首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract 1 The relationship between reproductive performance and preference for potential host plants of the vine weevil is investigated, as shown in tests on contact (or feeding) preference, presented herein, and tests on olfactory preference, published elsewhere. 2 Assessment of reproductive performance shows that the host‐plant range of the adult vine weevil Otiorhynchus sulcatus in Europe is limited to one gymnosperm genus (Taxus sp.) and a broad range of angiosperm plants in two subclasses of the Dicotyledonae, namely Dilleniidae and Rosidae. The successful reproduction on very distantly related plant taxa suggests that the original weevil‐ and plant‐habitat has mediated the current host‐plant range of the vine weevil. 3 Contact‐preference tests with equally suitable hosts, such as Aronia, Fragaria, Euonymus and Taxus, and one less suitable host, Humulus, indicate a mismatch between contact preference and performance and, as far as olfactory preferences are known, these match neither the contact preferences nor the performance. This mismatch may arise because (i) host plant species offered do not occur in weevil habitat in Europe (e.g. Aronia and the cultivated Fragaria come from North America) and (ii) predation (or disease) risks differ among host plants, thereby altering effective reproductive performance. 4 With respect to performance on novel hosts (Thuja, Prunus) and bad hosts (Rhododendron), some between‐individual variation is found within a single population, suggesting that local populations harbour (possibly genetic) variation for adaptation to new hosts. How this variation is maintained in the face of strong selection pressures on local populations of flightless and thelytokous weevils, is an important question for understanding the broad host plant range in the vine weevil.  相似文献   

2.
The pine weevil (Hylobius abietis), a major pest of conifer forests throughout Europe, feeds on the bark and cambium, tissues rich in terpenoid resins that are toxic to many insect herbivores. Here, we report the ability of the pine weevil gut microbiota to degrade the diterpene acids of Norway spruce. The diterpene acid levels present in ingested bark were substantially reduced on passage through the pine weevil gut. This reduction was significantly less upon antibiotic treatment, and supplementing the diet with gut suspensions from untreated insects restored the ability to degrade diterpenes. In addition, cultured bacteria isolated from pine weevil guts were shown to degrade a Norway spruce diterpene acid. In a metagenomic survey of the insect's bacterial community, we were able to annotate several genes of a previously described diterpene degradation (dit) gene cluster. Antibiotic treatment disrupted the core bacterial community of H. abietis guts and eliminated nearly all dit genes concordant with its reduction in diterpene degradation. Pine weevils reared on an artificial diet spiked with diterpenes, but without antibiotics, were found to lay more eggs with a higher hatching rate than weevils raised on diets with antibiotics or without diterpenes. These results suggest that gut symbionts contribute towards host fitness, but not by detoxification of diterpenes, as these compounds do not show toxic effects with or without antibiotics. Rather the ability to thrive in a terpene‐rich environment appears to allow gut microbes to benefit the weevil in other ways, such as increasing the nutritional properties of their diet.  相似文献   

3.
Fungal entomopathogens are known as microbial pathogens of insects, colonising multiple habitats and ecosystems. Besides being an entomopathogen, the fungus Beauveria bassiana can also establish as an endophyte in plants. Limited knowledge is so far available on the ability of plant-associated B. bassiana to influence plant-feeding insects. Here, we assessed the capability of adult black vine weevils Otiorhynchus sulcatus to select grapevine as a host plant in the presence of plant-associated B. bassiana after foliar application of a commercially available mycoinsecticide (product Naturalis®) on young potted grapevine plants. Three pairwise comparisons of weevil behaviour were conducted when weevils were released in a two-choice olfactometer and were given the choice between (i) control plants and plants treated with Naturalis®, (ii) control plants and plants treated with the formulation of Naturalis® without fungal propagules, and (iii) plants treated with Naturalis® and plants treated with the formulation. Adult O. sulcatus were significantly deterred by plants treated with Naturalis® or the formulation in comparison to control plants. In a direct comparison between plants treated either with Naturalis® or the formulation weevils significantly preferred plants treated with the formulation and avoided Naturalis® treated plants, where B. bassiana putatively had established as an endophyte. These results suggest that adult black vine weevils are able to detect and subsequently avoid plants treated with B. bassiana and indicate a new mode of action of plant-associated entomopathogenic fungi when integrated in pest management programmes.  相似文献   

