首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
The small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is a recent but significant pest of honeybee [Apis mellifera L. (Hymenoptera: Apidae)] hives in various regions throughout the world, including Eastern Australia. The larval stage of this beetle damages hives when they feed on brood, pollen, and honeycomb, leaving behind fermented wastes. In cases of extreme damage, hives collapse and are turned to an odorous mass of larvae in fermenting hive products. The yeast Kodamaea ohmeri (Etchells & Bell) Yamada et al. (Ascomycota) has been consistently isolated from the fermenting material as well as each life stage of this beetle. Various studies have noted that the small hive beetle is attracted to volatiles from hive products and those of the yeast Kohmeri, although earlier studies have not used naturally occurring hive products as their source of fermentation. This study investigated changes through time in the attractiveness of natural honeybee hive products to the small hive beetle as the hive products were altered by the action of beetle larvae and fermentation by K. ohmeri. We used gas chromatography‐mass spectrometry and choice‐test behavioural assays to investigate these changes using products sampled from three apiaries. Attractiveness of the fermenting hive products (‘slime’) increased as fermentation progressed, and volatile profiles became more complex. Fermenting hive products remained extremely attractive for more than 30 days, significantly longer than previous reports. These results have strong implications for the development of an external attractant trap to assist in the management of this invasive pest.  相似文献   

2.
《Journal of Asia》2020,23(2):504-508
The small hive beetle (Aethina tumida Murray) is an invasive pest affecting honey bee colonies. The beetles are known to be attracted to volatiles from hive products and honey bees like Apis mellifera L. Previously we reported the presence of five major compounds from the volatile extracts of hive materials; ethyl linolenate and ethyl palmitate from pollen dough, oleamide and tetracosane in fermenting honey, and oleamide and 5-methyl-2-phenyl-1H-indole from A. mellifera worker bees. This study tested the attractiveness of the aforementioned five volatile organic compounds to small hive beetles (SHB) by Y-tube olfactometric bioassay. Ethyl linolenate was highly attractive to both male and female adults of SHB. Ethyl palmitate was attractive to SHB only at higher concentration (0.01–01 mg/ml). Interestingly, tetracosane, 5-methyl-2-phenyl-1H-indole and oleamide were repellent for SHB of both sexes, but ethyl linolenate and ethyl palmitate as components of honey bee brood pheromone attracted SHB. The results highlight that SHB differentially utilizes volatile chemicals from hive materials and honey bees as cues to locate honey bee hives.  相似文献   

3.
In recent studies, the yeast species Hanseniaspora uvarum and Lachancea thermotolerans were isolated from the digestive tract of four North American yellowjacket species (Hymenoptera: Vespidae), and attraction of yellowjackets to brewer's yeast, Saccharomyces cerevisiae (all Saccharomycetaceae), growing on fruit powder was demonstrated. We tested the hypothesis that Vespula spp. are attracted to cultures of H. uvarum and L. thermotolerans and their respective volatiles. In field experiments, we found that H. uvarum and L. thermotolerans are attractive to three species of yellowjacket, but only when grown on grape juice‐infused yeast peptone dextrose (YPD) agar. Using gas chromatography‐mass spectrometry, we analyzed the headspace volatiles produced by these yeasts, and field tested an 18‐component yeast synthetic semiochemical blend. This synthetic blend attracted western yellowjackets, Vespula pensylvanica (Saussure), but no other yellowjacket species. Acetic acid or ethanol added to the synthetic blend at biologically relevant doses either had no effect or significantly lowered trap captures. Our results demonstrate that yeast symbionts isolated from the digestive tract of yellowjackets are attractive to their hosts. Further research is needed to identify the volatiles mediating attraction of species other than V. pensylvanica to the yeast cultures.  相似文献   

