首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feather mites are arthropods that live on or in the feathers of birds, and are among the commonest avian ectosymbionts. However, the nature of the ecological interaction between feather mites and birds remains unclear, some studies reporting negative effects of feather mites on their hosts and others reporting positive or no effects. Here we use a large dataset comprising 20 189 measurements taken from 83 species of birds collected during 22 yr in 151 localities from seven countries in Europe and North Africa to explore the correlation between feather mite abundance and body condition of their hosts. We predicted that, if wing‐dwelling feather mites are parasites, a negative correlation with host body condition should be found, while a mutualistic interaction should yield positive correlation. Although negative relationships between feather mite abundance and host body condition were found in a few species of birds, the sign of the correlation was positive in most bird species (69%). The overall effect size was only slightly positive (r =0.066). The effect of feather mite abundance explained <10% of variance in body condition in most species (87%). Results suggest that feather mites are not parasites of birds, but rather that they hold a commensalistic relationship where feather mites may benefit from feeding on uropygial gland secretions of their hosts and birds do not seem to obtain a great benefit from the presence of feather mites.  相似文献   

2.
Feather mites (Arachnida: Acari: Astigmata) feed mainly on secretions of the uropygial gland of birds. Here, we use analyses corrected for phylogeny and body size to show that there is a positive correlation between the size of this gland and mite abundance in passerine birds at an interspecific level during the breeding season, suggesting that the gland mediates interactions between mites and birds. As predicted on the basis of hypothesized waterproofing and antibiotic functions of uropygial gland secretions, riparian/marsh bird species had larger glands and higher mite loads than birds living in less mesic terrestrial environments. An unexpected pattern was a steeper relationship between mite load and gland size in migratory birds than in residents. If moderate mite loads are beneficial to a host but high loads detrimental, this could create complex selection regimes in which gland size influences mite load and vice versa. Mites may exert selective pressures on gland size of their hosts that has resulted in smaller glands among migratory bird species, suggesting that smaller glands may have evolved in these birds to attenuate a possible detrimental effect of feather mites when present in large numbers.  相似文献   

3.
Gradients of environmental stress may affect biotic interactions in unpredictable ways responding to climate variation, depending on the abiotic stress tolerance of interacting partners. Here, we study the effect of local climate on the intensity of feather mites in six mountain passerines along a 1400 m elevational gradient characterized by shifting temperature and rainfall. Although obligatory symbionts of warm-blooded organisms are assumed to live in mild and homeothermic environments, those inhabiting external, non-blood-irrigated body portions of the host organism, such as feather mites, are expected to endure exposure to the direct influence of a fluctuating climate. As expected, feather mite intensity declined with elevation in all bird species, a pattern that was also found in cold-adapted passerines that have typical alpine habits. The elevation cline was mainly explained by a positive effect of the average temperature upon mite intensity in five of the six species studied. Precipitation explained less variance in mite intensity than average temperature, and showed a negative correlation in half of the studied species. We found no climate-driven migration of mites along the wings of birds, no replacement of mite species along elevation gradients and no association with available food resources for mites (estimated by the size of the uropygial gland). This study suggests that ectosymbionts of warm-blooded animals may be highly sensitive to climatic variation and become less abundant under stressful environmental conditions, providing empirical evidence of the decline of specialized biotic interactions among animal species at high elevations.  相似文献   

