共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Noé U. de la Sancha José F. González-Maya Sarah A. Boyle Pastor E. Pérez-Estigarribia J. Nicolas Urbina-Cardona Nancy E. McIntyre 《Diversity & distributions》2023,29(3):349-363
Aim
Deforestation of the Atlantic Forest of eastern Paraguay has been recent but extensive, resulting in a fragmented landscape highly influenced by forest edges. We examined edge effects on multiple dimensions of small mammalian diversity.Location
Forest fragments of eastern Paraguayan Atlantic Forest.Methods
We trapped small mammal species at different distances from the forest edge (DTE) in reserves and estimated multiple dimensions of diversity per site. Similarity analysis identified species clusters that best described the patterns of diversity across reserves. Multivariate ordination and linear mixed models were used to determine the influence of DTE on various dimensions of small mammal diversity.Results
There was an increase in richness and abundance along a DTE gradient, and remnants with higher edge:area ratios showed higher richness and abundance, independent of remnant size. Species at edges were generalists, open-habitat species or exotic species (spillover effect). We found higher phylogenetic diversity and functional richness and divergence towards forest edges. Spillover of non-forest and invasive species best explained richness, generalist forest species best explained total abundance, abundance of Hylaeamys megacephalus best explained diversity and evenness metrics and the presence of Marmosa paraguayana best explained various phylogenetic diversity models. None of the models that included megafauna or social factors were shown to be important in explaining patterns as a function of DTE.Main Conclusions
We found strong support for a spillover effect and mixed support for complementary resource use and enhanced habitat resources associated with ecotones. Generalists characterized edge assemblages but not all generalists were equivalent. Edges showed more phylogenetically and functionally distinct assemblages than the interior of remnants. There was a conservation of functional diversity; however, open-habitat species, habitat generalists and exotic species boosted diversity near forest edges. Mechanisms governing diversity along forest edges are complex; disentangling those mechanisms necessitates the use of multiple dimensions of diversity. 相似文献3.
Susanne A. Fritz Andy Purvis 《Proceedings. Biological sciences / The Royal Society》2010,277(1693):2435-2441
Mammals contribute to important ecosystem processes and services, but many mammalian species are threatened with extinction. We compare how global patterns in three measures of mammalian diversity—species richness, phylogenetic diversity (PD) and body mass variance (BMV)—would change if all currently threatened species were lost. Given that many facets of species'' ecology and life history scale predictably with body mass, the BMV in a region roughly reflects the diversity of species'' roles within ecosystems and so is a simple proxy for functional diversity (FD). PD is also often considered to be a proxy for FD, but our results suggest that BMV losses within ecoregions would be much more severe than losses of PD or species richness, and that its congruence with the latter two measures is low. Because of the disproportionate loss of large mammals, 65 per cent of ecoregions would lose significantly more BMV than under random extinction, while only 11 per cent would lose significantly more PD. Ecosystem consequences of these selective losses may be profound, especially throughout the tropics, but are not captured by PD. This low surrogacy stresses a need for conservation prioritization based on threatened trait diversity, and for conservation efforts to take an ecosystem perspective. 相似文献
4.
5.
6.
7.
Shan Huang Patrick R. Stephens John L. Gittleman 《Proceedings. Biological sciences / The Royal Society》2012,279(1749):4997-5003
Measures of biodiversity encompass variation along several dimensions such as species richness (SR), phylogenetic diversity (PD) and functional/trait diversity (TD). At the global scale, it is widely recognized that SR and PD are strongly correlated, but the extent to which either tends to capture variation in TD is unclear. Here, we assess relationships among PD, SR and TD for a number of traits both across clades and regional assemblages of mammals. We also contrast results using two different measures of TD, trait variance and a new measure we refer to as trait bin filling (the number of orders of magnitude of variation that contain at least one species). When TD is defined as trait variance, PD is a much stronger correlate of TD than SR across clades, consistent with hypotheses about the conservation value of PD. However, when TD is defined as bin filling, PD and SR show similar correlations with TD across clades and space. We also investigate potential losses of SR, PD and TD if species that are currently threatened were to go extinct, and find that threatened PD is often a similar predictor of threatened TD as SR. 相似文献
8.