4.
We investigated the attractiveness of synthetic volatile blends or individual volatiles of flowering rice panicles or flowering Scirpus juncoides spikelets to the sorghum plant bug Stenotus rubrovittatus (Matsumura). None of the individual chemicals tested attracted either sex of the bug. Synthetic volatile blends of flowering rice panicles composed of geranyl acetone, β‐caryophyllene, n‐decanal, methyl salicylate, β‐elemene and n‐tridecene attracted females. The synthetic blend of volatiles was just as attractive as natural flowering rice panicles to females. Other synthetic blends did not attract the bug. We sampled headspace volatiles from flowering S. juncoides spikelets with solid‐phase microextraction and analysed them using gas chromatography–mass spectrometry. The main volatile emitted from S. juncoides was β‐caryophyllene, one of the major volatile components of flowering rice panicles. β‐Elemene was a common volatile found in flowering rice panicles and flowering S. juncoides spikelets. Therefore, we investigated the attractiveness of synthetic blends of flowering rice panicles and S. juncoides spikelets composed of β‐caryophyllene and β‐elemene. The synthetic blend of flowering S. juncoides spikelets significantly attracted males but not females. The synthetic blend of flowering rice panicles composed of β‐caryophyllene and β‐elemene did not attract either sex. These results suggest that β‐caryophyllene and β‐elemene are common active compounds responsible for attractiveness of flowering rice panicles and S. juncoides spikelets although some of the other volatile components act synergistically with these two compounds in natural plant odours.  相似文献   

5.
Weak and small honey bee colonies are supposed to be more susceptible to infestations by the small hive beetle [Aethina tumida, small hive beetle (SHB)]. To test this, we established 24 nucleus colonies [12 with and 12 without previous SHB removal (= screening)]. Four weeks later, we compared beetle numbers and the occurrence of SHB reproduction to the corresponding full‐sized colonies. Full‐sized colonies with no screening were infested with significantly more SHBs than all other groups (mean ± standard deviation = 46.9 ± 26.7). Regardless of this, none of the full‐sized colonies showed damage or evidence of SHB reproduction. In contrast, five nucleus colonies collapsed and SHB larvae were found in an additional seven colonies. Our study demonstrates that SHB infestation levels which are harmless to full‐sized colonies may have a negative impact on small nucleus colonies.  相似文献   

6.
Herbivorous insects use olfactory cues to locate their host plant within a complex olfactory landscape. One such example is the European grapevine moth Lobesia botrana, a key pest of the grape in the Palearctic region, which recently expanded both its geographical and host plant range. Previous studies have showed that a synthetic blend of the three terpenoids, (E)‐β‐caryophyllene, (E)‐β‐farnesene and (E)‐4,8‐dimethyl‐1,3,7‐nonatriene (DMNT), was as attractive for the moth as the complete grape odour profile in laboratory conditions. The same studies also showed that the specific ratio of these compounds in the grape bouquet was crucial because a percentage variation in any of the three volatiles resulted in almost complete inhibition of the blend's attractiveness. Here, we report on the creation of stable grapevine transgenic lines, with modified (E)‐β‐caryophyllene and (E)‐β‐farnesene emission and thus with an altered ratio compared to the original plants. When headspace collections from these plants were tested in wind tunnel behavioural assays, they were less attractive than control extracts. This result was confirmed by testing synthetic blends imitating the ratio found on natural and transformed plants, as well as by testing the plants themselves. With this evidence, we suggest that a strategy based on volatile ratio modification may also interfere with the host‐finding behaviour of L. botrana in the field, creating avenues for new pest control methods.  相似文献   