4.
ISMAEL GALVÁN  & JUAN J. SANZ 《Ibis》2006,148(4):687-697
Plumicolous feather mites are ectosymbiotic organisms that live on bird feathers. Despite their abundance and prevalence among birds, the ecology of the interaction between these organisms and their hosts is poorly known. As feather mites feed on oil that birds spread from their uropygial gland, it has been hypothesized, but never tested, that the number of feather mites increases with the size of the uropygial gland of their hosts. In this study the number of feather mites is considered with respect to uropygial gland size in a breeding population of Great Tits Parus major in order to test this hypothesis. As predicted, the number of feather mites correlated positively with the uropygial gland size of their hosts, showing for the first time that uropygial gland size can explain the variance in feather mite load among conspecifics. Previous studies relating feather mite load to plumage colour have suggested that feather mites may be parasitic or neutral. To confirm this, the yellowness of breast feathers was also assessed. However, the results ran in the opposite direction to that expected, showing a positive correlation between mite load and plumage yellowness, which suggests that further work is needed to give clear evidence for a specific nature of feather mites. However, Great Tits with higher mite loads had lower hatching and breeding success, which may support the idea that feather mites are parasites, although this effect must be taken with caution because it was only found in males. Age or sex effects were not found on the number of feather mites, and it is proposed that hormonal levels may not be sufficient to explain the variation in feather mite loads. Interestingly, a positive correlation was detected between uropygial gland size and plumage brightness, which could be a novel factor to take into account in studies of plumage colour.  相似文献   

5.
The high relevance of host‐switching for the diversification of highly host‐specific symbionts (i.e., those commonly inhabiting a single host species) demands a better understanding of host‐switching dynamics at an ecological scale. Here, we used DNA metabarcoding to study feather mites on passerine birds in Spain, sequencing mtDNA (COI) for 25,540 individual mites (representing 64 species) from 1,130 birds (representing 71 species). Surprisingly, 1,228 (4.8%) mites from 84 (7.4%) birds were found on host species that were not the expected to be a host according to a recent bird–feather mite associations catalog. Unexpected associations were widespread across studied mite (40.6%) and bird (43.7%) species and showed smaller average infrapopulation sizes than typical associations. Unexpected mite species colonized hosts being distantly related to the set of their usual hosts, but with similar body size. The network of bird–mite associations was modular (i.e., some groups of bird and mite species tended to be more associated with each other than with the others), with 75.9% of the unexpected associations appearing within the module of the typical hosts of the mite species. Lastly, 68.4% of mite species found on unexpected hosts showed signatures of genetic differentiation, and we found evidence for reproduction or the potential for it in many of the unexpected associations. Results show host colonization as a common phenomenon even for these putatively highly host‐specific symbionts. Thus, host‐switching by feather mites, rather than a rare phenomenon, appears as a relatively frequent phenomenon shaped by ecological filters such as host morphology and is revealed as a fundamental component for a dynamic coevolutionary and codiversification scenario.  相似文献   

6.
Feather mites are obligatory ectosymbionts of birds that primarily feed on the oily secretions from the uropygial gland. Feather mite abundance varies within and among host species and has various effects on host condition and fitness, but there is little consensus on factors that drive variation of this symbiotic system. We tested hypotheses regarding how within‐species and among‐species traits explain variation in both (1) mite abundance and (2) relationships between mite abundance and host body condition and components of host fitness (reproductive performance and apparent annual survival). We focused on two closely related (Parulidae), but ecologically distinct, species: Setophaga cerulea (Cerulean Warbler), a canopy dwelling open‐cup nester, and Protonotaria citrea (Prothonotary Warbler), an understory dwelling, cavity nester. We predicted that feather mites would be more abundant on and have a more parasitic relationship with P. citrea, and within P. citrea, females and older individuals would harbor greater mite abundances. We captured, took body measurements, quantified feather mite abundance on individuals’ primaries and rectrices, and monitored individuals and their nests to estimate fitness. Feather mite abundance differed by species, but in the opposite direction of our prediction. There was no relationship between mite abundance and any measure of body condition or fitness for either species or sex (also contrary to our predictions). Our results suggest that species biology and ecological context may influence mite abundance on hosts. However, this pattern does not extend to differential effects of mites on measures of host body condition or fitness.  相似文献   

