共查询到20条相似文献,搜索用时 12 毫秒
1.
Relative importance of competition and plant–soil feedback,their synergy,context dependency and implications for coexistence 下载免费PDF全文
Ylva Lekberg James D. Bever Rebecca A. Bunn Ragan M. Callaway Miranda M. Hart Stephanie N. Kivlin John Klironomos Beau G. Larkin John L. Maron Kurt O. Reinhart Michael Remke Wim H. van der Putten 《Ecology letters》2018,21(8):1268-1281
Plants interact simultaneously with each other and with soil biota, yet the relative importance of competition vs. plant–soil feedback (PSF) on plant performance is poorly understood. Using a meta‐analysis of 38 published studies and 150 plant species, we show that effects of interspecific competition (either growing plants with a competitor or singly, or comparing inter‐ vs. intraspecific competition) and PSF (comparing home vs. away soil, live vs. sterile soil, or control vs. fungicide‐treated soil) depended on treatments but were predominantly negative, broadly comparable in magnitude, and additive or synergistic. Stronger competitors experienced more negative PSF than weaker competitors when controlling for density (inter‐ to intraspecific competition), suggesting that PSF could prevent competitive dominance and promote coexistence. When competition was measured against plants growing singly, the strength of competition overwhelmed PSF, indicating that the relative importance of PSF may depend not only on neighbour identity but also density. We evaluate how competition and PSFs might interact across resource gradients; PSF will likely strengthen competitive interactions in high resource environments and enhance facilitative interactions in low‐resource environments. Finally, we provide a framework for filling key knowledge gaps and advancing our understanding of how these biotic interactions influence community structure. 相似文献
2.
Predators in the plant–soil feedback loop: aboveground plant‐associated predators may alter the outcome of plant–soil interactions 下载免费PDF全文
Lauren M. Smith‐Ramesh 《Ecology letters》2018,21(5):646-654
Plant–soil feedback (PSF) can structure plant communities, promoting coexistence (negative PSF) or monodominance (positive PSF). At higher trophic levels, predators can alter plant community structure by re‐allocating resources within habitats. When predator and plant species are spatially associated, predators may alter the outcome of PSF. Here, I explore the influence of plant‐associated predators on PSF using a generalised cellular automaton model that tracks nutrients, plants, herbivores and predators. I explore key contingencies in plant–predator associations such as whether predators associate with live vs. senesced vegetation. Results indicate that plant‐associated predators shift PSF to favour the host plant when predators colonise live vegetation, but the outcome of PSF will depend upon plant dispersal distance when predators colonise dead vegetation. I apply the model to two spider‐associated invasive plants, finding that spider predators should shift PSF dynamics in a way that inhibits invasion by one forest invader, but exacerbates invasion by another. 相似文献
3.
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below‐ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above‐ and below‐ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above‐ and below‐ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above‐ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession‐specific accumulated soil communities, by root exudates, or by accession‐specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning. 相似文献
4.
The relationship between ecological variation and microbial genetic composition is critical to understanding microbial influence on community and ecosystem function. In glasshouse trials using nine native legume species and 40 rhizobial strains, we find that bacterial rRNA phylotype accounts for 68% of amoung isolate variability in symbiotic effectiveness and 79% of host specificity in growth response. We also find that rhizobial phylotype diversity and composition of soils collected from a geographical breadth of sites explains the growth responses of two acacia species. Positive soil microbial feedback between the two acacia hosts was largely driven by changes in diversity of rhizobia. Greater rhizobial diversity accumulated in association with the less responsive host species, Acacia salicina, and negatively affected the growth of the more responsive Acacia stenophylla. Together, this work demonstrates correspondence of phylotype with microbial function, and demonstrates that the dynamics of rhizobia on host species can feed back on plant population performance. 相似文献
5.