9.
10.
Forests play a key role in regulating the global carbon cycle, a substantial portion of which is stored in aboveground biomass (AGB). It is well understood that biodiversity can increase the biomass through complementarity and mass‐ratio effects, and the contribution of environmental factors and stand structure attributes to AGB was also observed. However, the relative influence of these factors in determining the AGB of Quercus forests remains poorly understood. Using a large dataset retrieved from 523 permanent forest inventory plots across Northeast China, we examined the effects of integrated multiple tree species diversity components (i.e., species richness, functional, and phylogenetic diversity), functional traits composition, environmental factors (climate and soil), stand age, and structure attributes (stand density, tree size diversity) on AGB based on structural equation models. We found that species richness and phylogenetic diversity both were not correlated with AGB. However, functional diversity positively affected AGB via an indirect effect in line with the complementarity effect. Moreover, the community‐weighted mean of specific leaf area and height increased AGB directly and indirectly, respectively; demonstrating the mass‐ratio effect. Furthermore, stand age, density, and tree size diversity were more important modulators of AGB than biodiversity. Our study highlights that biodiversity–AGB interaction is dependent on the regulation of stand structure that can be even more important for maintaining high biomass than biodiversity in temperate Quercus forests. 相似文献
11.
Phylogenetic diversity (PD) represents the evolutionary history of a species assemblage and is a valuable measure of biodiversity because it captures not only species richness but potentially also genetic and functional diversity. Preserving PD could be critical for maintaining the functional integrity of the world's ecosystems, and species extinction will have a large impact on ecosystems in areas where the ecosystem cost per species extinction is high. Here, we show that impacts from global extinctions are linked to spatial location. Using a phylogeny of all mammals, we compare regional losses of PD against a model of random extinction. At regional scales, losses differ dramatically: several biodiversity hotspots in southern Asia and Amazonia will lose an unexpectedly large proportion of PD. Global analyses may therefore underestimate the impacts of extinction on ecosystem processes and function because they occur at finer spatial scales within the context of natural biogeography. 相似文献
12.
生物多样性是生态学的核心问题。传统的多样性指数仅包含物种数和相对多度的信息,这类基于分类学的多样性指数并不能很好地帮助理解群落构建和生态系统功能。不同物种对群落构建和生态系统功能所起到的作用类型和贡献也不完全相同,且物种在生态过程中的作用和贡献往往与性状密切相关,因此功能多样性已经成为反映物种群落构建、干扰以及环境因素对群落影响的重要指标。同时,由于亲缘关系相近的物种往往具有相似的性状,系统发育多样性也可以作为功能多样性的一个替代。功能多样性和系统发育多样性各自具有优缺点,但二者均比分类多样性更能揭示群落和生态系统的构建、维持与功能。 相似文献
13.
14.
15.
海岸带沉积物中氮循环功能微生物多样性 总被引:4,自引:0,他引:4
海岸带生境类型多样,环境梯度明显,是研究微生物多样性、群落结构与功能关系及调控机制的天然实验场.沉积物是海岸带环境中营养盐再生与转化发生的重要场所,其中多种微生物类群在氮素循环过程中扮演重要角色.本文重点介绍海岸带沉积物中固氮菌、氨氧化菌、厌氧氨氧化菌、反硝化与硝酸盐铵化微生物的基于16SrRNA基因的物种多样性和基于关键酶基因nifH、amoA、narG、nirS、nirK、nosZ、nrfA、hzo、hzs等的功能多样性;总结了在海岸带特有生境(如河口、潮间带、海草藻床、红树林、盐沼、珊瑚礁、浅海等)及污染胁迫、生物扰动等条件下各功能类群的群落组成特征及时空变化规律,并提出今后需要重点关注新的培养技术和方法的开发,以进一步提高微生物的可培养性,将单细胞基因组测序与分析技术、DNA和RNA结合起来研究,以全面了解氮循环微生物多样性、参与介导硝酸盐铵化过程的微生物多样性等方面. 相似文献
16.
