首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine to what extent juvenile Japanese flounder can adapt to different stocking densities in captivity and to examine whether growth and some physiological parameters critical for welfare might be affected by different dissolved oxygen levels. Japanese flounder (Paralichthys olivaceus) juveniles (initial weight 1.27 ± 0.04 g/fish) were reared at five stocking densities (500, 1,000, 1,500, 2,000, 2,500 ind/m3) and two levels of dissolved oxygen (DO) concentration (5.5 ± 0.5 mg/L or 14 ± 2 mg/L) with duplicate tanks for each treatment in water‐recirculating systems for 40 days. Survival and activity of superoxide dismutase (SOD) were not affected either by stocking density or dissolved oxygen, whereas final body weight, specific growth rate (SGR) and feed conversion efficiency (FCE) of fish under low DO concentration decreased significantly with increasing stocking density. In contrast, growth of fish reared in high DO levels were unaffected by the stocking density. Furthermore, fish in this group had a higher feed intake and, consequently, grew faster (SGR) and achieved a higher final weight than fish reared at the low DO level. A significant reduction in hemoglobin (Hb) concentration and red blood cell (RBC) count of fish were recorded as DO concentration increased. Furthermore, the activity of protease decreased significantly with increasing stocking density and increased significantly with increasing DO concentration. The ventilation frequency results indicate that gill ventilation decreased significantly as DO levels increased. This study demonstrates that stocking density can affect the growth performance and physiological parameters critical for welfare of juvenile Japanese flounder. Also shown is that pure oxygen supplementation is an effective way to improve the growth of juvenile Japanese flounder when reared at a high stocking density.  相似文献   

2.
The objective of this study was to evaluate the hematological response of ringtail pike cichlid ornamental fish (Crenicichla saxatilis) during the recovery period after short‐term stress. The fish were previously submitted to the stress of chasing, capture and air exposure. Assayed were 24 C. saxatilis (85.2 ± 61.6 g) in three groups of eight fish; after 0.5, 6 and 24 h recovery, blood samples were collected. The total erythrocyte, relative thrombocyte and differential leukocyte counts as well as total hemoglobin, hematocrit, glucose, total plasma protein and the red blood cells (RBC) indices of mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and MCH concentration (MCHC) were determined. Stress responses were observed after 0.5 h, although hyperglycemia remained constant during the experiment. Total lymphocyte and hemoglobin values decreased after 0.5 h in the recovery period. An increase of neutrophils and monocytosis was observed after 0.5 and 6 h, respectively. The MCHC remained stable until after 0.5 h, then varied from this time forward. MCV, MCH and erythrocyte numbers oscillated throughout the experiment. Intense stress was observed in the studied C. saxatilis, with most hematological variables not returning to their initial levels after 24 h.  相似文献   

3.
The effect of body size on various hematological variables was examined in juvenile shortnose sturgeon (Acipenser brevirostrum) ranging in mass from 38 to 730 g. The blood was examined for differences in plasma ionic composition (Na+, K+, Cl?), blood oxygen carrying capacities (hemoglobin, hematocrit), and plasma metabolite concentrations (lactate, glucose), before and following a standard 5‐min chasing stress. All measured resting hematological variables were size independent in shortnose sturgeon. After exercise, levels of plasma lactate, potassium, and hemoglobin increased in all fish. Only post‐exercise levels of chloride and hemoglobin changed in a size‐dependent manner; however, the relationships were weak. The general lack of a relationship between body size and hematological variables might reflect the narrow range of fish sizes used in the present study. From a practical perspective, the results suggest that when examining the hematological stress response in juvenile shortnose sturgeon, a range of fish sizes could be used. This is important considering the variability in the growth rates of juvenile shortnose sturgeon under laboratory conditions.  相似文献   

4.
There is mounting evidence that the deoxygenation of coastal marine ecosystems has been underestimated, particularly in the tropics. These physical conditions appear to have far‐reaching consequences for marine communities and have been associated with mass mortalities. Yet little is known about hypoxia in tropical habitats or about the effects it has on reef‐associated benthic organisms. We explored patterns of dissolved oxygen (DO) throughout Almirante Bay, Panama and found a hypoxic gradient, with areas closest to the mainland having the largest diel variation in DO, as well as more frequent persistent hypoxia. We then designed a laboratory experiment replicating the most extreme in situ DO regime found on shallow patch reefs (3 m) to assess the response of the corallivorous fireworm, Hermodice carnaculata to hypoxia. Worms were exposed to hypoxic conditions (8 hr ~ 1 mg/L or 3.2 kPa) 16 times over an 8‐week period, and at 4 and 8 weeks, their oxygen consumption (respiration rates) was measured upon reoxygenation, along with regrowth of severed gills. Exposure to low DO resulted in worms regenerating significantly larger gills compared to worms under normoxia. This response to low DO was coupled with an ability to maintain elevated oxygen consumption/respiration rates after low DO exposure. In contrast, worms from the normoxic treatment had significantly depressed respiration rates after being exposed to low DO (week 8). This indicates that oxygen‐mediated plasticity in both gill morphology and physiology may confer tolerance to increasingly frequent and severe hypoxia in one important coral predator associated with reef decline.  相似文献   