Kurt O. Reinhart Jonathan T. Bauer Sarah McCarthyNeumann Andrew S. MacDougall Jos L. Hierro Mariana C. Chiuffo Scott A. Mangan Johannes Heinze Joana Bergmann Jasmin Joshi Richard P. Duncan Jeff M. Diez Paul Kardol Gemma Rutten Markus Fischer Wim H. van der Putten Thiemo Martijn Bezemer John Klironomos 《Ecology and evolution》2021,11(4):1756
Plant‐soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays. We meta‐analyzed results from 22 PSF experiments and found an overall positive correlation (0.12 ≤ ≤ 0.32) between plant abundance in the field and PSFs across plant functional types (herbaceous and woody plants) but also variation by plant functional type. Thus, our analysis provides quantitative support that plant abundance has a general albeit weak positive relationship with PSFs across ecosystems. Overall, our results suggest that harmful soil biota tend to accumulate around and disproportionately impact species that are rare. However, data for the herbaceous species, which are most common in the literature, had no significant abundance‐PSFs relationship. Therefore, we conclude that further work is needed within and across biomes, succession stages and plant types, both under controlled and field conditions, while separating PSF effects from other drivers (e.g., herbivory, competition, disturbance) of plant abundance to tease apart the role of soil biota in causing patterns of plant rarity versus commonness. 相似文献
6.
Plant‐soil feedbacks from 30‐year family‐specific soil cultures: phylogeny,soil chemistry and plant life stage 下载免费PDF全文
Intraspecific negative feedback effects, where performance is reduced on soils conditioned by conspecifics, are widely documented in plant communities. However, interspecific feedbacks are less well studied, and their direction, strength, causes, and consequences are poorly understood. If more closely related species share pathogens, or have similar soil resource requirements, plants may perform better on soils conditioned by more distant phylogenetic relatives. There have been few empirical tests of this prediction across plant life stages, and none of which attempt to account for soil chemistry. Here, we test the utility of phylogeny for predicting soil feedback effects on plant survival and performance (germination, seedling survival, growth rate, biomass). We implement a full factorial experiment growing species representing five families on five plant family‐specific soil sources. Our experiments exploit soils that have been cultured for over 30 years in plant family‐specific beds at Oxford University Botanic Gardens. Plant responses to soil source were idiosyncratic, and species did not perform better on soils cultured by phylogenetically more distant relatives. The magnitude and sign of feedback effects could, however, be explained by differences in the chemical properties of “home” and “away” soils. Furthermore, the direction of soil chemistry‐related plant‐soil feedbacks was dependent on plant life stage, with the effects of soil chemistry on germination success and accumulation of biomass inversely related. Our results (1) suggest that the phylogenetic distance between plant families cannot predict plant–soil feedbacks across multiple life stages, and (2) highlight the need to consider changes in soil chemistry as an important driver of population responses. The contrasting responses at plant life stages suggest that studies focusing on brief phases in plant demography (e.g., germination success) may not give a full picture of plant–soil feedback effects. 相似文献
7.