7.
Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) is an important phytophagous pest of two cucurbitaceous plants, Momordica cochinchinensis Spreng and Solena amplexicaulis (Lam.) Gandhi. The volatile organic compound profiles from flowers of M. cochinchinensis and S. amplexicaulis were identified and quantified by gas chromatography‐mass spectrometry (GC‐MS) and GC‐flame ionization detector (FID) analyses. Twenty nine and 28 compounds were identified in volatiles of M. cochinchinensis and S. amplexicaulis flowers, respectively. Methyl jasmonate and 3‐octanol were the predominant volatiles of M. cochinchinensis flowers, whereas 1‐octadecanol and 1‐hexanol were most found in the headspace of S. amplexicaulis flowers. Aulacophora foveicollis were more attracted by the flower volatiles of M. cochinchinensis than by those of S. amplexicaulis in a glass Y‐tube olfactometer. A mixture of 1‐heptanol, linalool oxide, 1‐octanol, and nonanal in the proportions present in the headspace of both flower types elicited attraction in the insect. From 25 cm distance, A. foveicollis displayed a preference for artificial flowers of 6.5 cm diameter of S. amplexicaulis flower colour (white) over M. cochinchinensis flower colour (white‐yellow). Finally, a synthetic blend (0.43 μg 1‐heptanol + 1.44 μg linalool oxide + 0.14 μg 1‐octanol + 1.77 μg nonanal dissolved in 25 μl methylene chloride) attracted more beetles when applied in a white artificial flower than when applied in a white‐yellow artificial flower from 40 cm distance. This finding may be helpful in the development of traps for pest management strategies.  相似文献   

8.
Plants release volatiles in response to caterpillar feeding that attracts natural enemies of the herbivores, a tritrophic interaction which has been considered to be an indirect plant defence against herbivores. On the other hand, the caterpillar‐induced plant volatiles have been reported to either repel or attract conspecific adult herbivores. This work was undertaken to investigate the response of both herbivores and natural enemies to caterpillar‐induced plant volatiles in apple orchards. We sampled volatile compounds emitted from uninfested apple trees, and apple trees infested with generalist herbivore the pandemis leafroller moth, Pandemis pyrusana (Lepidoptera, Tortricidae) larvae using headspace collection and analysed by gas chromatography/mass spectrometry. Infested apple trees uniquely release six compounds (benzyl alcohol, phenylacetonitrile, phenylacetaldehyde, 2‐phenylethanol, indole and (E)‐nerolidol). These compounds were tested on two species of herbivores and one predator in apple orchards. Binary blends of phenylacetonitrile + acetic acid or 2‐phenylethanol + acetic acid attracted a large number of conspecific male and female adult herbivores. The response of pandemis leafroller to herbivore‐induced plant volatiles (HIPVs) was so pronounced that over one thousand and seven hundred conspecific male and female adult herbivores were caught in traps baited with HIPVs in three‐day trapping period. In addition, significantly higher number of male and female obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera, Tortricidae), was caught in traps baited a binary blend of 2‐phenylethanol + acetic acid, or a ternary blend contains 2‐phenylethanol and phenylacetonitrile + acetic acid. This result challenges the current paradigm hypothesized that HIPVs repel herbivores and question the indirect defensive function proposed for these compounds. On the other hand, a ternary blend of phenylacetonitrile and 2‐phenylethanol + acetic acid attracted the largest numbers of the general predator, the common green lacewing, Chrysoperla plorabunda. To our knowledge, this is the first record of the direct attraction of conspecific adult herbivores as well as a predator to the caterpillar‐induced plant volatiles in the field.  相似文献   

9.
Some parasites of social insects are able to exploit the exchange of food between nestmates via trophallaxis, because they are chemically disguised as nestmates. However, a few parasites succeed in trophallactic solicitation although they are attacked by workers. The underlying mechanisms are not well understood. The small hive beetle (=SHB), Aethina tumida, is such a parasite of honey bee, Apis mellifera, colonies and is able to induce trophallaxis. Here, we investigate whether SHB trophallactic solicitation is innate and affected by sex and experience. We quantified characteristics of the trophallactic solicitation in SHBs from laboratory‐reared individuals that were either bee‐naïve or had 5 days experience. The data clearly show that SHB trophallactic solicitation is innate and further suggest that it can be influenced by both experience and sex. Inexperienced SHB males begged more often than any of the other groups had longer breaks than their experienced counterparts and a longer soliciting duration than both experienced SHB males and females, suggesting that they start rather slowly and gain more from experience. Successful experienced females and males were not significantly different from each other in relation to successful trophallactic interactions, but had a significantly shorter soliciting duration compared to all other groups, except successful inexperienced females. Trophallactic solicitation success, feeding duration and begging duration were not significantly affected by either SHB sex or experience, supporting the notion that these behaviors are important for survival in host colonies. Overall, success seems to be governed by quality rather than quantity of interactions, thereby probably limiting both SHB energy investment and chance of injury (<1%). Trophallactic solicitation by SHBs is a singular example for an alternative strategy to exploit insect societies without requiring chemical disguise. Hit‐and‐run trophallaxis is an attractive test system to get an insight into trophallaxis in the social insects.  相似文献   

