首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Plants interact simultaneously with each other and with soil biota, yet the relative importance of competition vs. plant–soil feedback (PSF) on plant performance is poorly understood. Using a meta‐analysis of 38 published studies and 150 plant species, we show that effects of interspecific competition (either growing plants with a competitor or singly, or comparing inter‐ vs. intraspecific competition) and PSF (comparing home vs. away soil, live vs. sterile soil, or control vs. fungicide‐treated soil) depended on treatments but were predominantly negative, broadly comparable in magnitude, and additive or synergistic. Stronger competitors experienced more negative PSF than weaker competitors when controlling for density (inter‐ to intraspecific competition), suggesting that PSF could prevent competitive dominance and promote coexistence. When competition was measured against plants growing singly, the strength of competition overwhelmed PSF, indicating that the relative importance of PSF may depend not only on neighbour identity but also density. We evaluate how competition and PSFs might interact across resource gradients; PSF will likely strengthen competitive interactions in high resource environments and enhance facilitative interactions in low‐resource environments. Finally, we provide a framework for filling key knowledge gaps and advancing our understanding of how these biotic interactions influence community structure.  相似文献   

2.
    
Global warming is enabling many plant species to expand their range to higher latitudes and altitudes, where they may suffer less from natural aboveground and belowground enemies. Reduced control by natural enemies can enable climate warming‐induced range expanders to gain an advantage in competition with natives and become disproportionally abundant in their new range. However, so far studies have only examined individual growth of range expanders, which have common congeneric plant species in their new range. Thus it is not known how general is this reduced effect of above‐ and belowground enemies and how it operates in communities, where multiple plant species also interact with each other. Here we show that range‐expanding plant species with and without congenerics in the invaded habitats differ in their ecological interactions in the new range. In a community‐level experiment, range‐expanding plant species, both with and without congenerics, suppressed the growth of a herbivore. However, only range expanders without congenerics reduced biomass production of the native plant species. In the present study, range expanders without congenerics allocated more biomass aboveground compared to native plant species, which can explain their competitive advantage. Competitive interaction and also biomass allocation of native plants and their congeneric range expanders were similar. Our results highlight that information about species phylogenetic relatedness with native flora can be crucial for improving predictions about the consequences of climate warming‐induced range expansions.  相似文献   

3.
    
Agriculture has long employed phylogenetic rules whereby farmers are encouraged to rotate taxonomically unrelated plants in shared soil. Although this forms a central tenet of sustainable agriculture, strangely, this on‐farm “rule of thumb” has never been rigorously tested in a scientific framework. To experimentally evaluate the relationship between phylogenetic distance and crop performance, we used a plant–soil feedback approach whereby 35 crops and weeds varying in their relatedness to tomato (Solanum lycopersicum) were tested in a two‐year field experiment. We used community profiling of the bacteria and fungi to determine the extent to which soil microbes contribute to phenotypic differences in crop growth. Overall, tomato yield was ca. 15% lower in soil previously cultivated with tomato; yet, past the species level there was no effect of phylogenetic distance on crop performance. Soil microbial communities, on the other hand, were compositionally more similar between close plant relatives. Random forest regression predicted log10 phylogenetic distance to tomato with moderate accuracy (R2 = .52), primarily driven by bacteria in the genus Sphingobium. These data indicate that, beyond avoiding conspecifics, evolutionary history contributes little to understanding plant–soil feedbacks in agricultural fields; however, microbial legacies can be predicted by species identity and relatedness.  相似文献   

4.
    
