首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea urchins have been model organisms for the study of fertilization for more than a century. Fertilization in sea urchins happens externally, which facilitates the study of sperm-egg attachment and fusion, and means that all of the molecules involved in gamete recognition and fusion are associated with the gametes. Sea urchin sperm bindin was the first "gamete recognition protein" to be isolated and characterized (Vacquier and Moy 1977), and bindin has since been studied by developmental biologists interested in fertilization, by biochemists interested in membrane fusion and by evolutionary biologists interested in reproductive isolation and speciation. Research on bindin was last reviewed thirteen years ago by Vacquier et al. (1995) in an article titled "What have we learned about sea urchin sperm bindin?" in which the authors reviewed the identification, isolation and early molecular examinations of bindin. Research since then has focused on bindin's potential role in fusing egg and sperm membranes, comparisons of bindin between distantly related species, studies within genera linking bindin evolution to reproductive isolation, and studies within species looking at fertilization effects of individual bindin alleles. In addition, the egg receptor for bindin has been cloned and sequenced. I review this recent research here.  相似文献   

2.
3.
Studies on the evolution of reproductive proteins have shown that they tend to evolve more rapidly than other proteins, frequently under positive selection. Progress on understanding the implications of these patterns is possible for marine invertebrates, where molecular evolution can be linked to gamete compatibility. In this study, we surveyed data from the literature from five genera of sea urchins for which there was information on gamete compatibility, divergence of the sperm-egg recognition protein bindin, and mitochondrial divergence. We draw three conclusions: (1) bindin divergence at nonsynonymous sites predicts gamete compatibility, whereas (2) bindin divergence at synonymous sites and mitochondrial DNA divergence do not, and (3) as few as 10 amino acid changes in bindin can lead to complete gamete incompatibility between species. Using mitochondrial divergence as a proxy for time, we find that complete gamete incompatibility can evolve in approximately one and a half million years, whereas sister species can maintain complete gamete compatibility for as long as five million years.  相似文献   

4.
Life-history variables including egg size affect the evolutionary response to sexual selection in broadcast-spawning sea urchins and other marine animals. Such responses include high or low rates of codon evolution at gamete recognition loci that encode sperm- and egg-surface peptides. Strong positive selection on such loci affects intraspecific mating success and interspecific reproductive divergence (and may play a role in speciation). Here, we analyze adaptive codon evolution in the sperm acrosomal protein bindin from a brooding sea urchin (Heliocidaris bajulus, with large eggs and nonfeeding or lecithotrophic larval development) and compare our results to previously published data for two closely related congeners. Purifying selection and low relative rates of bindin nonsynonymous substitution in H. bajulus were significantly different from selectively neutral bindin evolution in H. erythrogramma despite similar large egg size in those two species, but were similar to the background rate of nonsynonymous bindin substitution for other closely related sea urchins (including H. tuberculata, all with small egg size and feeding planktonic larval development). Bindin evolution is not driven by egg size variation among Heliocidaris species, but may be more consistent with an alternative mechanism based on the effects of high or low spatial density of conspecific mates.  相似文献   

5.
Gamete‐recognition proteins often, but not always, evolve rapidly. We explored how variation in sperm bindin influences reproductive success of the sea urchin Strongylocentrotus purpuratus during group spawning in the sea. Despite large variation in male and female abundance and neighbor distances, males with common genotypes had higher reproductive success than males with rare genotypes. However, males with a relatively uncommon proline‐for‐serine substitution were the most successful. Females also showed a fitness consequence of sperm‐bindin genotype, suggesting linkage disequilibrium between the sperm‐bindin locus and the egg receptor locus. Females with common genotypes had higher reproductive success than rare genotypes, but females with relatively uncommon insertions were most successful. Overall, these results suggest that rare male proteins are selected against, as supported by molecular evidence of purifying selection and probably caused by poor matches to the female receptor protein. Within the pool of moderately common to common alleles, however, individuals with less‐common functional variants were favored and probably maintained by negative frequency‐dependent selection. These results support the hypothesis that sperm availability and sexual conflict influence the evolution of gamete recognition systems in broadcast spawners and highlight the benefits of combining fitness measures with molecular signatures for estimation of patterns of selection.  相似文献   