Marion Fayard Franois‐Xavier Dechaume‐Moncharmont Rmi Wattier Marie‐Jeanne Perrot‐Minnot 《Biological reviews of the Cambridge Philosophical Society》2020,95(5):1233-1251
Several parasite species have the ability to modify their host's phenotype to their own advantage thereby increasing the probability of transmission from one host to another. This phenomenon of host manipulation is interpreted as the expression of a parasite extended phenotype. Manipulative parasites generally affect multiple phenotypic traits in their hosts, although both the extent and adaptive significance of such multidimensionality in host manipulation is still poorly documented. To review the multidimensionality and magnitude of host manipulation, and to understand the causes of variation in trait value alteration, we performed a phylogenetically corrected meta‐analysis, focusing on a model taxon: acanthocephalan parasites. Acanthocephala is a phylum of helminth parasites that use vertebrates as final hosts and invertebrates as intermediate hosts, and is one of the few parasite groups for which manipulation is predicted to be ancestral. We compiled 279 estimates of parasite‐induced alterations in phenotypic trait value, from 81 studies and 13 acanthocephalan species, allocating a sign to effect size estimates according to the direction of alteration favouring parasite transmission, and grouped traits by category. Phylogenetic inertia accounted for a low proportion of variation in effect sizes. The overall average alteration of trait value was moderate and positive when considering the expected effect of alterations on trophic transmission success (signed effect sizes, after the onset of parasite infectivity to the final host). Variation in the alteration of trait value was affected by the category of phenotypic trait, with the largest alterations being reversed taxis/phobia and responses to stimuli, and increased vulnerability to predation, changes to reproductive traits (behavioural or physiological castration) and immunosuppression. Parasite transmission would thereby be facilitated mainly by changing mainly the choice of micro‐habitat and the anti‐predation behaviour of infected hosts, and by promoting energy‐saving strategies in the host. In addition, infection with larval stages not yet infective to definitive hosts (acanthella) tends to induce opposite effects of comparable magnitude to infection with the infective stage (cystacanth), although this result should be considered with caution due to the low number of estimates with acanthella. This analysis raises important issues that should be considered in future studies investigating the adaptive significance of host manipulation, not only in acanthocephalans but also in other taxa. Specifically, the contribution of phenotypic traits to parasite transmission and the range of taxonomic diversity covered deserve thorough attention. In addition, the relationship between behaviour and immunity across parasite developmental stages and host–parasite systems (the neuropsychoimmune hypothesis of host manipulation), still awaits experimental evidence. Most of these issues apply more broadly to reported cases of host manipulation by other groups of parasites. 相似文献
8.
The impact of animal manure application on soil organic carbon (SOC) stock changes is of interest for both agronomic and environmental purposes. There is a specific need to quantify SOC change for use in national greenhouse gas (GHG) emission inventories. We quantified the response of SOC stocks to manure application from a large worldwide pool of individual studies and determined the impact of explanatory factors such as climate, soil properties, land use and manure characteristics. Our study is based on a meta‐analysis of 42 research articles totaling 49 sites and 130 observations in the world. A dominant effect of cumulative manure‐C input on SOC response was observed as this factor explained at least 53% of the variability in SOC stock differences compared to mineral fertilized or unfertilized reference treatments. However, the effects of other determining factors were not evident from our data set. From the linear regression relating cumulative C inputs and SOC stock difference, a global manure‐C retention coefficient of 12% ± 4 (95% Confidence Interval, CI) could be estimated for an average study duration of 18 years. Following an approach comparable to the Intergovernmental Panel on Climate Change, we estimated a relative SOC change factor of 1.26 ± 0.14 (95% CI) which was also related to cumulative manure‐C input. Our results offer some scope for the refinement of manure retention coefficients used in crop management guidelines and for the improvement of SOC change factors for national GHG inventories by taking into account manure‐C input. Finally, this study emphasizes the need to further document the long‐term impact of manure characteristics such as animal species, especially pig and poultry, and manure management systems, in particular liquid vs. solid storage. 相似文献
9.
Krikor Andonian José L. Hierro Liana Khetsuriani Pablo I. Becerra Grigor Janoyan Diego Villareal Lohengrin A. Cavieres Laurel R. Fox Ragan M. Callaway 《Journal of Biogeography》2012,39(3):600-608
Aim Our aim in this study was to document the global biogeographic variation in the effects of soil microbes on the growth of Centaurea solstitialis (yellow starthistle; Asteraceae), a species that has been introduced throughout the world, but has become highly invasive only in some introduced regions. Location To assess biogeographic variation in plant–soil microbe interactions, we collected seeds and soils from native Eurasian C. solstitialis populations and introduced populations in California, Argentina and Chile. Methods To test whether escape from soil‐borne natural enemies may contribute to the success of C. solstitialis, we compared the performance of plants using seeds and soils collected from each of the biogeographic regions in greenhouse inoculation/sterilization experiments. Results We found that soil microbes had pervasive negative effects on plants from all regions, but these negative effects were significantly weaker in soils from non‐native ranges in Chile and California than in those from the non‐native range in Argentina and the native range in Eurasia. Main conclusions The biogeographic differences in negative effects of microbes in this study conformed to the enemy‐release hypothesis (ERH) overall, but the strong negative effect of soil biota in Argentina, where C. solstitialis is invasive, and weaker effects in Chile where it is not, indicated that different factors influencing invasion are likely to occur in large scale biogeographic mosaics of interaction strengths. 相似文献
10.