Soil microbial communities play a key role in ecosystem functioning but still little is known about the processes that determine their turnover (β‐diversity) along ecological gradients. Here, we characterize soil microbial β‐diversity at two spatial scales and at multiple phylogenetic grains to ask how archaeal, bacterial and fungal communities are shaped by abiotic processes and biotic interactions with plants. We characterized microbial and plant communities using DNA metabarcoding of soil samples distributed across and within eighteen plots along an elevation gradient in the French Alps. The recovered taxa were placed onto phylogenies to estimate microbial and plant β‐diversity at different phylogenetic grains (i.e. resolution). We then modeled microbial β‐diversities with respect to plant β‐diversities and environmental dissimilarities across plots (landscape scale) and with respect to plant β‐diversities and spatial distances within plots (plot scale). At the landscape scale, fungal and archaeal β‐diversities were mostly related to plant β‐diversity, while bacterial β‐diversities were mostly related to environmental dissimilarities. At the plot scale, we detected a modest covariation of bacterial and fungal β‐diversities with plant β‐diversity; as well as a distance–decay relationship that suggested the influence of ecological drift on microbial communities. In addition, the covariation between fungal and plant β‐diversity at the plot scale was highest at fine or intermediate phylogenetic grains hinting that biotic interactions between those clades depends on early‐evolved traits. Altogether, we show how multiple ecological processes determine soil microbial community assembly at different spatial scales and how the strength of these processes change among microbial clades. In addition, we emphasized the imprint of microbial and plant evolutionary history on today's microbial community structure.  相似文献   

5.
    
Our understanding of the interrelated mechanisms driving plant invasions, such as the interplay between enemy release and resource‐acquisition traits, is biased by an aboveground perspective. To address this bias, I hypothesize that plant release from belowground enemies (especially fungal pathogens) will give invasive plant species a fitness advantage in the alien range, via shifts in root traits (e.g., increased specific root length and branching intensity) that increase resource uptake and competitive ability compared to native species in the alien range, and compared to plants of the invader in its native range. Such root‐trait changes could be ecological or evolutionary in nature. I explain how shifts in root traits could occur as a consequence of enemy release and contribute to invasion success of alien plants, and how they could be interrelated with other potential belowground drivers of invasion success (allelopathy, mutualist enhancement). Finally, I outline the approaches that could be taken to test whether belowground enemy release results in increased competitive ability and nutrient uptake by invasive alien plants, via changes in root traits in the alien range.  相似文献   

6.
    
Conspecific negative density dependence (CNDD) is thought to promote plant species diversity. Theoretical studies showing the importance of CNDD often assumed that all species are equally susceptible to CNDD; however, recent empirical studies have shown species can differ greatly in their susceptibility to CNDD. Using a theoretical model, we show that interspecific variation in CNDD can dramatically alter its impact on diversity. First, if the most common species are the least regulated by CNDD, then the stabilising benefit of CNDD is reduced. Second, when seed dispersal is limited, seedlings that are susceptible to CNDD are at a competitive disadvantage. When parameterised with estimates of CNDD from a tropical tree community in Panama, our model suggests that the competitive inequalities caused by interspecific variation in CNDD may undermine many species’ ability to persist. Thus, our model suggests that variable CNDD may make communities less stable, rather than more stable.  相似文献   

7.
    
  1. Plant–soil feedbacks (PSFs) drive plant community diversity via interactions between plants and soil microbes. However, we know little about how frequently PSFs affect plants at the seed stage, and the compositional shifts in fungi that accompany PSFs on germination.
  2. We conducted a pairwise PSF experiment to test whether seed germination was differentially impacted by conspecific versus heterospecific soils for seven grassland species. We used metagenomics to characterize shifts in fungal community composition in soils conditioned by each plant species. To investigate whether changes in the abundance of certain fungal taxa were associated with multiple PSFs, we assigned taxonomy to soil fungi and identified putative pathogens that were significantly more abundant in soils conditioned by plant species that experienced negative or positive PSFs.
  3. We observed negative, positive, and neutral PSFs on seed germination. Although conspecific and heterospecific soils for pairs with significant PSFs contained host‐specialized soil fungal communities, soils with specialized microbial communities did not always lead to PSFs. The identity of host‐specialized pathogens, that is, taxa uniquely present or significantly more abundant in soils conditioned by plant species experiencing negative PSFs, overlapped among plant species, while putative pathogens within a single host plant species differed depending on the identity of the heterospecific plant partner. Finally, the magnitude of feedback on germination was not related to the degree of fungal community differentiation between species pairs involved in negative PSFs.
  4. Synthesis. Our findings reveal the potential importance of PSFs at the seed stage. Although plant species developed specialized fungal communities in rhizosphere soil, pathogens were not strictly host‐specific and varied not just between plant species, but according to the identity of plant partner. These results illustrate the complexity of microbe‐mediated interactions between plants at different life stages that next‐generation sequencing can begin to unravel.
  相似文献   

8.
    