6.
Pujolar JM  Pogson GH 《Molecular ecology》2011,20(23):4968-4982
Gamete recognition proteins commonly experience positive Darwinian selection and evolve more rapidly than nonreproductive proteins, but the selective forces responsible for their adaptive diversification remain unclear. We examined the patterns of positive selection in the cognate interacting pair of proteins formed by sperm bindin and its egg receptor (EBR1) and in two regions of the sea urchin sperm receptor for egg jelly suREJ3 gene (exons 22 and 26) among four species of Strongylocentrotus sea urchins (S. purpuratus, S. droebachiensis, S. pallidus and S. franciscanus). The signatures of selection differed at each reproductive protein. A strong signal of positive selection was detected at bindin in all lineages even though the species compared had highly variable gamete traits and experience different intensities and forms of sexual selection and sexual conflict in nature. Weaker selection was observed at EBR1 but the small region studied precluded a clear understanding of the extent of sexual conflict between bindin and the EBR1 protein. At the suREJ3 locus, diversifying selection was observed in exon 22 but not exon 26, suggesting that these regions experience different selective pressures and evolutionary constraints. Positive selection was also detected within S. pallidus at suREJ‐22 because of the presence of 12 amino acid replacement mutations segregating at frequencies >0.10. Our results suggest that sexual conflict may be the predominant evolutionary mechanism driving the rapid diversification of reproductive proteins between, and polymorphism within, strongylocentrotid sea urchins.  相似文献   

7.
A wealth of evidence shows that protein-carbohydrate recognition mediates the steps of gamete interaction during fertilization. Carbohydrate-recognition domains (CRDs) comprise a large family of ancient protein modules of approximately 120 amino acids, having the same protein fold, that bind terminal sugar residues on glycoproteins and polysaccharides. Sea urchin sperm express three suREJ (sea urchin receptor for egg jelly) proteins on their plasma membranes. suREJ1 has two CRDs, whereas suREJ2 and suREJ3 both have one CRD. suREJ1 binds the fucose sulfate polymer (FSP) of egg jelly to induce the sperm acrosome reaction. The structure of FSP is species specific. Therefore, the suREJ1 CRDs could encode molecular recognition between sperm and egg underlying the species-specific induction of the acrosome reaction. The functions of suREJ2 and suREJ3 have not been explored, but suREJ3 is exclusively localized on the plasma membrane over the sperm acrosomal vesicle and is physically associated with sea urchin polycystin-2, a known cation channel. An evolutionary analysis of these four CRDs was performed for six sea urchin species. Phylogenetic analysis shows that these CRDs were already differentiated in the common ancestor of these six sea urchins. The CRD phylogeny agrees with previous work on these species based on one nuclear gene and several mitochondrial genes. Maximum likelihood shows that positive selection acts on these four CRDs. Threading the suREJ CRDs onto the prototypic CRD crystal structure shows that many of the sites under positive selection are on extended loops, which are involved in saccharide binding. This is the first demonstration of positive selection in CRDs and is another example of positive selection acting on the evolution of gamete-recognition proteins.  相似文献   

8.
SUMMARY The genetic basis for the evolution of development includes genes that encode proteins expressed on the surfaces of sperm and eggs. Previous studies of the sperm acrosomal protein bindin have helped to characterize the adaptive evolution of gamete compatibility and speciation in sea urchins. The absence of evidence for bindin expression in taxa other than the Echinoidea has limited such studies to sea urchins, and led to the suggestion that bindin might be a sea urchin-specific molecule. Here we characterize the gene that encodes bindin in a broadcast-spawning asterinid sea star ( Patiria miniata ). We describe the sequence and domain structure of a full-length bindin cDNA and its single intron. In comparison with sea urchins, P. miniata bindin is larger but the two molecules share several general features of their domain structure and some sequence features of two domains. Our results extend the known evolutionary history of bindin from the Mesozoic (among the crown group sea urchins) into the early Paleozoic (and the common ancestor of eleutherozoans), and present new opportunities for understanding the role of bindin molecular evolution in sexual selection, life history evolution, and speciation among sea stars.  相似文献   