The interplay between soil structure,roots, and microbiota as a determinant of plant–soil feedback 下载免费PDF全文
Joana Bergmann Erik Verbruggen Johannes Heinze Dan Xiang Baodong Chen Jasmin Joshi Matthias C. Rillig 《Ecology and evolution》2016,6(21):7633-7644
Plant–soil feedback (PSF) can influence plant community structure via changes in the soil microbiome. However, how these feedbacks depend on the soil environment remains poorly understood. We hypothesized that disintegrating a naturally aggregated soil may influence the outcome of PSF by affecting microbial communities. Furthermore, we expected plants to differentially interact with soil structure and the microbial communities due to varying root morphology. We carried out a feedback experiment with nine plant species (five forbs and four grasses) where the “training phase” consisted of aggregated versus disintegrated soil. In the feedback phase, a uniform soil was inoculated in a fully factorial design with soil washings from conspecific‐ versus heterospecific‐trained soil that had been either disintegrated or aggregated. This way, the effects of prior soil structure on plant performance in terms of biomass production and allocation were examined. In the training phase, soil structure did not affect plant biomass. But on disintegrated soil, plants with lower specific root length (SRL) allocated more biomass aboveground. PSF in the feedback phase was negative overall. With training on disintegrated soil, conspecific feedback was positively correlated with SRL and significantly differed between grasses and forbs. Plants with higher SRL were likely able to easily explore the disintegrated soil with smaller pores, while plants with lower SRL invested in belowground biomass for soil exploration and seemed to be more susceptible to fungal pathogens. This suggests that plants with low SRL could be more limited by PSF on disintegrated soils of early successional stages. This study is the first to examine the influence of soil structure on PSF. Our results suggest that soil structure determines the outcome of PSF mediated by SRL. We recommend to further explore the effects of soil structure and propose to include root performance when working with PSF. 相似文献
11.
Despite increasing frequency of invasions by alien plant species with widespread ecological and economic consequences, it remains unclear how belowground compartments of ecosystems are impacted. In order to synthetize current knowledge and provide future directions for research we performed a meta‐analysis assessing the impact of invasive alien plant species on soil fauna abundance. Compared to previous synthesis on this topic, we included together in our model the trophic group of each soil faunal taxa (from herbivores to predators) and habitat structure, namely open and closed habitats (i.e. grass and shrub dominated areas versus forested areas). In doing so, we highlighted that both moderators strongly interact to determine the response of soil fauna to the presence of invasive alien plants. Soil fauna abundance increase in the presence of invasive species only in closed habitats (+18.2%). This pattern of habitat‐dependent response (positive effect in closed habitats) was only found for primary consumers (i.e. herbivores +29.1% and detritivores +66.7%) within both detritus‐based and live root‐based trophic pathways. Abundances of predators and microbivores did not respond to the presence of IAS irrespective of habitat structure. For several groups, the habitat structure (open or closed) significantly drove their responses to the presence of invasive alien species. In addition, we carefully considered potential sources of bias (e.g. geographic, taxonomic and functional) within the collected data in an attempt to highlight gaps in available knowledge on the subject. Our findings support the conclusions of previous studies on the subject by demonstrating 1) that soil fauna abundance is impacted by biological invasions, 2) that initial habitat structure has a strong influence on the outcome and 3) that responses within the soil fauna differ between trophic levels with a stronger response of primary consumers. 相似文献
12.