10.
Essential oils of aromatic plants and their individual volatile components have been tested in pest management strategies for their toxic and often repellent effects on target insects. When evaluating their possible effects on crucial behaviours of the pest insects, the olfactory environment including intraspecific communication cues has to be considered. We used the flour beetle Tribolium confusum du Val (Coleoptera: Tenebrionidae), a common stored‐product pest, to investigate the influence of oil of spike lavender, Lavandula spica Medik. (Labiaceae), and its main component, linalool, at various doses on olfactory‐guided behaviour. Using four‐way olfactometers, a dose‐dependent repellent effect of L. spica oil and linalool alone was revealed. On the other hand, we confirmed that T. confusum is attracted by conspecifics, by means of an aggregation pheromone and by 10 ng of one of its components, 1‐tetradecene. Twenty‐four hour pre‐exposure to 10 μl of L. spica oil abolished subsequent attraction to 1‐tetradecene and reduced attraction to five conspecifics. Simultaneous exposure to L. spica oil or linalool and five conspecifics reduced the repellent effect of the volatiles in a dose‐dependent manner, whereas simultaneous exposure to 1‐tetradecene at 10 ng abolished the repellent effect of L. spica oil only at a dose of 0.01 mg. These results indicate a dose‐dependent trade‐off between attractive and plant‐derived repellent volatiles, which may influence the effectiveness of such volatiles in their potential use in alternative pest management strategies.  相似文献   

11.
The small white‐marmorated longicorn beetle, Monochamus sutor (L.) (Coleoptera: Cerambycidae), is widely distributed throughout Europe and Asia. It is a potential vector of the pine wood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, the causal agent of the devastating pine wilt disease. Volatiles were collected from both male and female beetles after maturation feeding. In analyses of these collections using gas chromatography (GC) coupled to mass spectrometry, a single male‐specific compound was detected and identified as 2‐(undecyloxy)‐ethanol. In analyses by GC coupled to electroantennography the only consistent responses from both female and male antennae were to this compound. Trapping tests were carried out in Spain, Sweden, and China. 2‐(Undecyloxy)‐ethanol was attractive to both male and female M. sutor beetles. A blend of the bark beetle pheromones ipsenol, ipsdienol, and 2‐methyl‐3‐buten‐2‐ol was also attractive to both sexes in Spain and Sweden, and further increased the attractiveness of the 2‐(undecyloxy)‐ethanol. The host plant volatiles α‐pinene, 3‐carene, and ethanol were weakly attractive, if at all, in all three countries and did not significantly increase the attractiveness of the blend of 2‐(undecyloxy)‐ethanol and bark beetle pheromones. 2‐(Undecyloxy)‐ethanol is thus proposed to be the major, if not only, component of the male‐produced aggregation pheromone of M. sutor, and its role is discussed. This compound has been reported as a pheromone of several other Monochamus species and is another example of the parsimony that seems to exist among the pheromones of many of the Cerambycidae. Traps baited with 2‐(undecyloxy)‐ethanol and bark beetle pheromones should be useful for monitoring and control of pine wilt disease, should M. sutor be proven to be a vector of the nematode.  相似文献   