5.
Oxygen transport characteristics and phosphate compounds were measured in the blood of reedfish, Erpetoichthys calabaricus, a bimodal breather. Blood from reedfish possessed the following values (mean +/- SD): hematocrit (21.7 +/- 0.4%), hemoglobin concentration (7.53 +/- 1.75 g%), red blood cell count (0.45 +/- 0.10 X 10(6)/mm3) and oxygen capacity (10.1 +/- 2.3 vol%). Although hematocrit, hemoglobin concentration, red blood cell count and oxygen capacity were all highly intercorrelated (P less than 0.01 in all cases), none of these parameters were significantly correlated with sex, weight or length in our sixteen fish sample. Erythrocyte volumes equalled 480 micrometers3, showed less variation (CV = 10.4%) and did not correlate with any other measured variable. Blood oxygen dissociation curves were sigmoidal and the P50's equalled 17.34 +/- 3.04 at 1% CO2 and 25 degrees C. Mean Bohr shift (delta log P50/delta pH) was -0.274 +/- 0.087. Temperature strongly influenced blood oxygen affinity. At 1% CO2, delta log P50/delta T equalled 0.026 +/- 0.006 (mean +/- SD). These hematological properties indicate that the blood of reedfish is similar to those of other tropical air-breathering species. Concentrations of total phosphate in the erythrocytes and percentage of total phosphate bound as nucleotide triphosphates were high. Surprisingly, 2,3diphosphoglycerate was found which has been reported in the erythrocytes of only two other fish species. Blood characteristics of reedfish exposed to air for 4 hr with one exception (Hill numbers) were not significantly different from water exposed controls. This suggests that the reedfish does not possess blood respiratory mechanisms to facilitate respiration solely by air-breathing.  相似文献   

6.
Fish hematological changes during osmotic and cold stress are used to introduce the physiological reactions of the animal to an acute stress. Brook char (Salvelinus fontinalis) were subjected to 1 h of stress before being anesthetized and having blood taken from their caudal vein. Glucose, hemoglobin, hematocrit, and osmolarity were determined in the blood samples. Analyses showed that glucose concentration tends to increase and hematocrit tends to decrease in stressed fish. Changes in hemoglobin concentration occurred only in cold-stressed fish. A rise in blood glucose concentration is the result of cortisol secreted by the hypothalamic-pituitary-adrenal axis. The glucose produced is used as an osmolyte or energy source to resist or combat the stress. In stressed fish, changes in hematocrit could be the result of the osmoconcentration of the blood plasma, as shown by the increase in osmolarity for the same group. In cold-stressed fish, a decrease in hemoglobin concentration could be the result of hemodilution by body cell water.  相似文献   

7.
The present study investigated the effects of sodium butyrate (SB) on the growth performance, histomorphology, immune response, and stress related markers of Nile tilapia subjected to heat stress. SB was incorporated at 0, 0.5, 1, 1.5, and 2 g per kg diet and fed to fish for 8 weeks. The obtained results revealed significantly improved growth performance with a decreased feed conversion ratio in the fish fed SB (P < 0.05). In the anterior, middle, and distal parts of the intestine, villus length and width and internal villi distance as well as the number of goblet cells were increased in the fish fed SB (P < 0.05). The blood total protein, hemoglobin, and white and red blood cell counts showed a significant quadratic influence (P < 0.05). The survival rate for Nile tilapia exposed to heat stress for 48 h revealed that the SB fed groups had noticeably higher survival rates. Dietary SB significantly increased the phagocytic index and lysozyme and phagocytic activities both before and after heat stress (P < 0.05). After heat stress, blood glucose decreased significantly with SB feeding at 0.5, 1, or 1.5 g per kg diet, while cortisol was reduced in fish fed 1.5 or 2 g per kg diet (P < 0.05). Additionally, in fish fed SB, superoxide dismutase (SOD), catalase, and glutathione peroxidase activities were significantly increased both before and after heat stress, while malondialdehyde was decreased by SB feeding (P < 0.05). Liver heat shock protein 70 and SOD gene expression were significantly upregulated in fish fed on SB at 1 g per kg diet (P < 0.05). Thus, supplementation with SB at 1–2 g per kg diet can be used effectively in tilapia diets for improving growth, feed efficiency, and immune response as well as for tolerance to heat stress.  相似文献   

8.
The present study investigated the interaction of feeding times with two dietary fat levels on physiological responses to handling stress in juvenile Beluga sturgeon. Fish were fed with two different diets (high energy; HE: 24% fat and low energy; LE: 12% fat) for 8 weeks at two feeding times; 09:00 and 16:00 (during the day) or 21:00 and 04:00 (during the night). At the end of the trial, blood samples were taken and the resting fish were held in a net out of water for 90 s as the handling stressor. Three hours after application of stress, post‐stress blood was taken. Cortisol, glucose, and lactate concentrations were considered as stress indicators. The mean values of cortisol and lactate levels did not reveal a significant difference between pre‐ and 3‐hr post‐stress samples, but the average concentration of glucose showed a significant difference. Cortisol, lactate and glucose concentrations were not influenced by the difference in the diets. Moreover, the cortisol and lactate concentrations were not affected by the different feeding times, while glucose levels were significantly affected by the feeding times with the lowest level in fish fed during the day. With respect to stress indicators, the results revealed that feeding times affected pre‐ and post‐stress secondary response to handling stress, but the rate and magnitude of metabolites (cortisol, glucose and lactate) were not affected by dietary fat levels. Therefore, it is necessary to examine the best feeding times with the interaction of feed ingredients in sturgeon farming.  相似文献   