17.
Xiaolong Zhou Zhi Guo Pengfei Zhang Honglin Li Chengjin Chu Xilai Li Guozhen Du 《Ecology and evolution》2017,7(10):3464-3474
The relationship between productivity and biodiversity has long been an important issue in ecological research. However, in recent decades, most ecologists have primarily focused on species diversity while paying little attention to functional diversity and phylogenetic diversity (PD), especially in alpine meadow communities following fertilization. In this study, a fertilization experiment involving the addition of nitrogen, phosphorus, and a mixture of both was implemented in an alpine meadow on the Tibetan Plateau. Species diversity, functional diversity, and PD were measured, and the responses of these parameters to the variation in productivity were analyzed. We found that the productivity of alpine plant communities was colimited by N and P, with N being the principal and P being the secondary limiting nutrient. Our results supported the prediction of both the mass ratio hypothesis and niche complementarity hypothesis in fertilized communities, but these hypotheses were not mutually exclusive. The combination of different aspects of biodiversity not only provides a crucial tool to explain the variation in productivity and to understand the underlying mechanisms but also plays an important role in predicting the variation in productivity of alpine meadow communities, which are sensitive to nutrient enrichment in the context of global change. 相似文献
18.
19.
Juan D. Vásquez-Restrepo Leticia M. Ochoa-Ochoa Oscar Flores-Villela Julián A. Velasco 《Global Ecology and Biogeography》2023,32(2):250-266
Aim
Our aim is to document the dimensions of current squamate reptile biodiversity in the Americas by integrating taxonomic, phylogenetic and functional data, and assessing how this may vary across phylogenetic scales. We also explore the potential underlying mechanisms that may be responsible for the observed geographical diversity patterns.Location
The Americas.Time period
Present.Major taxa
Squamate reptiles.Methods
We used published data on the distribution, phylogeny, and body size of squamate reptiles to document the current dimensions of their alpha diversity in the Americas. We overlapped species ranges to estimate taxonomic diversity (TD) and calculated phylogenetic diversity (PD) using mean pairwise phylogenetic distance (MPD), speciation rate (DivRate) and Faith's phylogenetic index (PD). We estimated functional diversity (FD) as trait dispersion in the multivariate space using body size and leg development data. We implemented a deconstructive macroecological approach to understand how spatial mismatches between the three facets of diversity vary across phylogenetic scales, and the potential eco-evolutionary mechanisms driving these patterns across space.Results
We found a strong latitudinal gradient of TD with a large accumulation in tropical regions. PD and FD patterns were largely similar likely due to the high phylogenetic signal in the traits used, and higher values tended to be concentrated in harsh and/or heterogeneous environments. We found differences between major clades within Squamata that display contrasting geographical patterns. Several regions across the continent shared the same spatial mismatches between dimensions across clades, suggesting that similar eco-evolutionary processes are shaping these regional reptile assemblages. However, we also found evidence that non-mutually exclusive processes can operate differently across clades.Main conclusions
The deconstructive approach implemented here is based on a solid macroecological framework. We can extend this to other taxonomic groups to establish whether there are particularities about how different eco-evolutionary mechanisms shape biodiversity facets in a spatially explicit context. 相似文献20.
Regions worldwide differ markedly in species richness. Here, for birds and mammals worldwide, we directly compare four sets of hypotheses regarding geographical richness gradients: (1) evolutionary, emphasising heterogeneity in diversification rates, (2) historical, related to differences in region ages and sizes, (3) energetic, associated with variation in productive or ambient energy and (4) ecological, reflecting differences in ecological niche diversity. Among highly independent regions, or ‘evolutionary arenas’, we find that richness is weakly influenced by richness‐standardised ecological niche diversity, questioning the significance of ecological constraints for producing large‐scale diversity gradients. In contrast, we find strong evidence for the importance of region area and its changes over time, together with a role for temperature. These predictors affect richness predominately directly without concomitant positive effects on diversification rates. This suggests that regional richness is governed by historical and evolutionary processes, which promote region‐specific accumulation of diversity through time or following asymmetrical dispersal. 相似文献