12.
The strawberry sap beetle (SSB), Stelidota geminata (Say) (Coleoptera: Nitidulidae), is a serious direct pest of strawberries in the northeastern USA. To date, however, no food or pheromone‐based attractants for SSB have been identified. A combination of solid‐phase microextraction, adsorbent sampling, gas chromatography coupled with electroantennographic detection (GC–EAD), and gas chromatography–mass spectrometry was used to identify volatile compounds from strawberry fruit acting as behavioral attractants for female SSB. Consistent EAD activity was obtained for 16 ester compounds. In Y‐tube olfactometer bioassays, the blend of these 16 compounds mixed at a ratio observed from strawberry headspace was significantly more attractive to adult female SSB than a control. Female SSB showed no difference in response levels between the 16‐component blend and a strawberry volatile adsorbent extract. Our data indicate that the combination of the ethyl acetate with some or all of the remaining 15 compounds is necessary for this ester blend to be attractive to female SSB. Previously identified host volatiles found for other species of sap beetles included mostly alcohols associated with over‐ripe fruit rather than the esters identified from ripe strawberries for SSB. A highly attractive synthetic food odor will be useful for developing new management options for SSB.  相似文献   

13.
Insect parasitoids locate hosts via reliable and predictable cues such as volatile emissions from hosts and/or host plants. For insects that depend on mutualistic organisms, such as many wood‐boring insects, symbiont‐derived semiochemicals may represent a source of such cues to be exploited by natural enemies. Ultimately, exploitation of these signals may increase fitness by optimizing foraging efficiency. Female parasitoids of Ibalia leucospoides use volatiles from the fungal symbiont Amylostereum areolatum of their host Sirex noctlio to find concealed host eggs and young larvae within the xylem. We hypothesize that the temporal pattern of fungal emissions may indicate not only the presence of host larvae but also be used as a cue that indicates host suitability and age. Such information would allow female parasitoids to discern more efficiently between hosts within ovipositor reach from those already buried too deep into the xylem and out of reach. In this context, we assessed the behaviour of I. leucospoides females to volatiles of A. areolatum in a ‘Y’‐tube olfactometer at regular intervals over 30 days. We concurrently examined the fungal volatiles by headspace sampling through solid‐phase microextraction (SPME) followed by gas chromatography mass spectrometry (GC‐MS). We observed that females were attracted to volatiles produced by two‐week‐old fungal cultures, a period that matches when older larvae are still within ovipositor reach. Four chemical compounds were detected: ethanol, acetone, acetaldehyde and the sesquiterpene 2,2,8‐trimethyltricyclo[6.2.2.01,6]dodec‐5‐ene, with each compounds’ relative abundance changing over time. Results are discussed in the context of parasitoids fitness. Future studies involving electrophysiology, different collection techniques and further behavioural assays will help in identifying the compounds that convey temporal information to female parasitoids and have the potential for being used in integrated pest management programmes.  相似文献   

14.
Numerous semiochemicals have been isolated from several species of astigmatid mites with various identified or unidentified functions. Alarm pheromonal activity is widespread with neryl formate and neral, being the most common compounds eliciting alarm response in conspecifics. The cosmopolitan astigmatid mite Suidasia medanensis (= S. pontifica) Oudemans (Acari: Suidasidae) has been reported to use neral as an alarm pheromone, but neral can also act as an allomone towards predators of oribatid mites. Suidasia medanensis can be utilised as a factitious prey for mass‐rearing of the phytoseiid predatory mite Amblyseius (= Typhlodromips) swirskii (Athias‐Henriot) (Acari: Phytoseiidae), which is used for biological control of insect and mite pests in protected crops. This study investigated the potential defence properties of the S. medanensis volatiles against A. swirskii, comparing the repellency to pollen‐reared (naïve) vs. S. medanensis‐reared (experienced) predators using a synthetic blend of the isomers neral and geranial (1:1) as a model compound. In a repellency bioassay, the synthetic blend elicited a significant repellence to A. swirskii with no difference between naïve and experienced predators. During capture success studies, S. medanensis under repeated attack could release sufficient quantities of the defence volatile to deter 1–5 attacks from A. swirskii, whereas hexane‐treated S. medanensis artificially depleted of volatiles were significantly more vulnerable to an attack. This is the first report of an astigmatid defence volatile with repellent activity to a phytoseiid mite and the starting point to understanding semiochemical interactions in any current or novel factitious predator‐prey mass‐rearing system.  相似文献   