7.
Potentially, pathogenic bacteria are one of the main infective agents against which a battery of chemical and physical barriers has evolved in animals. Among these are the secretions by the exocrine uropygial gland in birds. The antimicrobial properties of uropygial secretions may prevent colonization and growth of microorganisms on feathers, skin and eggshells. However, uropygial gland secretions also favour the proliferation of feather mites that feed on secretions and microorganisms living on feathers that would otherwise reach eggshells during incubation if not consumed by feather mites. Therefore, at the interspecific level, uropygial gland size (as an index of volume of uropygial secretion) should be positively related to eggshell bacterial load (i.e. the risk of egg infection), whereas eggshell bacterial loads may be negatively related to abundance of feather mites eating bacteria. Here, we explore these previously untested predictions in a comparative framework using information on eggshell bacterial loads, uropygial gland size, diversity and abundance of feather mites and hatching success of 22 species of birds. The size of the uropygial gland was positively related to eggshell bacterial loads (mesophilic bacteria and Enterobacteriaceae), and bird species with higher diversity and abundance of feather mites harboured lower bacterial density on their eggshells (Enterococcus and Staphylococcus), in accordance with the hypothesis. Importantly, eggshell bacterial loads of mesophilic bacteria, Enterococcus and Enterobacteriaceae were negatively associated with hatching success, allowing us to interpret these interspecific relationships in a functional scenario, where both uropygial glands and mutualistic feather mites independently reduce the negative effects of pathogenic bacteria on avian fitness.  相似文献   

8.
Feather mites (Astigmata) are specialized parasites living on the plumage and skin of birds. The paper presents data on infestation of some passerines (Passeriformes) by feather mites in the south of Western Siberia (Omsk and Tyumen Provinces). We found 24 species of feather mites belonging to the families Analgidae, Dermoglyphidae, Pteronyssidae, Trouessartiidae, and Proctophyllodidae on 16 bird species. Among them, 19 species are common parasites of the passerine birds examined; five species were detected on atypical hosts. Ten mite species were recorded for the first time on the passerine species examined. Analysis of the distribution of abundant and common mite species on their hosts has demonstrated that the majority of the bird parasites possess a specific distribution pattern in the host plumage with preference for certain feather types. We have also obtained new data on host associations of several mite species.  相似文献   

9.
The seasonal change, i.e. the marked differences between seasons of low and high productivity, in the abundance of ectosymbionts and the defence intensity of the host against pathogens is a well defined characteristic of temperate zone organisms. Here we investigate the seasonal variation in the uropygial gland size and the abundance of Proctophyllodes feather mites on the wing feathers of house sparrows Passer domesticus in two breeding populations. The size of the uropygial gland varied significantly in male and female house sparrows over the annual cycle. The gland was small during the non‐breeding and mating season, after that it started to grow sharply, reaching its maximum size during breeding. Females had larger gland volumes than males during breeding, and the increase in gland size during breeding was more pronounced in females than in males. The number of feather mites was the lowest during breeding, followed by an increase during moult, and reaching its maximum between the wintering and mating seasons. The absence of a significant relationship between the uropygial gland size and the abundance of feather mites, after controlling for potential confounding variables, supports the view that gland oils do not regulate the number of mites. To investigate further this hypothesis, through a full factorial experimental design we tested the effect of uropygial gland and photoperiod manipulation on the population size and population dynamics of feather mites. The manipulation of uropygial gland had no effect on mites, supporting our observational results. As a result of the experimentally increased day‐length, the abundance of feather mites on wing feathers decreased significantly and more sharply than in the control group, supporting the previous anecdotal evidence about the photosensitivity of these organisms. Using photoperiodic cues, feather mites may respond to seasonal changes that affect their life‐history and population dynamics.  相似文献   