Bodil K. Ehlers  Trine Bilde 《Oikos》2019,128(6):765-774
The findings that some plants alter their competitive phenotype in response to genetic relatedness of its conspecific neighbour (and presumed competitor) has spurred an increasing interest in plant kin‐interactions. This phenotypic response suggests the ability to assess the genetic relatedness of conspecific competitors, proposing kin selection as a process that can influence plant competitive interactions. Kin selection can favour restrained competitive growth towards kin, if the fitness loss from reducing own growth is compensated by increased fitness in the related neighbour. This may lead to positive frequency dependency among related conspecifics with important ecological consequences for species assemblage and coexistence. However, kin selection in plants is still controversial. First, many studies documenting a plastic response to neighbour relatedness do not estimate fitness consequences of the individual that responds, and when estimated, fitness of individuals grown in competition with kin did not necessarily exceed that of individuals grown in non‐kin groups. Although higher fitness in kin groups could be consistent with kin selection, this could also arise from mechanisms like asymmetric competition in the non‐kin groups. Here we outline the main challenges for studying kin selection in plants taking genetic variation for competitive ability into account. We emphasize the need to measure inclusive fitness in order to assess whether kin selection occurs, and show under which circumstances kin selected responses can be expected. We also illustrate why direct fitness estimates of a focal plant, and group fitness estimates are not suitable for documenting kin selection. Importantly, natural selection occurs at the individual level and it is the inclusive fitness of an individual plant – not the mean fitness of the group – that can capture if a differential response to neighbour relatedness is favoured by kin selection.  相似文献   

9.
    
Little of the historical extent of tallgrass prairie ecosystems remains in North America, and therefore there is strong interest in restoring prairies. However, slow‐growing prairie plants are initially weak competitors with the fast‐growing yet short‐lived weedy plant species that are typically abundant in recently established prairie restorations. One way to aid establishment of slow‐growing plant species is through adding soil amendments to prairie restorations before planting. Arbuscular mycorrhizal (AM) fungi form mutualisms with the roots of most terrestrial plants and are particularly important for the growth of slow‐growing prairie plant species. As prairie ecosystems are adapted to fires that leave biochar (charred organic material) in the soil, adding biochar as well as AM fungal strains from undisturbed remnant prairies into the soil of prairie restorations may improve restoration outcomes. Here, we test this prediction during the first four growing seasons of a prairie restoration. When prairie plant seedlings were inoculated prior to planting into the field with AM fungi derived from remnant prairies, that one‐time inoculation significantly increased growth of five of the nine tested plant species through at least two growing seasons. This long‐term benefit of AM fungal inoculation was unaffected by biochar addition to the soil. Biochar application rates of at least 10 tons/ha significantly decreased Coreopsis tripteris growth but acted synergistically with AM fungal inoculation to significantly improve survival of Schizachyrium scoparium. Overall, inoculation with native AM fungi can help promote prairie plant establishment, but concomitant use of biochar soil amendments had relatively little effect.  相似文献   

10.
  总被引:1,自引:0,他引:1  
Plants interact with a diversity of microorganisms, and there is often concordance in their community structures. Because most community‐level studies are observational, it is unclear if such concordance arises because of host specificity, in which microorganisms or plants limit each other's occurrence. Using a reciprocal transplant experiment, we tested the hypothesis that host specificity between trees and ectomycorrhizal fungi determines patterns of tree and fungal soil specialisation. Seedlings of 13 dipterocarp species with contrasting soil specialisations were seeded into plots crossing soil type and canopy openness. Ectomycorrhizal colonists were identified by DNA sequencing. After 2.5 years, we found no evidence of host specificity. Rather, soil environment was the primary determinant of ectomycorrhizal diversity and composition on seedlings. Despite their close symbiosis, our results show that ectomycorrhizal fungi and tree communities in this Bornean rain forest assemble independently of host‐specific interactions, raising questions about how mutualism shapes the realised niche.  相似文献   

11.
    