9.
The interactions between sea urchin spermatozoa and ova duringfertilization usually exhibit a high degree of species specificity.Under natural conditions and reasonable gamete concentrations,most interspecific inseminations fail to yield zygotes. Macromoleculeson the external surfaces of the apposing gametes must surelybe responsible for successful gamete recognition, adhesion andfusion. Species specific recognition between surface componentsof sperm and egg could occur during at least three events comprisingthe fertilization process. The first event is the interactionof the sperm plasma membrane with the egg jelly coat. This inducesthe sperm acrosome reaction resulting in the exocytosis of the"bindin" -containing acrosome granule and also the extrusionof the acrosome process from the anterior tip of the sperm.The second event is the adhesion of the bindin-coated acrosomeprocess to glycoprotein "bindin receptors" on the external surfaceof the egg vitelline layer. The third event is the penetrationof the vitelline layer and the fusion of sperm and egg plasmamembranes. With the isolations of the component of egg jellywhich induces the acrosome reaction, sperm bindin from the acrosomevesicle and the egg surface bindin receptor from the vitellinelayer, there is hope of discovering the molecular basis of thismost interesting intercellular interaction which results inthe activation of embryonic development.  相似文献   

10.
One sperm fusing with one egg is requisite for successful fertilization; additional sperm fusions are lethal to the embryo. Because sperm usually outnumber eggs, evolution has selected for mechanisms that prevent this polyspermy by immediately modifying the egg extracellular matrix. We focus here on the contribution of cortical granule contents in the sea urchin block to polyspermy to begin to understand how well this process is conserved. We identified each of the major constituents of the fertilization envelope in two species of seaurchins, Strongylocentrotus purpuratus and Lytechinus variegatus, that diverged 30 to 50 million years ago. Our results show that the five major structural components of the fertilization envelope, derived from the egg cortical granules, are semiconserved. Most of these orthologs share sequence identity and encode multiple low-density lipoprotein receptor type A repeats or CUB domains but at least two contain radically different carboxy-terminal repeats. Using a new association assay, we also show that these major structural components are functionally conserved during fertilization envelope construction. Thus, it seems that this population of female reproductive proteins has retained functional motifs while gaining significant sequence diversity-two opposing paths that may reflect cooperativity among the proteins that compose the fertilization envelope.  相似文献   

11.
Marine species with high dispersal potential often have huge ranges and minimal population structure. Combined with the paucity of geographic barriers in the oceans, this pattern raises the question as to how speciation occurs in the sea. Over the past 20 years, evidence has accumulated that marine speciation is often linked to the evolution of gamete recognition proteins. Rapid evolution of gamete recognition proteins in gastropods, bivalves, and sea urchins is correlated with gamete incompatibility and contributes to the maintenance of species boundaries between sympatric congeners. Here, we present a counterexample to this general pattern. The sea urchins Pseudoboletia indiana and P. maculata have broad ranges that overlap in the Indian and Pacific oceans. Cytochrome oxidase I sequences indicated that these species are distinct, and their 7.3% divergence suggests that they diverged at least 2 mya. Despite this, we suspected hybridization between them based on the presence of morphologically intermediate individuals in sympatric populations at Sydney, Australia. We assessed the opportunity for hybridization between the two species and found that (1) individuals of the two species occur within a meter of each other in nature, (2) they have overlapping annual reproductive cycles, and (3) their gametes cross-fertilize readily in the laboratory and in the field. We genotyped individuals with intermediate morphology and confirmed that many were hybrids. Hybrids were fertile, and some female hybrids had egg sizes intermediate between the two parental species. Consistent with their high level of gamete compatibility, there is minimal divergence between P. indiana and P. maculata in the gamete recognition protein bindin, with a single fixed amino acid difference between the two species. Pseudoboletia thus provides a well-characterized exception to the idea that broadcast spawning marine species living in sympatry develop and maintain species boundaries through the divergence of gamete recognition proteins and the associated evolution of gamete incompatibility.  相似文献   