4.
The adaptation of herbivorous insects to new host plants is key to their evolutionary success in diverse environments. Many insects are associated with mutualistic gut bacteria that contribute to the host's nutrition and can thereby facilitate dietary switching in polyphagous insects. However, how gut microbial communities differ between populations of the same species that feed on different host plants remains poorly understood. Most species of Pyrrhocoridae (Hemiptera: Heteroptera) are specialist seed‐feeders on plants in the family Malvaceae, although populations of one species, Probergrothius angolensis, have switched to the very distantly related Welwitschia mirabilis plant in the Namib Desert. We first compared the development and survival of laboratory populations of Pr. angolensis with two other pyrrhocorids on seeds of Welwitschia and found only Pr. angolensis was capable of successfully completing its development. We then collected Pr. angolensis in Namibia from Malvaceae and Welwitschia host plants, respectively, to assess their bacterial and fungal community profiles using high‐throughput amplicon sequencing. Comparison with long‐term laboratory‐reared insects indicated stable associations of Pr. angolensis with core bacteria (Commensalibacter, Enterococcus, Bartonella and Klebsiella), but not with fungi or yeasts. Phylogenetic analyses of core bacteria revealed relationships to other insect‐associated bacteria, but also found new taxa indicating potential host‐specialized nutritional roles. Importantly, the microbial community profiles of bugs feeding on Welwitschia versus Malvaceae revealed stark and consistent differences in the relative abundance of core bacterial taxa that correlate with the host‐plant switch; we were able to reproduce this result through feeding experiments. Thus, a dynamic gut microbiota may provide a means for insect adaptation to new host plants in new environments when food plants are extremely divergent.  相似文献   

5.
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, is an invasive annual vine of Asian origin that has developed extensive monocultures, especially in disturbed open areas in the Mid-Atlantic region of the United States. A host-specific Asian weevil, Rhinoncomimus latipes Korotyaev, was approved for release in North America in 2004, and weevils have been reared at the New Jersey Department of Agriculture Beneficial Insect Laboratory since then. By the end of 2007 more than 53,000 weevils had been reared and released, mostly in New Jersey, but also in Delaware, Maryland, Pennsylvania, and West Virginia. The beetles established at 63 out of 65 sites (96.9%) where they were released between 2004 and 2007, with successful releases consisting of as few as 200 weevils. Weevils were recorded at 30 additional non-release sites in New Jersey, where they had dispersed at an average rate of 4.3 km/year. Standardized monitoring of fixed quadrats was conducted in paired release and control sites at eight locations. Significant differences in mile-a-minute weed populations in the presence and absence of weevils were found at three locations, with reduction in spring densities to 25% or less of what they had been at the start within 2–3 years at release sites, while weed densities at control sites were largely unchanged. Mile-a-minute weed populations at a fourth site were similarly reduced at the release site, but without control data for comparison due to rapid colonization of the paired control site. At the other four locations, all on islands, mile-a-minute weed populations were reduced at both release and control sites without large weevil populations developing, apparently due to environmental conditions such as late frost and extreme drought.  相似文献   

6.
Summary Seasonal patterns of insect damage to reproductive tissue of the legume Baptisia australis were studied for three years in native tallgrass priairie. Contrasting seasonal patterns of damage were associated with the major species of insect consumers. The moth Grapholitha tristegana (Olethreutidae) and the weevil Tychius sordidus (Curculionidae), which together infested 80–100% of developing fruits (pods), consistently damaged more seeds on average in early than in late maturing pods. But while late opening flowers were less subject to attack from moths and weevils, they were more subject to attack from chewing insects, particularly blister beetles (Epicauta fabricii, Meloidae), which destroyed >80% of all flowers and developing young pods (including moth and weevil larval inhabitants). The blister beetles arrived late in the flowering season and fed particularly on young reproductive tissue, allowing larger, older pods that had developed from early opening flowers to escape destruction. The relative abundances and impacts of blister beetles, moths, and weevils varied from year to year. Adding to the uncertainty of reproductive success of the host plant were the large and variable amounts of damage to immature buds inflicted by insects (including the blister beetles and weevil adults) and late killing frosts. Thus, timing of flowering is critical to success in seed production for B. australis. The heavy impacts of insects and weather can result in a very narrow window in time (which shifts from year to year) during which B. australis can flower with any success. The opposing pressures exerted by insects and weather on floral reproductive success may act in concert with other features of the plant's biology to foster the maintenance of considerable diversity in flowering times among individuals in local populations of B. australis.  相似文献   