10.
Populations of a host species may exhibit different assemblages of parasites and other symbionts. The loss of certain species of symbionts (lineage sorting, or "missing-the-boat") is a mechanism by which geographical variation in symbiont assemblages can arise. We studied feather mites and lice from Australian brush-turkeys (Aves: Megapodiidae: Alectura lathami) and expected to observe geographical structuring in arthropod assemblages for several reasons. First, because the brush-turkey is a sedentary ground-dwelling bird, we predicted that geographically close host populations should share more similar arthropod assemblages than distant ones. Second, because brush-turkeys do not brood their young, vertical transfer of arthropods is unlikely, and brush-turkeys probably acquire their mites and lice at social maturity through contact with other birds. Young birds could disperse and found new populations without carrying complete sets of symbionts. We predicted that young birds would have fewer species of arthropods than older birds; in addition, we expected that males (which are polygynous) would have more species than females. Birds were sampled from 12 sites (=populations) along the east coast of Queensland, Australia, that were separated by a distance of 12.5-2,005 km. In total, 5 species of mites from the Pterolichidae and 1 species from the Ascouracaridae were found. Two species of lice were collected but in numbers too low to be statistically useful. Differentiation of mite assemblages was evident; in particular, Leipobius sp. showed 100% prevalence in 3 host populations and 0% in the remaining 9. A dendrogram of brush-turkey populations based on mite assemblages showed 2 geographically correlated clusters of sites, plus 1 cluster that contained 2 sites near Brisbane and 1 approximately at a distance of 1,000 km. There was no strong effect of host age or sex on number of mite species carried. Horizontal transfer of feather mites by hippoboscid flies, in addition to physical contact between hosts, may play a role in homogenizing symbiont assemblages within populations.  相似文献   

11.
Feather mites (Astigmata: Analgoidea and Pterolichoidea) are among the most abundant and commonly occurring bird ectosymbionts. Basic questions on the ecology and evolution of feather mites remain unanswered because feather mite species identification is often only possible for adult males, and it is laborious even for specialized taxonomists, thus precluding large‐scale identifications. Here, we tested DNA barcoding as a useful molecular tool to identify feather mites from passerine birds. Three hundred and sixty‐one specimens of 72 species of feather mites from 68 species of European passerine birds from Russia and Spain were barcoded. The accuracy of barcoding and minibarcoding was tested. Moreover, threshold choice (a controversial issue in barcoding studies) was also explored in a new way, by calculating through simulations the effect of sampling effort (in species number and species composition) on threshold calculations. We found one 200‐bp minibarcode region that showed the same accuracy as the full‐length barcode (602 bp) and was surrounded by conserved regions potentially useful for group‐specific degenerate primers. Species identification accuracy was perfect (100%) but decreased when singletons or species of the Proctophyllodes pinnatus group were included. In fact, barcoding confirmed previous taxonomic issues within the P. pinnatus group. Following an integrative taxonomy approach, we compared our barcode study with previous taxonomic knowledge on feather mites, discovering three new putative cryptic species and validating three previous morphologically different (but still undescribed) new species.  相似文献   

12.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine‐tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non‐moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather‐level decisions on where to live, contradicting the current view that mites perform “mass”, or “blind” movements across wing feathers. Moreover, our findings indicate that “rare” distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient‐bird‐feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

13.
The uropygial gland of birds secretes wax that is applied to the plumage, where the secretions are hypothesized to eliminate fungi and bacteria, thereby potentially providing important benefits in terms of plumage maintenance. We analyzed variation in size of the uropygial gland in 212 species of birds to determine the function and the ecological correlates of variation in gland size. Bird species with larger uropygial glands had more genera of chewing lice of the sub-order Amblycera, but not of the sub-order Ischnocera, and more feather mites. There was a fitness advantage associated with relatively large uropygial glands because such species had higher hatching success. These findings are consistent with the hypothesis that the uropygial gland functions to manage the community of microorganisms, and that certain taxa of chewing lice have diverged as a consequence of these defenses.  相似文献   