Understanding the evolution of specialization in host plant use by pollinators is often complicated by variability in the ecological context of specialization. Flowering communities offer their pollinators varying numbers and proportions of floral resources, and the uniformity observed in these floral resources is, to some degree, due to shared ancestry. Here, we find that pollinators visit related plant species more so than expected by chance throughout 29 plant–pollinator networks of varying sizes, with “clade specialization” increasing with community size. As predicted, less versatile pollinators showed more clade specialization overall. We then asked whether this clade specialization varied with the ratio of pollinator species to plant species such that pollinators were changing their behavior when there was increased competition (and presumably a forced narrowing of the realized niche) by examining pollinators that were present in at least three of the networks. Surprisingly, we found little evidence that variation in clade specialization is caused by pollinator species changing their behavior in different community contexts, suggesting that clade specialization is observed when pollinators are either restricted in their floral choices due to morphological constraints or innate preferences. The resulting pollinator sharing between closely related plant species could result in selection for greater pollinator specialization.  相似文献   

12.
    
The relationship between ecological variation and microbial genetic composition is critical to understanding microbial influence on community and ecosystem function. In glasshouse trials using nine native legume species and 40 rhizobial strains, we find that bacterial rRNA phylotype accounts for 68% of amoung isolate variability in symbiotic effectiveness and 79% of host specificity in growth response. We also find that rhizobial phylotype diversity and composition of soils collected from a geographical breadth of sites explains the growth responses of two acacia species. Positive soil microbial feedback between the two acacia hosts was largely driven by changes in diversity of rhizobia. Greater rhizobial diversity accumulated in association with the less responsive host species, Acacia salicina, and negatively affected the growth of the more responsive Acacia stenophylla. Together, this work demonstrates correspondence of phylotype with microbial function, and demonstrates that the dynamics of rhizobia on host species can feed back on plant population performance.  相似文献   

13.
14.
    
Despite increasing frequency of invasions by alien plant species with widespread ecological and economic consequences, it remains unclear how belowground compartments of ecosystems are impacted. In order to synthetize current knowledge and provide future directions for research we performed a meta‐analysis assessing the impact of invasive alien plant species on soil fauna abundance. Compared to previous synthesis on this topic, we included together in our model the trophic group of each soil faunal taxa (from herbivores to predators) and habitat structure, namely open and closed habitats (i.e. grass and shrub dominated areas versus forested areas). In doing so, we highlighted that both moderators strongly interact to determine the response of soil fauna to the presence of invasive alien plants. Soil fauna abundance increase in the presence of invasive species only in closed habitats (+18.2%). This pattern of habitat‐dependent response (positive effect in closed habitats) was only found for primary consumers (i.e. herbivores +29.1% and detritivores +66.7%) within both detritus‐based and live root‐based trophic pathways. Abundances of predators and microbivores did not respond to the presence of IAS irrespective of habitat structure. For several groups, the habitat structure (open or closed) significantly drove their responses to the presence of invasive alien species. In addition, we carefully considered potential sources of bias (e.g. geographic, taxonomic and functional) within the collected data in an attempt to highlight gaps in available knowledge on the subject. Our findings support the conclusions of previous studies on the subject by demonstrating 1) that soil fauna abundance is impacted by biological invasions, 2) that initial habitat structure has a strong influence on the outcome and 3) that responses within the soil fauna differ between trophic levels with a stronger response of primary consumers.  相似文献   

15.
    