7.
Abstract 1 The dose–response of azadirachtin on vine weevil, Otiorhynchus sulcatus (Fabricius), reproduction is investigated by confining adults to feed on treated Taxus × media leaves, and by counting and evaluating development in the resulting eggs. 2 A dosage‐dependent reduction in oviposition is discovered for foliar surface residues of azadirachtin, with an EC50 of 25–50 parts per million (p.p.m) and 99.2% inhibition of viable egg production with 100 p.p.m. 3 Switching weevils from treated to untreated foliage allows reproductive capability to be restored for weevils that cease egg laying after azadirachtin exposure of 50 p.p.m. Weevils that had already started laying eggs in untreated groups soon cease oviposition once switched to azadirachtin‐treated foliage. 4 A transovarial effect results in a decrease in the percentage of viable eggs as the azadirachtin concentration increases. 5 The amount of feeding on foliage does not appreciably decrease at these hormonally effective concentrations, and adult weevil mortality is only slightly greater in the azadirachtin‐treated groups. Therefore, the overall effect of azadirachtin on weevil populations in the field is difficult to assess, except by collecting weevils to determine whether they are able to lay viable eggs.  相似文献   

8.
Electroantennograms (EAGs) were recorded from the vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae) to a broad range of volatile plant compounds. The response profile is restricted to a small number of volatiles that evoke substantial EAGs. Large EAG responses were particularly found among green leaf volatiles (GLV) such as (E)-2-hexenol-1, (Z)-3-hexenol-1, hexanol-1, hexanal, and heptanal. Other plant volatiles eliciting responses in the weevils' antenna are 2,5-dimethylpyrazine, hexylamine, benzylalcohol, 1,2-dimethoxybenzene, o-cresol, myrtenol, 3-methylcyclohexanol, -hexalactone, and -heptalactone. EAG responses to terpenes were generally weak. Many of the monoterpenes are characteristic for the odour of conifers, a group of plants which tend to be avoided by adult vine weevils. The EAG response to several GLV and benzene derivatives in three geographically distinct populations of the vine weevil differed, suggesting between-population variation in receptor sensitivities for several compounds under test. The GLV-composition of the odour profile of potential food plants may be an important criterion for a polyphagous insect like the vine weevil to be used in host-plant selection, since compounds in this odour group dominate so strongly the EAG response profile. In multiple food-choice situations the weevils are known to prefer certain plant species and we hypothesize that they combine GLV information with that of more specific plant volatiles, thereby promoting attraction or avoidance.  相似文献   

9.
Abstract A Y-tube olfactometer and a still-air olfactometer were developed to determine the attractiveness of several host plants for the vine weevil ( Otiorhynchus sulcatus (F.); Coleoptera: Curculionidae). Odours of weevil-damaged yew ( Taxus baccata ) and spindle trees ( Euonymus fortunei ) are attractive to the vine weevil, but Rhododendron and strawberry ( Fragaria  ×  ananassa ) are not. Undamaged Euonymus is attractive to the weevils in springtime but not in late summer. When clean air or undamaged Euonymus is the alternative, weevils strongly prefer weevil-damaged Euonymus foliage, and this preference is retained throughout the year. Hence, plant damage plays a role in attraction of the vine weevil. In contrast to the permanent attractiveness of weevil-damaged Euonymus , mechanically damaged plants gradually lose the attractiveness that they have early in the growing season. This suggests that emission of volatiles, produced by the plants in response to weevil damage, is important for attraction of the weevils because the weevils may use these plant odours to find suitable food plants throughout the season. Apart from weevil-damage-related plant volatiles, green leaf volatiles must also play a significant role, as indicated by the fact that weevils prefer: early season, undamaged Euonymus over clean air; early season, mechanically damaged Euonymus over undamaged Euonymus ; and, throughout the season, had no preference when mechanically damaged Euonymus is tested against weevil-damaged Euonymus . Thus, monitoring traps may be developed by the use of green leaf volatiles and/or herbivore-induced volatiles, as attractants.  相似文献   

10.
Symbiotic microbiomes play important roles in hosts’ adaptation and evolution. Here, the gut bacterial communities in Cephalcia chuxiongica, a key pest of pines in China, were studied for the first time by using 16S rRNA amplicon sequencing. The composition of gut bacterial communities differed in different C. chuxiongica geographic populations but interestingly, the phylogeny and diversity of gut microbiota correlated with host geographic/genetic distance, that is the microbiota was more similar as the geographic/genetic distance decreased, and vice versa. The various microbes performed similar functions and showed functional complementation, in which most of identified KEGG pathways were shared by different populations with metabolism being the most dominant functional pathway and the function of major microbes associated with host dietary specialization (pine needles), such as cellulose degradation. In addition, some microbes also associated with host biological characteristics, such as Wolbachia with parthenogenesis and Serratia with the long-term larval diapause in C. chuxiongica. Therefore, the synergy of environmental and host factors shapes the structure of gut microbiota and gut microbiota play essential roles in host physiology and adaptation, suggesting some kind of symbiosis and coevolution. These results demonstrate the important contribution of gut microbiota and provide a sound foundation for developing control strategies for this pest.  相似文献   