15.
There are few floral volatiles of compounds that have been properly assessed for attracting pollinators. The intense plant odour of Elsholtzia rugulosa (Lamiaceae) to humans may be attributed to the presence of high concentrations of β‐caryophyllene. In a previous study, Zhang, Yang, and Zhang (Scientific Reports, 6, 2016a, 276161) speculated that the presence of β‐caryophyllene attracts pollinators (e.g., honey bees) to its flowers, an assumption that was assessed through the exploration of the functional significance of specific floral volatile compounds and the evaluation of their effects on the behaviour of Apis cerana (Asian honey bees; a known pollinator) and two non‐pollinators, a hornet (Vespa velutina) and a bumblebee (Bombus sp.). The results from these behavioural experiments indicated that both β‐caryophyllene and β‐elemene (both naturally found in flowers of Erugulosa) were individually attractive to the Asian honey bees. Moreover, the combination of the two was more effective than either of them separately. In contrast, neither compound, nor a blend of the two at different concentrations, was attractive to the hornet and bumblebee species. These results demonstrate that β‐caryophyllene and β‐elemene play a key signalling role in attracting Asian honey bees to Erugulosa.  相似文献   

16.
The boll weevil, Anthonomus grandisBoheman (Coleoptera: Curculionidae), is a key pest of cotton, Gossypium hirsutumL. (Malvaceae). Knowledge about boll weevil feeding and oviposition behavior and its response to plant volatiles can underpin our understanding of host plant resistance, and contribute to improved monitoring and mass capture of this pest. Boll weevil oviposition preference and immature development in four cotton genotypes (CNPA TB90, TB85, TB15, and BRS Rubi) were investigated in the laboratory and greenhouse. Volatile organic compounds (VOCs) produced by TB90 and Rubi genotypes were obtained from herbivore‐damaged and undamaged control plants at two phenological stages – vegetative (prior to squaring) and reproductive (during squaring) – and four collection times – 24, 48, 72, and 96 h following herbivore damage. The boll weevil exhibited similar feeding and oviposition behavior across the four tested cotton genotypes. The chemical profiles of herbivore‐damaged plants of both genotypes across the two phenological stages were qualitatively similar, but differed in the amount of volatiles produced. Boll weevil response to VOC extracts was studied using a Y‐tube olfactometer. The boll weevil exhibited similar feeding and oviposition behavior at the four tested cotton genotypes, although delayed development and production of smaller adults was found when fed TB85. The chemical profile of herbivore‐damaged plants of both genotypes at the two phenological stages and time periods (24–96 h) was similar qualitatively, with 30 identified compounds, but differed in the amount of volatiles produced. Additionally, boll weevil olfactory response was positive to herbivory‐induced volatiles. The results help to understand the interaction between A. grandis and cotton plants, and why it is difficult to obtain cotton genotypes possessing constitutive resistance to this pest.  相似文献   

17.
The grape berry moth (GBM), Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), is a specialist pest insect of cultivated grape, Vitis spp. (Vitaceae), in the eastern USA. A blend of volatile compounds has been isolated from plant material that attracts female GBM in the flight tunnel and field. However, the origin of the volatile cue is potentially complicated by the presence of microbes (bacteria and fungi) living on the surface of the plant. Microbial volatile organic compounds can affect insect behavior, and therefore must be considered to fully understand olfaction‐mediated behaviors. We report here the chemical and behavioral analysis of the volatile profiles produced from both the sanitized and control shoot treatments. The sanitization treatment removed 96.4% of the surface microbes up to 24 h, covering the duration of the behavioral assays and volatile collections. Overall, the surface microbes did not significantly contribute to the volatile profile of the grape shoots, as all of the peaks in the volatile profile of sanitized shoots were found in the profile of control shoots. In flight tunnel assays, female GBM displayed the same level of upwind oriented flight to sanitized shoots (flew upwind 57.4%, landed 30.9%) as they did to control shoots (flew upwind 57.8%, landed 31.0%), suggesting further that surface microbes did not contribute to the production of the previously identified blend of behaviorally active volatiles for GBM.  相似文献   