In terrestrial ecosystems, plant species and diverse root‐associated fungi form complex networks of host–symbiont associations. Recent studies have revealed that structures of those below‐ground plant–fungus networks differ between arbuscular mycorrhizal and ectomycorrhizal symbioses. Nonetheless, we still remain ignorant of how ericaceous plant species, which dominate arctic and alpine tundra, constitute networks with their root‐associated fungi. Based on a high‐throughput DNA sequencing data set, we characterized the statistical properties of a network involving 16 ericaceous plant species and more than 500 fungal taxa in the alpine–subalpine region of Mt. Tateyama, central Japan. While all the 16 ericaceous species were associated mainly with fungi in the order Helotiales, they varied remarkably in association with fungi in other orders such as Sebacinales, Atheliales, Agaricales, Russulales and Thelephorales. The ericaceous plant–fungus network was characterized by high symbiont/host preferences. Moreover, the network had a characteristic structure called ‘anti‐nestedness’, which has been previously reported in ectomycorrhizal plant–fungus networks. The results lead to the hypothesis that ericaceous plants in harsh environments can host unexpectedly diverse root‐associated fungal taxa, constituting networks whose structures are similar to those of previously reported ectomycorrhizal networks but not to those of arbuscular mycorrhizal ones.  相似文献   

16.
    
Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non‐native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis‐conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non‐native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non‐native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non‐native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil‐mediated impact on other plant species.  相似文献   

17.
    
During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N‐fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin‐adsorbed N and soil extractable P in the top 10‐cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P‐limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades.  相似文献   

18.
We compared the effects of a sesquiterpene (ST, cacalol) and a pyrrolizidine alkaloid (PA, seneciphylline), both occurring in Adenostyles alliariae, on food choice and performance of specialist and generalist insect herbivores which are all known to feed or live on A. alliariae. In choice experiments we investigated whether the compounds were preferred, deterrent or had no effect. All specialist species Aglaostigma discolor (Hymenoptera, Tenthredinidae), Oreina cacaliae (Coleoptera, Chrysomelidae) and O. speciosissima avoided feeding when confronted with the combination of compounds. Only larvae of A. discolor avoided the single ST treatment as well. Larvae of the generalist species Callimorpha dominula (Lepidoptera, Arctiidae), Cylindrotoma distinctissima (Diptera, Tipulidae) and Miramella alpina (Caelifera, Acrididae) generally avoided feeding from PA, ST and PAST treatments. The only exception were caterpillars of C. dominula which were indiscriminate towards PA when naive, and preferred to feed on the PA treatment when they had experienced the compound before. Performance, measured as the growth of larvae on the different treatments in a no choice situation over a period of 10–17 days, was not different between treatments in the specialist leaf beetles O. cacaliae and O. speciosissima. Their avoidance of the combination treatment in the choice experiments had no obvious effect on growth when forced to feed from the treatment. In the generalist C. dominula only the high concentration combination treatment (PAST) reduced growth of the larvae due to decreased consumption. In C. distinctissima we found reduced growth in all treatments except one (PA3%). Poor growth performance in C. distinctissima was due to postingestive physiological effects of all treatments and additionally to consumption reduction in high‐dose ST treatments. Genetic variability (broad sense heritability) of growth performance metabolism varied in accordance with the specialization degree of the species. O. cacaliae, the most specialized species, had no significant heritability; O. speciosissima, the less specialized specialist, had a heritability of 0.46; C. dominula, the PA adapted generalist species, had a heritability of 0.64; C. distinctissima, the generalist with no apparent adaptations, had a heritability of 0.84.  相似文献   

19.
    
Recent demonstrations of the role of plant–soil biota interactions have challenged the conventional view that vegetation changes are mainly driven by changing abiotic conditions. However, while this concept has been validated under natural conditions, our understanding of the long‐term consequences of plant–soil interactions for above‐belowground community assembly is restricted to mathematical and conceptual model projections. Here, we demonstrate experimentally that one‐time additions of soil biota and plant seeds alter soil‐borne nematode and plant community composition in semi‐natural grassland for 20 years. Over time, aboveground and belowground community composition became increasingly correlated, suggesting an increasing connectedness of soil biota and plants. We conclude that the initial composition of not only plant communities, but also soil communities has a long‐lasting impact on the trajectory of community assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号