11.
Research on gut microbiota of phytophagous insects has shown to be important for the physiological functions of insect hosts; however, little is known about the changes in gut microbiota when they are suffering from environmental stress or pathogen infections. During rearing of Phasmotaenia lanyuhensis (Phasmatodea: Phasmatidae), sluggish locomotion was usually followed by the death of the insect with a symptom of melanization in the front part of the abdomen. Therefore, the abnormal individuals were initially classified into moribund, light- and serious-symptom based on the level of abnormal physiological circumstances and melanization. The gut microbiota of these samples were further investigated by 16S metagenomic sequencing and the differences in bacterial abundance and structure of bacterial community were analyzed. A decrease in microbiota diversity was observed in the diseased P. lanyuhensis, with the abundance of phyla Proteobacteria and Firmicute relatively higher compared to those without symptom. Interestingly, principal component analysis based on the bacterial richness was correlated to the level of melanization symptom in the diseased P. lanyuhensis, suggested the change in bacterial microbiota involved in this abnormal circumstance. However, the factor that caused the initial alternation of microbiota remains to be identified. Additionally, the lack of bacterial diversity (i.e., absence of Meiothermus and Nubsella spp.) in P. lanyuhensis might reduce the fitness for surviving. This report provided the comprehensive microbiota analysis for P. lanyuhensis and concluded that either the relative abundance or the bacterial diversity of microbiota in the insect digestive system may influence the physiological functions of phytophagous insects.  相似文献   

12.
The root-boring weevil, Mogulones cruciger, was introduced into Canada to control the weed, houndstongue (Cynoglossum officinale). To optimise its use as a biocontrol agent, a 2-year study was performed in British Columbia, Canada to test if the number of M. cruciger released at sites predicted subsequent declines in weed populations. No, 100, 200, 300 or 400 weevils were released in 1999 at field sites (five replicates) corresponding to discrete populations of houndstongue separated by distances of 0.3–3 km. The sites were subsequently monitored for weevil establishment, population change, and host attack, and houndstongue population change. By 2001, M. cruciger had established at all 20 release sites and was present in low numbers in three of five control sites. The year following release, release size was positively correlated with number of adult weevils collected, their damage to host plants, and with subsequent numbers of larvae per plant. In contrast, houndstongue populations were reduced at the same rate and amount, regardless of the experimental release size, within 2 years of release. Significant release treatment×time interactions indicated that factors other than M. cruciger contributed to houndstongue reductions (e.g. drought). However, overall the addition of weevils accelerated the reductions relative to sites with no weevils added. Our study demonstrated that the lowest number within a range of release sizes typically used in weed biocontrol programmes (i.e. 100) was as effective as 200–400 weevils in achieving a consistent amount and rate of houndstongue reduction, and thus, could be implemented to optimise weevil use and achieve predictable biocontrol.  相似文献   

13.
The Cryptocephalus marginellus (Coleoptera: Chrysomelidae) complex is composed by six species that are supposed to have originated by events of allo‐ or parapatric speciation. In the present study we investigated the alternative hypotheses that the bacterial communities associated with six populations of this species complex are shaped by environmental factors, or reflect the proposed pattern of speciation. The microbiota associated with the six populations, from five species of the complex, have been characterized through 16S rRNA pyrotag sequencing. Based on a 97% sequence similarity threshold, data were clustered into 381 OTUs, which were analyzed using a variety of diversity indices. The microbiota of C. acquitanus and C. marginellus (Calanques) were the most diverse (over 100 OTUs), while that from C. zoiai yielded less bacterial diversity (45 OTUs). Taxonomic assignment revealed Proteobacteria, Tenericutes and Firmicutes as the dominant components of these beetles’ microbiota. The most abundant genera were Ralstonia, Sphingomonas, Rickettsia, and Pseudomonas. Different strains of Rickettsia were detected in C. eridani and C. renatae. The analysis of β‐diversity revealed high OTU turnover among the populations of C. marginellus complex, with only few shared species. Hierarchical clustering taking into account relative abundances of OTUs does not match the phylogeny of the beetles, therefore we hypothesize that factors other than phylogenetic constraints play a role in shaping the insects’ microbiota. Environmental factors that could potentially affect the composition of bacterial communities were tested by fitting them on the results of a multi‐dimensional scaling analysis. No significant correlations were observed towards the geographic distances or the host plants, while the composition of the microbiota appeared associated with altitude. The metabolic profiles of the microbiotas associated with each population were inferred from bacterial taxonomy, and interestingly, the obtained clustering pattern was consistent with the host phylogeny.  相似文献   