14.
Inferring cophylogeographic events requires matching the timing of these events on both host and symbiont (e.g., parasites) phylogenies because divergences of hosts and their symbionts may not temporally coincide, and host switches may occur. We investigate a large radiation of birds (Passeriformes) and their permanent symbionts, the proctophyllodid feather mites (117 species from 116 bird species; six genes, 11,468 nt aligned) using two time‐calibration strategies for mites: fossils only and host phylogeography only. Out of 10 putative cophylogeographic events 4 agree in timing for both symbiont and host events being synchronous co‐origins or codispersals; three were based on host shifts, but agree in timing being very close to the origin of modern hosts; two disagree; and one large basal mite split was seemingly independent from host phylogeography. Among these events was an ancient (21–25.3 Mya), synchronous codispersal from the Old World leading to the origin and diversifications of New World emberizoid passerids and their mites, the thraupis + quadratus species groups of Proctophyllodes. Our framework offers a more robust detection of host and symbiont cophylogeographic events (as compared to host‐symbiont reconciliation analysis and using host phylogeography for time‐calibration) and provides independent data for testing alternative hypotheses on timing of host diversification and dispersal.  相似文献   

15.
Parasites and pathogens that begin as symbionts, i.e., organisms living together in the same habitat, are some of the most promising drivers of species evolution. Because insects are highly diverse and important as ecosystem service agents and because mites can exert large effects on insect populations (capable of killing at least juveniles), insect–mite interactions have been analyzed from various perspectives, including evolutionary, ecological and pest‐management perspectives. Here, I review and examine insect–mite symbiotic associations to develop hypotheses concerning the factors that maintain and develop their relationships. Previous studies have hypothesized that insect sociality and mite richness and specificity affect insect–mite interactions. I found that both solitary and social insects, including parasocial and subsocial insects, harbor numbers of symbionts including species‐specific ones but few dangerous mite symbionts in their nests or habitats under natural conditions. Nest size or the amount of food resources in a nest may affect mite richness. On the basis of this review, I hypothesize that the insect characteristics relevant for mite symbiotic hosting are sharing the same habitat with mites and living in a nutrient‐rich habitat. I also suggest that many cases of species‐specific symbiosis began with phoresy. To test these hypotheses, phylogenetic information on mites living with insect groups and quantitative analysis to characterize each insect–mite relationship are necessary.  相似文献   

16.
Understanding what shapes variation in genetic diversity among species remains a major challenge in evolutionary ecology, and it has been seldom studied in parasites and other host‐symbiont systems. Here, we studied mtDNA variation in a host‐symbiont non‐model system: 418 individual feather mites from 17 feather mite species living on 17 different passerine bird species. We explored how a surrogate of census size, the median infrapopulation size (i.e., the median number of individual parasites per infected host individual), explains mtDNA genetic diversity. Feather mite species genetic diversity was positively correlated with mean infrapopulation size, explaining 34% of the variation. As expected from the biology of feather mites, we found bottleneck signatures for most of the species studied but, in particular, three species presented extremely low mtDNA diversity values given their infrapopulation size. Their star‐like haplotype networks (in contrast with more reticulated networks for the other species) suggested that their low genetic diversity was the consequence of severe bottlenecks or selective sweeps. Our study shows for the first time that mtDNA diversity can be explained by infrapopulation sizes, and suggests that departures from this relationship could be informative of underlying ecological and evolutionary processes.  相似文献   

17.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine-tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non-moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather-level decisions on where to live, contradicting the current view that mites perform "mass", or "blind" movements across wing feathers. Moreover, our findings indicate that "rare" distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient-bird-feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