Brian L. Anacker John N. Klironomos Hafiz Maherali Kurt O. Reinhart Sharon Y. Strauss 《Ecology letters》2014,17(12):1613-1621
We examined whether plant‐soil feedback and plant‐field abundance were phylogenetically conserved. For 57 co‐occurring native and exotic plant species from an old field in Canada, we collected a data set on the effects of three soil biota treatments on plant growth: net whole‐soil feedback (combined effects of mutualists and antagonists), feedback with arbuscular mycorrhizal fungi (AMF) collected from soils of conspecific plants, and feedback with Glomus etunicatum, a dominant mycorrhizal fungus. We found phylogenetic signal in both net whole‐soil feedback and feedback with AMF of conspecifics; conservatism was especially strong among native plants but absent among exotics. The abundance of plants in the field was also conserved, a pattern underlain by shared plant responses to soil biota. We conclude that soil biota influence the abundance of close plant relatives in nature. 相似文献
13.
Miguel A. Acevedo Forrest P. Dillemuth Andrew J. Flick Matthew J. Faldyn Bret D. Elderd 《Evolution; international journal of organic evolution》2019,73(4):636-647
The virulence–transmission trade‐off hypothesis proposed more than 30 years ago is the cornerstone in the study of host–parasite co‐evolution. This hypothesis rests on the premise that virulence is an unavoidable and increasing cost because the parasite uses host resources to replicate. This cost associated with replication ultimately results in a deceleration in transmission rate because increasing within‐host replication increases host mortality. Empirical tests of predictions of the hypothesis have found mixed support, which cast doubt about its overall generalizability. To quantitatively address this issue, we conducted a meta‐analysis of 29 empirical studies, after reviewing over 6000 published papers, addressing the four core relationships between (1) virulence and recovery rate, (2) within‐host replication rate and virulence, (3) within‐host replication and transmission rate, and (4) virulence and transmission rate. We found strong support for an increasing relationship between replication and virulence, and replication and transmission. Yet, it is still uncertain if these relationships generally decelerate due to high within‐study variability. There was insufficient data to quantitatively test the other two core relationships predicted by the theory. Overall, the results suggest that the current empirical evidence provides partial support for the trade‐off hypothesis, but more work remains to be done. 相似文献
14.
E. R. Jasper Wubs Wim H. van der Putten Simon R. Mortimer Gerard W. Korthals Henk Duyts Roel Wagenaar T. Martijn Bezemer 《Ecology letters》2019,22(7):1145-1151
Recent demonstrations of the role of plant–soil biota interactions have challenged the conventional view that vegetation changes are mainly driven by changing abiotic conditions. However, while this concept has been validated under natural conditions, our understanding of the long‐term consequences of plant–soil interactions for above‐belowground community assembly is restricted to mathematical and conceptual model projections. Here, we demonstrate experimentally that one‐time additions of soil biota and plant seeds alter soil‐borne nematode and plant community composition in semi‐natural grassland for 20 years. Over time, aboveground and belowground community composition became increasingly correlated, suggesting an increasing connectedness of soil biota and plants. We conclude that the initial composition of not only plant communities, but also soil communities has a long‐lasting impact on the trajectory of community assembly. 相似文献
15.
Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta‐analysis of radiocarbon profiles 下载免费PDF全文
Jordane A. Mathieu Christine Hatté Jérôme Balesdent Éric Parent 《Global Change Biology》2015,21(11):4278-4292
The response of soil carbon dynamics to climate and land‐use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed‐effects model whose inference was based on the parallel combination of two algorithms, the expectation–maximization (EM) and the Metropolis–Hasting algorithms, we expressed soil C profiles as a four‐parameter function of depth. The four‐parameter model produced insightful predictions of soil C as dependent on depth, soil type, climate, vegetation, land‐use and date of sampling (). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. 相似文献
16.