12.
Research on speciation of marine organisms has lagged behind that of terrestrial ones, but the study of the evolution of molecules involved in the adhesion of gametes in free-spawning invertebrates is an exception. Here I review the function, species-specificity, and molecular variation of loci coding for bindin in sea urchins, lysin in abalone and their egg receptors, in an effort to assess the degree to which they contribute to the emergence of reproductive isolation during the speciation process. Bindin is a protein that mediates binding of the sperm to the vitelline envelope (VE) of the egg and the fusion of the gametes' membranes, whereas lysin is a protein involved only in binding to the VE. Both of these molecules are important in species recognition by the gametes, but they rarely constitute absolute blocks to interspecific hybridization. Intraspecific polymorphism is high in bindin, but low in lysin. Polymorphism in bindin is maintained by frequency-dependent selection due to sexual conflict arising from the danger of polyspermy under high densities of sperm. Monomorphism in lysin is the result of purifying selection arising from the need for species recognition. Interspecific divergence in lysin is due to strong positive selection, and the same is true for bindin of four out of seven genera of sea urchins studied to date. The differences between the sea urchin genera in the strength of selection can only partially be explained by the hypothesis of reinforcement. The egg receptor for lysin (VERL) is a glycoprotein with 22 repeats, 20 of which have evolved neutrally and homogenized by concerted evolution, whereas the first two repeats are under positive selection. Selection on lysin has been generated by the need to track changes in VERL, permitted by the redundant structure of this molecule. Both lysin and bindin are important in reproductive isolation, probably had a role in speciation, but it is hard to determine whether they meet the strictest criteria of "speciation loci," defined as genes whose differentiation has caused speciation.  相似文献   

13.
Gamete interactions may strongly influence speciation and hybridization in sympatric broadcast-spawning marine invertebrates. We examined the role of gamete compatibility in species integrity using cross-fertilization studies between sympatric Asterias sea stars from a secondary contact zone in the northwest Atlantic. In crosses between single males and single females, gametes of both species were compatible and produced viable, fertile hybrid offspring, but with considerable variation in the receptivity of eggs to heterospecific sperm. Differential compatibility of heterospecific gametes was detected in sperm competition studies in which we used a nuclear DNA marker to assign paternity to larval offspring. Several families showed conspecific sperm precedence in A. forbesi eggs, and one family showed competitive superiority of A. forbesi sperm fertilizing A. rubens eggs. Gametic interactions are an important component of prezygotic reproductive isolation in sympatric Asterias. The interaction between gametes of these closely related sea stars is consistent with the function of gamete recognition systems that are known to mediate fertilization success and speciation in other marine invertebrates.  相似文献   

14.
Reproductive character displacement occurs when sympatric and allopatric populations of a species differ in traits crucial to reproduction, and it is commonly thought of as a signal of selection acting to limit hybridization. Most documented cases of reproductive character displacement involve characters that are poorly understood at the genetic level, and rejecting alternative hypotheses for biogeographic shifts in reproductive traits is often very difficult. In sea urchins, the gamete recognition protein bindin evolves under positive selection when species are broadly sympatric, suggesting character displacement may be operating in this system. We sampled sympatric and allopatric populations of two species in the sea urchin genus Echinometra for variation in bindin and for the mitochondrial cytochrome oxidase I to examine patterns of population differentiation and molecular evolution at a reproductive gene. We found a major shift in bindin alleles between central Pacific (allopatric) and western Pacific (sympatric) populations of E. oblonga. Allopatric populations of E. oblonga are polyphyletic with E. sp. C at bindin, whereas sympatric populations of the two species are reciprocally monophyletic. There is a strong signal of positive selection (P(N)/P(S) = 4.5) in the variable region of the first exon of bindin, which is associated with alleles found in sympatric populations of E. oblonga. These results indicate that there is a strong pattern of reproductive character displacement between E. oblonga and E. sp. C and that the divergence is driven by selection. There is much higher population structure in sympatric populations at the bindin locus than at the neutral mitochondrial locus, but this difference is not seen in allopatric populations. These data suggest a pattern of speciation driven by selection for local gamete coevolution as a result of interactions between sympatric species. Although this pattern is highly suggestive of speciation by reinforcement, further research into hybrid fitness and egg-sperm interactions is required to address this potential mechanism for character displacement.  相似文献   