18.
The microbiota has a broad range of impacts on host physiology and behaviour, pointing out the need to improve our comprehension of the drivers of host–microbiota composition. Of particular interest is whether the microbiota is acquired passively, or whether and to what extent hosts themselves shape the acquisition and maintenance of their microbiota. In birds, the uropygial gland produces oily secretions used to coat feathers that have been suggested to act as an antimicrobial defence mechanism regulating body feather microbiota. However, our comprehension of this process is still limited. In this study, we for the first time coupled high‐throughput sequencing of the microbiota of both body feathers and the direct environment (i.e., the nest) in great tits with chemical analyses of the composition of uropygial gland secretions to examine whether host chemicals have either specific effects on some bacteria or nonspecific broad‐spectrum effects on the body feather microbiota. Using a network approach investigating the patterns of co‐occurrence or co‐exclusions between chemicals and bacteria within the body feather microbiota, we found no evidence for specific promicrobial or antimicrobial effects of uropygial gland chemicals. However, we found that one group of chemicals was negatively correlated to bacterial richness on body feathers, and a higher production of these chemicals was associated with a poorer body feather bacterial richness compared to the nest microbiota. Our study provides evidence that chemicals produced by the host might function as a nonspecific broad‐spectrum antimicrobial defence mechanism limiting colonization and/or maintenance of bacteria on body feathers, providing new insight about the drivers of the host's microbiota composition in wild organisms.  相似文献   

19.
Some symbiotic taxa may have evolved to track changes in the level and quality of food resources provided by the host to increase reproduction and dispersal. As a consequence, some ectosymbionts synchronize their reproduction and activity with particular stages of their host's living cycle. In this article we examined temporal patterns of variation in prevalence and abundance of feather mites living on pre‐migratory barn swallows Hirundo rustica. Feather mites in the lineages Pterolichoidea and Analgoidea are the most common arthropod ectosymbionts living at the expenses of feather oil. We investigated whether the seasonal variations in levels of several measures of physiological condition associated with host migration were related to changes in prevalence and abundance of mites. The results suggest that the variation in prevalence of feather mites, and thus probably the mode of acquisition and dispersal of these symbionts, is linked to an increase in host sociality before migration. Physiological dynamics of hosts after the breeding season point at two clearly identifiable periods: a post‐breeding period when physiological condition remains stationary or decreases, and a pre‐migratory period characterized by a rapid increase in several measures of physiological condition. Mite population dynamics were synchronized with migratory disposition during the period of highest host gregariousness. These synchronized processes occurred in both study years, although dynamics of migratory disposition and mite prevalence and abundance differ somewhat between years for adult and juvenile hosts. Mite population increase before host migration may be a response to a higher quantity of food provided by the host, namely oil from the urpoygial gland which is stimulated by hormones. Therefore, mites might have evolved to adjust their reproduction to the time when they have more chance of dispersal through horizontal transmission. In addition, body mass of juvenile and adult hosts were positively related with mite abundance in both years after allowing for several influencing factors. Body mass variation may reflect adequately fitness of host or their current physiological state, for instance, differences in the secretion of lipids on feathers or a more adequate microclimate to these symbionts.  相似文献   

20.
The uropygial gland is an organ exclusive of birds that secretes an oily substance, the uropygial secretion, the functions of which are still debated. One of the proposed hypothesis is its possible action against chewing lice (order Phthiraptera), a group of avian ectoparasites that feed on feathers, causing different types of harm. However, this hypothesis lacks support. The present study analyses the relationship between uropygial gland size and the number of feather holes (which is correlated with the load of chewing lice) in the house sparrow Passer domesticus. Moreover, the relationship between the uropygial gland size and different aspects of sparrow health (body condition, immunocompetence and haematocrit), as well as sexually selected traits in males (badge and wingbar size), is tested. The results show a negative correlation between uropygial gland size and number of feather holes, a result found both years of the study. This result supports the hypothesis that uropygial secretion is used against chewing lice. Uropygial gland size also correlated positively with body condition (residuals of body mass relative to tarsus length) and immunocompetence, being therefore related to bird health. After a year in captivity, with resources provided ad libitum, no correlation was found between individual uropygial gland size and body condition or haematocrit, perhaps because the negative effect that chewing lice exert on bird health was offset by captivity conditions. Uropygial gland size was not correlated with badge size, but it was correlated with wingbar size, which furthermore supports the contention that this sexually selected signal acts as an indicator of lice resistance in the house sparrow. In summary, this study supports the idea of a positive relationship between uropygial gland and bird health in the house sparrow, the gland secretion affording resistance against chewing lice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号