The strength of negative plant–soil feedback increases from the intraspecific to the interspecific and the functional group level 下载免费PDF全文
One of the processes that may play a key role in plant species coexistence and ecosystem functioning is plant–soil feedback, the effect of plants on associated soil communities and the resulting feedback on plant performance. Plant–soil feedback at the interspecific level (comparing growth on own soil with growth on soil from different species) has been studied extensively, while plant–soil feedback at the intraspecific level (comparing growth on own soil with growth on soil from different accessions within a species) has only recently gained attention. Very few studies have investigated the direction and strength of feedback among different taxonomic levels, and initial results have been inconclusive, discussing phylogeny, and morphology as possible determinants. To test our hypotheses that the strength of negative feedback on plant performance increases with increasing taxonomic level and that this relationship is explained by morphological similarities, we conducted a greenhouse experiment using species assigned to three taxonomic levels (intraspecific, interspecific, and functional group level). We measured certain fitness‐related aboveground traits and used them along literature‐derived traits to determine the influence of morphological similarities on the strength and direction of the feedback. We found that the average strength of negative feedback increased from the intraspecific over the interspecific to the functional group level. However, individual accessions and species differed in the direction and strength of the feedback. None of our results could be explained by morphological dissimilarities or individual traits. Synthesis. Our results indicate that negative plant–soil feedback is stronger if the involved plants belong to more distantly related species. We conclude that the taxonomic level is an important factor in the maintenance of plant coexistence with plant–soil feedback as a potential stabilizing mechanism and should be addressed explicitly in coexistence research, while the traits considered here seem to play a minor role. 相似文献
17.
Volatile organic compounds (VOCs) emitted by plant roots can influence the germination and growth of neighbouring plants. However, little is known about the effects of root VOCs on plant–herbivore interactions of neighbouring plants. The spotted knapweed (Centaurea stoebe) constitutively releases high amounts of sesquiterpenes into the rhizosphere. Here, we examine the impact of C. stoebe root VOCs on the primary and secondary metabolites of sympatric Taraxacum officinale plants and the resulting plant‐mediated effects on a generalist root herbivore, the white grub Melolontha melolontha. We show that exposure of T. officinale to C.stoebe root VOCs does not affect the accumulation of defensive secondary metabolites but modulates carbohydrate and total protein levels in T. officinale roots. Furthermore, VOC exposure increases M. melolontha growth on T. officinale plants. Exposure of T. officinale to a major C. stoebe root VOC, the sesquiterpene (E)‐β‐caryophyllene, partially mimics the effect of the full root VOC blend on M. melolontha growth. Thus, releasing root VOCs can modify plant–herbivore interactions of neighbouring plants. The release of VOCs to increase the susceptibility of other plants may be a form of plant offense. 相似文献
18.
Xiongxiong Bai Yawen Huang Wei Ren Mark Coyne Pierre‐Andre Jacinthe Bo Tao Dafeng Hui Jian Yang Chris Matocha 《Global Change Biology》2019,25(8):2591-2606
Climate‐smart agriculture (CSA) management practices (e.g., conservation tillage, cover crops, and biochar applications) have been widely adopted to enhance soil organic carbon (SOC) sequestration and to reduce greenhouse gas emissions while ensuring crop productivity. However, current measurements regarding the influences of CSA management practices on SOC sequestration diverge widely, making it difficult to derive conclusions about individual and combined CSA management effects and bringing large uncertainties in quantifying the potential of the agricultural sector to mitigate climate change. We conducted a meta‐analysis of 3,049 paired measurements from 417 peer‐reviewed articles to examine the effects of three common CSA management practices on SOC sequestration as well as the environmental controlling factors. We found that, on average, biochar applications represented the most effective approach for increasing SOC content (39%), followed by cover crops (6%) and conservation tillage (5%). Further analysis suggested that the effects of CSA management practices were more pronounced in areas with relatively warmer climates or lower nitrogen fertilizer inputs. Our meta‐analysis demonstrated that, through adopting CSA practices, cropland could be an improved carbon sink. We also highlight the importance of considering local environmental factors (e.g., climate and soil conditions and their combination with other management practices) in identifying appropriate CSA practices for mitigating greenhouse gas emissions while ensuring crop productivity. 相似文献
19.