14.
Systemic activity of the neonicotinoids clothianidin, dinotefuran, and thiamethoxam and the anthranilic diamide chlorantraniliprole was tested against adult black vine weevils, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae), on Astilbe, Euonymus, Heuchera, Rhododendron, Sedum, and Taxus. Insecticide treatments were applied to the soilless substrate of containerized plants. Bioassays were conducted 12 or 13, 26, and 42 d after treatment (DAT) and ran for 7 d; and feeding, mortality, and weight gain or loss by weevils were evaluated. Foliage was removed from test plants and then placed in arenas with adult black vine weevils. The neonicotinoids reduced feeding and weight gain by adult black vine weevils on most plant species with residual activity 42 DAT on some plant species. At 12 DAT, mortality was caused by the three neonicotinoids on Astilbe and by thiamethoxam on Sedum; and at 26 DAT dinotefuran caused mortality on Astilbe. Chlorantraniliprole reduced feeding on Taxus at 12 DAT, with no activity detected in other bioassays. Another set of bioassays was conducted to examine survival and fecundity of adult black vine weevils during prolonged feeding on Heuchera and Taxus systemically treated with dinotefuran or thiamethoxam. Bioassay procedures were similar to those described above, except they ran continuously for 56 d. Prolonged feeding on dinotefuran and thiamethoxam treated Heuchera and Taxus resulted in high mortality of adult black vine weevils and reduced fecundity. These studies show that the systemic activity of neonicotinoids is influenced by plant species and that systemic neonicotinoids have the potential to suppress black vine weevil populations in containerized nursery crops.  相似文献   

15.
【目的】象甲是栎属植物橡子中主要的寄生昆虫,但其适应高单宁食物(橡子)的肠道微生物基础尚待揭示。本研究分析了蒙古栎和辽东栎橡子中两种柞栎象(Curculio arakawai和C.dentipes)幼虫的肠道菌群结构和多样性,试图阐明柞栎象幼虫适应高单宁食物的肠道微生物基础。【方法】分别提取蒙古栎和辽东栎橡子中象甲幼虫各50头的肠道DNA,利用Illumina MiSeq技术对肠道菌群的V3–V4区序列进行16S rRNA测序,统计样品操作分类单元(OTU)数量,分析物种组成丰度、α多样性和β多样性。【结果】结果表明,可用于物种分类的OTU分别有2054和2308个,C. arakawai和C. dentipes共有的OUT 481个。在两种柞栎象C. arakawai和C. dentipes肠道菌群中,共注释到的主要分类阶元有27个门、145个科和274个属。变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)在两种象甲肠道菌群中占优势;假单胞菌属Pseudomonas(63.8%)、沙雷氏菌属Serratia(6%)和不动杆菌属Acinetobacter (5.2%)是C. arakawai肠道中的主要类群,而沙雷氏菌属Serratia (32%)、拉恩菌属Rahnella(24.2%)、气单胞菌属Aeromonas(6.8%)和立克次体属Rickettsia(6.6%)在C.dentipes肠道菌群中占主导优势。C. arakawai和C. dentipes肠道菌群α多样性无显著差异,β多样性则差异显著。具有单宁酶活性的肠道细菌,如粘质沙雷菌Serratia marcescens、乳球菌Lactococcus lactis、假单胞菌Pseudomonas spp.在C. arakawai和C. dentipes之间差异不显著。【结论】寄生在蒙古栎和辽东栎橡子中的C. arakawai和C.dentipes肠道菌群组成迥异,这可能与遗传因素和食物特点有关。具有单宁酶活性的粘质沙雷氏菌Serratia marcescens和乳球菌Lactococcus lactis等菌类可能是两种象甲幼虫适应高单宁食物的肠道微生物基础。  相似文献   