15.
16.
Spawning marine invertebrates are excellent models for studying fertilization and reproductive isolating mechanisms. To identify variation in the major steps in sea urchin gamete recognition, we studied sperm activation in three closely related sympatric Strongylocentrotus species. Sperm undergo acrosomal exocytosis upon contact with sulfated polysaccharides in the egg-jelly coat. This acrosome reaction exposes the protein bindin and is therefore a precondition for sperm binding to the egg. We found that sulfated carbohydrates from egg jelly induce the acrosome reaction species specifically in S. droebachiensis and S. pallidus. There appear to be no other significant barriers to interspecific fertilization between these two species. Other species pairs in the same genus acrosome react nonspecifically to egg jelly but exhibit species-specific sperm binding. We thus show that different cell-cell communication systems mediate mate recognition among very closely related species. By comparing sperm reactions to egg-jelly compounds from different species and genera, we identify the major structural feature of the polysaccharides required for the specific recognition by sperm: the position of the glycosidic bond of the sulfated alpha-L-fucans. We present here one of the few examples of highly specific pure-carbohydrate signal transduction. In this system, a structural change in a polysaccharide has far-reaching ecological and evolutionary consequences.  相似文献   

17.
The evolution of barriers to inter-specific hybridization is a crucial step in the fertilization of free spawning marine invertebrates. In sea urchins, molecular recognition between sperm and egg ensures species recognition. Here we review the sulfated polysaccharide-based mechanism of sperm-egg recognition in this model organism. The jelly surrounding sea urchin eggs is not a simple accessory structure; it is molecularly complex and intimately involved in gamete recognition. It contains sulfated polysaccharides, sialoglycans and peptides. The sulfated polysaccharides have unique structures, composed of repetitive units of alpha-L-fucose or alpha-L-galactose, which differ among species in the sulfation pattern and/or the position of the glycosidic linkage. The egg jelly sulfated polysaccharides show species-specificity in inducing the sperm acrosome reaction, which is regulated by the structure of the saccharide chain and its sulfation pattern. Other components of the egg jelly do not possess acrosome reaction inducing activity, but sialoglycans act in synergy with the sulfated polysaccharide, potentiating its activity. The system we describe establishes a new view of cell-cell interaction in the sea urchin model system. Here, structural changes in egg jelly polysaccharides modulate cell-cell recognition and species-specificity leading to exocytosis of the acrosome. Therefore, sulfated polysaccharides, in addition to their known functions as growth factors, coagulation factors and selectin binding partners, also function in fertilization. The differentiation of these molecules may play a role in sea urchin speciation.  相似文献   

18.
Reproductive compatibility proteins have been shown to evolve rapidly under positive selection leading to reproductive isolation, despite the potential homogenizing effects of gene flow. This process has been implicated in both primary divergence among conspecific populations and reinforcement during secondary contact; however, these two selective regimes can be difficult to discriminate from each other. Here, we describe the gene that encodes the gamete compatibility protein bindin for three sea star species in the genus Pisaster. First, we compare the full‐length bindin‐coding sequence among all three species and analyze the evolutionary relationships between the repetitive domains of the variable second bindin exon. The comparison suggests that concerted evolution of repetitive domains has an effect on bindin divergence among species and bindin variation within species. Second, we characterize population variation in the second bindin exon of two species: We show that positive selection acts on bindin variation in Pisaster ochraceus but not in Pisaster brevispinus, which is consistent with higher polyspermy risk in P. ochraceus. Third, we show that there is no significant genetic differentiation among populations and no apparent effect of sympatry with congeners that would suggest selection based on reinforcement. Fourth, we combine bindin and cytochrome c oxidase 1 data in isolation‐with‐migration models to estimate gene flow parameter values and explore the historical demographic context of our positive selection results. Our findings suggest that positive selection on bindin divergence among P. ochraceus alleles can be accounted for in part by relatively recent northward population expansions that may be coupled with the potential homogenizing effects of concerted evolution.  相似文献   