18.
Studies were conducted in Chile and the United States to compare the attractiveness of various commercial sex pheromone lures and two experimental lures for oriental fruit moth, Grapholita molesta (Busck), in peach orchards treated with or without sex pheromone dispensers. The experimental lures contained the three‐component sex pheromone blend of G. molesta: Z‐8‐dodecenyl acetate, E‐8‐dodecenyl acetate and Z‐8‐dodecenol (Z8‐12:OH), and the sex pheromone of codling moth, Cydia pomonella (L.), (E,E)‐8,10‐dodecadien‐1‐ol, (codlemone). Commercial lures varied in their substrate, initial loading and blend ratio of components. Significant differences in male catches were found among commercial lures in orchards treated with or without sex pheromone dispensers. Experimental lures with the addition of codlemone significantly increased the catches of G. molesta using lures loaded with 0%, 1% or 5% Z8‐12:OH in the G. molesta blend compared with the same ratio of components in just the G. molesta blend. The experimental lures were significantly more attractive than all commercial lures in the untreated orchard. However, moth catch with the experimental lures in the sex pheromone‐treated orchard was only intermediate among all of the lures tested. These findings highlight the need to develop more effective and standardized lures that can be used in trap‐based monitoring programme for this important pest.  相似文献   

19.
Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the primary vector of Candidatus Liberibacter spp. bacteria that cause citrus greening, a disease of worldwide importance. Olfactometry was employed to test responses of D. citri to odours from intact citrus plants (Mexican lime, Citrus aurantifolia, sour orange, Citrus aurantium, Marsh grapefruit, Citrus paradisi and Valencia orange, Citrus sinensis), citrus plants previously infested with D. citri, and odours of conspecifics including nymphs, adult insects of same and opposite sex, and their products (honeydew), both alone and in combination. In contrast to other studies, psyllids of both sexes were attracted to volatiles of undamaged Mexican lime leaves, whereas undamaged grapefruit attracted only females, and leaves of Valencia and sour orange did not attract either sex. All four plant species attracted female psyllids when previously infested, but only Mexican lime and sour orange‐attracted males. Thus, Citrus species appear to vary in the production of both constituitive and induced volatiles that attract adult psyllids. Volatiles emitted by nymphs did not attract either sex, but psyllid honeydew was attractive to males, likely due to female pheromone residues. Males oriented to the odour of females, whereas the reverse was not true, and neither males nor females oriented to same‐sex volatiles. The addition of conspecific cues (adults, nymphs or honeydew) did not increase female attraction to previously infested leaves, but male response was increased by the presence of adults and honeydew, regardless of plant species. Thus, female psyllids appear to orient more strongly to volatiles of plant origin, whereas males respond more strongly to cues emanating from females and conspecific excretions. These results suggest that female psyllids drive the initial colonization of host plants, whereas males orient to females and infested plants. Identification of the specific volatiles involved may permit their use in monitoring and management of this pest.  相似文献   

20.
The tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), is a serious pest of tea crops in China. The effectiveness of five aromatic non‐host plants, Corymbia citriodora (Hook.) (Myrtaceae), Ocimum basilicum L. (Lamiaceae), Lavandula pinnata L. (Lamiaceae), Ruta graveolens L. (Rutaceae), and Rosmarinus officinalis L. (Lamiaceae), was investigated to determine their ability to suppress E. vitis on tea plants. Volatile organic compounds derived from L. pinnata, R. officinalis, and C. citriodora were found to repel leafhoppers and to mask the host's odors. Intercropping L. pinnata and C. citriodora with tea plants significantly reduced the E. vitis population levels in the tea plantation associated with higher population densities of generalist predators. The volatile compounds from the five non‐host plants were collected by headspace absorption under field conditions, and the 10 major components were identified. Qualitative and quantitative differences were found among the five odor profiles. Moreover, the emission dynamics of non‐host volatiles were monitored. Non‐host volatile emissions showed two peak periods, one in the spring and one in the autumn period. These peaks were almost consistent with the population dynamics of E. vitis. Our findings suggested that this newer approach to ecologically based, sustainable pest management implemented via intercropping with non‐host aromatic plants such as L. pinnata and C. citriodora offers a promising alternative to chemical control of the leafhopper population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号