16.
Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO2), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root‐feeding insects to eCO2 are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO2 conditions are largely unexplored for root herbivore interactions. This study investigated how eCO2 (700 μmol mol?1) affected a root‐feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root‐feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO2. Root biomass decreased by 16% in eCO2, which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO2 on root C and N concentrations. Weevils caused a sink in plants, resulting in 8–12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO2 and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO2, suggestive of defensive response, but caused a decrease under eCO2. Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root‐growth underpinned the negative effects of eCO2 on vine weevils and speculate that the plant's failure to mount a defensive response at eCO2 may have intensified these negative effects.  相似文献   

17.
Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (±97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities.  相似文献   

18.
The preference-performance hypothesis has principally considered insect herbivores with aboveground lifecycles, although the hypothesis could be equally relevant to insects with life stages occurring both aboveground and belowground. Moreover, most studies have focussed on either laboratory or field experiments, with little attempt to relate the two. In this study, the preference-performance hypothesis was examined in an aboveground-belowground context in the laboratory using the vine weevil (Otiorhynchus sulcatus (F.)) (Coleoptera: Curculionidae) and two cultivars of red raspberry (Rubus idaeus), Glen Rosa and Glen Ample. A two-year field study (2008-2009) was also undertaken to characterise the population dynamics of adult weevils on the two raspberry cultivars. Larval performance (abundance and mass) differed significantly between Glen Rosa and Glen Ample, with Glen Rosa resulting in 26% larger but 56% fewer larvae compared to Glen Ample. Larval abundances were significantly and positively correlated with root nitrogen and magnesium concentrations, but negatively correlated with root iron. However, concentrations of these minerals were not significantly different in the two cultivars. Adult weevils did not preferentially select either of the two cultivars for egg laying (laying 3.08 and 2.80 eggs per day on Glen Ample and Glen Rosa, respectively), suggesting that there was no strong preference-performance relationship between adult vine weevils and their belowground offspring. Field populations of adult vine weevils were significantly higher on Glen Ample than Glen Rosa, which may reflect the higher larval survival on Glen Ample observed in laboratory experiments.  相似文献   

19.
The vine weevil Otiorhynchus sulcatus is a parthenogenetic reproducing species which forages for suitable host plants at night, but is found congregated in dark places during the day. Frass of this weevil species is suspected to contain attractive compounds that are host‐plant related. Using a still‐air olfactometer, we tested adult vine weevils at night for their behavioural response to odours from conspecifics, feeding on a mixture of spindle tree (Euonymus fortunei) and yew (Taxus baccata), and to a sexually reproducing related species (Otiorhynchus salicicola), feeding on a mixture of ivy (Hedera helix) and cherry laurel (Prunus laurocerasus). Their attraction to conspecifics and O. salicicola appeared to be related to frass production. Freshly collected frass from O. sulcatus and from O. salicicola males and females was attractive. Prunus laurocerasus and H. helix have not been observed to be hosts of the vine weevil in the field. However, our tests showed that the vine weevil was attracted to mechanically damaged leaves of both plant species, whereas undamaged leaves were not attractive. Only undamaged young unfolding leaves of H. helix were also attractive. The attraction to odours from mechanically damaged host and non‐host plants suggested the involvement of compounds that are commonly found in many plant species. The involvement of plant compounds and/or aggregation pheromones in attraction to frass of the vine weevil and frass of the related weevil species O. salicicola is discussed.  相似文献   

20.
Rhynchophorus ferrugineus, also known as the red palm weevil, is regarded as the major pest of palm trees. Although studies of the microbiota associated with this species have been performed in recent years, little attention has been dedicated to the influence of the diet in shaping the host bacterial community. Here, we investigated the influence of food sources (i.e. palm tissues vs apple based substrate) on the microbial diversity associated with RPW, which was compared with the microbiota associated with wild individuals of the sister species Rhynchophorus vulneratus. The bacterial characterization was performed using a culture independent approach, i.e. the 16S rRNA pyrotag, and a culture dependent approach for a subset of the samples, in order to obtain bacterial isolates from RPW tissues. The bacterial community appeared significantly influenced by diet. Proteobacteria resulted to be the most abundant clade and was present in all the specimens of the three examined weevil groups. Within Proteobacteria, Enterobacteriaceae were identified in all the organs analysed, including hemolymph and reproductive organs. The apple-fed RPWs and the wild R. vulneratus showed a second dominant taxon within Firmicutes that was scarcely present in the microbiota associated with palm-fed RPWs. A comparative analysis on the bacteria associated with the palm tissues highlighted that 12 bacterial genera out of the 13 identified in the plant tissues were also present in weevils, thus indicating that palm tissues may present a source for bacterial acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号