the number of studies and the proportion of threatened species. The studies concentrated on a few mammalian species, protected areas, forested ecoregions, and mammal geographic provinces in the country’s southern region. More than half of the studies that conducted population density estimations included measures of variability, but only one-third of the studies estimating species richness included completeness assessments. There is a need for more coordinated efforts to take full advantage of camera traps in order to produce more comprehensive and standardised surveys of the status of mammalian fauna at the country level.  相似文献   

15.
The origins of mammalian biodiversity in the New World tropics extend back >25 million years, represented by clades that were originally endemic to South America, North America or Africa. Since then, these mammalian clades have been greatly affected by climatic, physiographic and biological changes. The Isthmian land bridge, which formed approximately 4 million years ago between North and South America, resulted in the maximum diversity of 17 New World tropical mammalian orders during the Great American Interchange. This diversity was subsequently reduced to 12 orders as a result of competition, climate change and human impacts. Here, I discuss how the fossil record is now providing a rich archive of past biodiversity, presenting unique evidence of the origins, macroevolution, macro-ecology and extinction of New World tropical mammals.  相似文献   

16.
Tropical forests store large amounts of carbon and high biodiversity, but are being degraded at alarming rates. The emerging global Forest and Landscape Restoration (FLR) agenda seeks to limit global climate change by removing carbon dioxide from the atmosphere through the growth of trees. In doing so, it may also protect biodiversity as a free cobenefit, which is vital given the massive shortfall in funding for biodiversity conservation. We investigated whether natural forest regeneration on abandoned pastureland offers such cobenefits, focusing for the first time on the recovery of taxonomic diversity (TD), phylogenetic diversity (PD) and functional diversity (FD) of trees, including the recovery of threatened and endemic species richness, within isolated secondary forest (SF) fragments. We focused on the globally threatened Brazilian Atlantic Forest, where commitments have been made to restore 1 million hectares under FLR. Three decades after land abandonment, regenerating forests had recovered ~20% (72 Mg/ha) of the above‐ground carbon stocks of a primary forest (PF), with cattle pasture containing just 3% of stocks relative to PFs. Over this period, SF recovered ~76% of TD, 84% of PD and 96% of FD found within PFs. In addition, SFs had on average recovered 65% of threatened and ~30% of endemic species richness of primary Atlantic forest. Finally, we find positive relationships between carbon stock and tree diversity recovery. Our results emphasize that SF fragments offer cobenefits under FLR and other carbon‐based payments for ecosystem service schemes (e.g. carbon enhancements under REDD+). They also indicate that even isolated patches of SF could help to mitigate climate change and the biodiversity extinction crisis by recovering species of high conservation concern and improving landscape connectivity.  相似文献   

17.
Even though human induced habitat changes are a major driver of biodiversity loss worldwide, our understanding of the impact of land use change on ecological communities remains poor. Yet without such information it is difficult to develop management strategies for maintaining biodiversity in the face of anthropogenic change. To address this gap, we explored how land use practices impacted species richness in a mammalian community in northern Tanzania. Using camera traps, we estimated the number of mammalian species inhabiting three land use types subjected to increasing levels of anthropogenic pressure: (1) Tarangire National Park, (2) pastoral grazing areas; and (3) cultivated areas outside the park. Results showed that land use practice is correlated with different levels of species richness. Interestingly, mammal species richness was highest in the grazing areas and lowest in cultivated areas. When we focused our analyses on carnivores, we found little significant difference in species richness between the park and pastoral grazing areas, however, carnivore richness were significantly lower in the cultivated areas. We found no significant link between species body weight and presence in the three areas considered. Altogether, our results show that biodiversity conservation can be achieved outside national parks, with pastoral grazing areas holding a significant proportion of mammal communities; however increasing cultivation of pastoral rangelands may represent a major threat to mammalian communities.  相似文献   