19.
Bindin is a gamete recognition protein known to control species-specificsperm-egg adhesion and membrane fusion in sea urchins. Previousanalyses have shown that diversifying selection on bindin aminoacid sequence is found when gametically incompatible speciesare compared, but not when species are compatible. The presentstudy analyzes bindin polymorphism and divergence in the threeclosely related species of Echinometra in Central America: E.lucunter and E. viridis from the Caribbean, and E. vanbruntifrom the eastern Pacific. The eggs of E. lucunter have evolveda strong block to fertilization by sperm of its neotropicalcongeners, whereas those of the other two species have not.As in the Indo-West Pacific (IWP) Echinometra, the neotropicalspecies show high intraspecific bindin polymorphism in the samegene regions as in the IWP species. Maximum likelihood analysisshows that many of the polymorphic codon sites are under mildpositive selection. Of the fixed amino acid replacements, mosthave accumulated along the bindin lineage of E. lucunter. Weanalyzed the data with maximum likelihood models of variationin positive selection across lineages and codon sites, and withmodels that consider sites and lineages simultaneously. Ourresults show that positive selection is concentrated along theE. lucunter bindin lineage, and that codon sites with aminoacid replacements fixed in this species show by far the highestsignal of positive selection. Lineage-specific positive selectionparalleling egg incompatibility provides support that adaptiveevolution of sperm proteins acts to maintain recognition ofbindin by changing egg receptors. Because both egg incompatibilityand bindin divergence are greater between allopatric speciesthan between sympatric species, the hypothesis of selectionagainst hybridization (reinforcement) cannot explain why adaptiveevolution has been confined to a single lineage in the AmericanEchinometra. Instead, processes acting to varying degrees withinspecies (e.g., sperm competition, sexual selection, and sexualconflict) are more promising explanations for lineage-specificpositive selection on bindin.  相似文献   

20.
We have examined the carbohydrate specificity of bindin, a sperm protein responsible for the adhesion of sea urchin sperm to eggs, by investigating the interaction of a number of polysaccharides and glycoconjugates with isolated bindin. Several of these polysaccharides inhibit the agglutination of eggs by bindin particles. An egg surface polysaccharide was found to be the most potent inhibitor of bindin- mediated egg agglutination. Fucoidin, a sulfated fucose heteropolysaccharide, was the next most potent inhibitor, followed by the egg jelly fucan, a sulfated fucose homopolysaccharide, and xylan, a beta(1 leads to 4) linked xylose polysaccharide. A wide variety of other polysaccharides and glycoconjugates were found to have no effect on egg agglutination. We also report that isolated bindin has a soluble lectinlike activity which is assayed by agglutination of erythrocytes. The bindin lectin activity is inhibited by the same polysaccharides that inhibit egg agglutination by particulate bindin. This suggests that the egg adhesion activity of bindin is directly related to its lectin activity. We have established that fucoidin binds specifically to bindin particles with a high apparent affinity (Kd = 5.5 X 10(-8) M). The other polysaccharides that inhibit egg agglutination also inhibit the binding of 125I-fucoidin to bindin particles, suggesting that they compete for the same site on bindin. The observation that polysaccharides of different composition and linkage type interact with bindin suggests that the critical structural features required for binding may reside at a higher level of organization. Together, these findings strengthen the hypothesis that sperm-egg adhesion in sea urchins is mediated by a lectin-polysaccharide type of interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号