Loïc Chalmandrier Johan Pansu Lucie Zinger Frederic Boyer Eric Coissac Alexandre Gnin Ludovic Gielly Sbastien Lavergne Nicolas Legay Vincent Schilling Pierre Taberlet Tamara Münkemüller Wilfried Thuiller 《Ecography》2019,42(12):2144-2156
Soil microbial communities play a key role in ecosystem functioning but still little is known about the processes that determine their turnover (β‐diversity) along ecological gradients. Here, we characterize soil microbial β‐diversity at two spatial scales and at multiple phylogenetic grains to ask how archaeal, bacterial and fungal communities are shaped by abiotic processes and biotic interactions with plants. We characterized microbial and plant communities using DNA metabarcoding of soil samples distributed across and within eighteen plots along an elevation gradient in the French Alps. The recovered taxa were placed onto phylogenies to estimate microbial and plant β‐diversity at different phylogenetic grains (i.e. resolution). We then modeled microbial β‐diversities with respect to plant β‐diversities and environmental dissimilarities across plots (landscape scale) and with respect to plant β‐diversities and spatial distances within plots (plot scale). At the landscape scale, fungal and archaeal β‐diversities were mostly related to plant β‐diversity, while bacterial β‐diversities were mostly related to environmental dissimilarities. At the plot scale, we detected a modest covariation of bacterial and fungal β‐diversities with plant β‐diversity; as well as a distance–decay relationship that suggested the influence of ecological drift on microbial communities. In addition, the covariation between fungal and plant β‐diversity at the plot scale was highest at fine or intermediate phylogenetic grains hinting that biotic interactions between those clades depends on early‐evolved traits. Altogether, we show how multiple ecological processes determine soil microbial community assembly at different spatial scales and how the strength of these processes change among microbial clades. In addition, we emphasized the imprint of microbial and plant evolutionary history on today's microbial community structure. 相似文献
20.
Agriculturally driven changes in soil phosphorus (P) are known to have persistent effects on local ecosystem structure and function, but regional patterns of soil P recovery following cessation of agriculture are less well understood. We synthesized data from 94 published studies to assess evidence of these land‐use legacies throughout the world by comparing soil labile and total P content in abandoned agricultural areas to that of reference ecosystems or sites remaining in agriculture. Our meta‐analysis shows that soil P content was typically elevated after abandonment compared to reference levels, but reduced compared to soils that remained under agriculture. There were more pronounced differences in the legacies of past agriculture on soil P across regions than between the types of land use practiced prior to abandonment (cropland, pasture, or forage grassland). However, consistent patterns of soil P enrichment or depletion according to soil order and types of post‐agricultural vegetation suggest that these factors may mediate agricultural legacies on soil P. We also used mixed effects models to examine the role of multiple variables on soil P recovery following agriculture. Time since cessation of agriculture was highly influential on soil P legacies, with clear reductions in the degree of labile and total P enrichment relative to reference ecosystems over time. Soil characteristics (clay content and pH) were strongly related to changes in labile P compared to reference sites, but these were relatively unimportant for total P. The duration of past agricultural use and climate were weakly related to changes in total P only. Our finding of reductions in the degree of soil P alteration over time relative to reference conditions reveals the potential to mitigate these land‐use legacies in some soils. Better ability to predict dynamics of soil nutrient recovery after termination of agricultural use is essential to ecosystem management following land‐use change. 相似文献