18.
Aim Species richness depends on climate and land use. Maintaining locations with favourable climate and land‐use patterns is critical for protecting biodiversity because the loss of either can reduce the species richness that an area supports. Currently, the Guiana Shield (GS) receives abundant precipitation and has relatively light land use. For species richness this constitutes a good–good combination of climate and land use, respectively. In contrast, much of eastern Brazil receives low levels of precipitation and has heavy land use, which is a bad–bad combination for species richness. Thus, the current distribution of precipitation and land use in northern South America is relatively favourable for biodiversity. Palaeoclimate and model studies suggest, however, that the precipitation patterns for the two regions have switched before and could switch in response to greenhouse gas emissions. This paper examines the potential consequences of reconfiguring climate with respect to existing land‐use patterns using South America as an example. Location South America north of 20° S and east of the Andes. Methods Ecosystem structure and function are modelled under (1) historical climate and (2) altered precipitation following a shift in the location of the Inter‐Tropical Convergence Zone (ITCZ). The distribution of precipitation, biomes, net primary productivity (NPP) and land use are then used to predict levels of species richness under the two climate scenarios. Results Climate changes could shift the distribution of vegetation and NPP such that conditions favourable for species richness in the GS region disappear. If land‐use patterns were not prohibitive in eastern Brazil, the improved climate conditions there could compensate for the GS loss (assuming migratory barriers are overcome). Instead, existing land‐use patterns cause the combined species richness projected for the two regions to plummet. Main conclusions Human activities will alter current configurations of land use and climate throughout the world. For species richness, new configurations are likely to include both positive and negative combinations of climate and land use. However, the irreversibility of past extinctions due to land‐use patterns loads the dice against species richness.  相似文献   

19.
The Loess Plateau is a special natural–cultural unit in northern China. Intensive land use in the past has had, and forestation and grass planting at present will have inevitable impacts on plant biodiversity in the Loess Plateau. Based on the analysis of floristic features within three sampling sites with different land use practices and analysis of species richness among different land use types, we discuss impacts of land use on species richness and floristic features in the Northern Loess Plateau. The results drawn from this case study are as follows: (1) It appears that forestation and grass planting have had a positive influence on the local species diversity, but they have contributed little to the native vegetation in terms of conserving its floristic features. (2) Caragana intermedia shrubland, Pinus tabulaeformis forestland, and natural grassland have made important contributions to supporting indigenous species and maintaining local plant biodiversity. (3) There is a significant positive correlation between land use diversity and species richness. These results imply that practicing biodiversity conservation in situ is feasible and the suitable choice for the Loess Plateau. Concrete measures for biodiversity conservation in the area can include setting up small nature reserves and diversifying land use patterns to maintain as much habitat as possible for native vegetation. The artificial Hippophae rhamnoides shrubland should not be further promoted, considering its negative influence on biodiversity conservation.  相似文献   

20.
Aim To enhance current attempts to understand biodiversity patterns by using an historical ecology approach to highlight the over‐riding influence of land‐use history in creating past, current and future patterns of biodiversity in fragmented agricultural landscapes. Methods We develop an integrative conceptual framework for understanding spatial and temporal variations in landscape patterns in fragmented agricultural landscapes by presenting five postulates (hypotheses) which highlight the important role of historical, anthropogenic disturbance regimes. We then illustrate each of these postulates with examples drawn from fragmented woodlands in agricultural areas of south‐eastern Australia, and discuss these findings in an international context. Location examples are drawn from agricultural areas in south‐eastern Australia. Results We conclude that there is limited potential to refine our understanding of patterns of biodiversity in human‐modified landscapes based on traditional concepts of island biogeography, or simple assumptions of ongoing destruction and degradation. Instead, we propose that in agricultural landscapes that were largely cleared over a century ago: (1) present‐day remnant vegetation patterns are not accidental, but are logically arrayed due to historic land‐use decisions, (2) historic anthropogenic disturbances have a major influence on current ecosystem conditions and diversity patterns, and (3) the condition of remnant ecosystems is not necessarily deteriorating rapidly. Main conclusions An historical ecology approach can enhance our understanding of why different species and ecosystem states occur where they do, and can explain internal variations in ecological conditions within remnant ecosystems, too often casually attributed to the ‘mess of history’. This framework emphasizes temporal changes (both past and future) in biotic patterns and processes in fragmented agricultural landscapes. Integration of spatially and temporally explicit historical land‐use information into ecological studies can prove extremely useful to test hypotheses of the effects of changes in landscape processes, and to enhance future research, restoration and conservation management activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号