9.
The present study was conducted to determine the dietary folic acid (FA) requirement of genetically improved Nile tilapia, Oreochromis niloticus. Experimental diets were supplemented with 0.04, 0.22, 0.48, 0.96, 2.25, or 4.07 mg/kg FA, respectively, and fed to three replicate groups of 15 tilapia (mean initial weight = 60.23 ± 2.60 g; mean ± SD) for 12 weeks. Results showed that the weight gain rate increased linearly with increasing dietary FA from 0.04 to 0.40 mg/kg, then remained stable with higher supplementation. Similarly, hepatic FA concentration, red blood cell count (RBC), hemoglobin concentration (HB) and hematocrit (HCT) all markedly increased in fish fed with 4.07 mg/kg FA compared to those fed a control diet (p < .05). Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities decreased with increasing dietary FA (p < .05). The FA requirement was estimated to be 0.4 mg/kg based on weight gain rate, and 0.7 mg/kg based on liver FA accumulation.  相似文献   

10.
Changes of hematocrit, hemoglobin, and blood plasma glucose and Na+ and K+ content in response to hypoxia were studied in three Black Sea fish species. It was shown that in response to hypoxia in low-mobile rock perch Scorpaena porcus L., hematocrit and the blood plasma glucose level increased, while the content of K+ in erythrocytes decreased and the content of Na+ increased. In moderately mobile sea carp Diplodus annularis L. autogenic hypoxia caused a rise of hematocrit and blood plasma glucose. In actively swimming jack mackerel Trachurus mediterraneus ponticus Aleev, only considerable increase of Na+ content was revealed in hypoxia. The obtained results indicate that fish with different mobility under hypoxic conditions use different adaptation mechanisms. The value and direction of changes of the chosen parameters can be used to determine resistance of fish to oxygen deficit.  相似文献   

11.
Recently, residual pharmaceuticals are generally recognized as relevant sources of aquatic environmental pollutants. However, the toxicological effects of these contaminants have not been adequately researched. In this study, the chronic toxic effect of carbamazepine (CBZ), an anticonvulsant drug commonly present in surface and ground water, on hepatic antioxidant status and hematological parameters of rainbow trout were investigated. Fish were exposed at sublethal concentrations of CBZ (1.0 μg/l, 0.2 mg/l and 2.0 mg/l) for 7, 21 and 42 days. Compared to the control group, fish exposed at higher concentration (0.2 mg/l or 2.0 mg/l) of CBZ showed significantly higher levels of hemoglobin, ammonia and glucose, and significantly higher plasma enzymes activities. During the exposure duration, erythrocyte count, hematocrit, mean erythrocyte hemoglobin, mean erythrocyte volume, mean color concentration and total protein content in all groups were not significantly different. At the highest test concentration (2.0 mg/l) of CBZ, oxidative stress was apparent as reflected by the significant higher lipid peroxidation and protein carbonyl levels in liver after 42 days exposure, associated with an inability to induce antioxidant enzymes activities including superoxide dismutase, glutathione peroxidase and glutathione reductase. After 42 days exposure, reduced glutathione level was significantly decreased in the fish exposed at 0.2 mg/l CBZ, compared with the control. In short, CBZ-induced physiological and biochemical responses in fish were reflected in the oxidant stress indices and hematological parameters. These results suggest that hepatic antioxidant responses and hematological parameter could be used as potential biomarkers for monitoring residual pharmaceuticals present in aquatic environment.  相似文献   

12.
Flounder were exposed to waterborne phenanthrene (0.5, 1 and 2 μM) for 4 weeks to test effects of waterborne phenanthrene on growth and hematological properties of the olive flounder (Paralichthys olivaceus). The average weight gain (WG) of flounder was significantly decreased in fish exposed to phenanthrene at 2.0 μM for 2 weeks, whereas WGs of fish treated by 1.0 and 2.0 μM phenanthrene for 4 weeks were significantly decreased. However, hepatosomatic index (HSI) and condition factor (CF) of flounder were not significantly affected by phenanthrene exposure. Red blood cell (RBC) count, hemoglobin (Hb) concentration, hematocrit (Ht), the mean corpuscular hemoglobin (MCH) and the mean corpuscular hemoglobin concentration (MCHC) mean levels were decreased with an increase in exposure time of phenanthrene to the fish, but the level of the mean corpuscular volume (MCV) was increased. Plasma bilirubin concentrations were significantly increased following exposure to waterborne phenanthrene (2.0 μM) for 2 and 4 weeks; however, there were no significant changes in plasma total cholesterol in fish of all treated groups compared to control. The phenanthrene-exposed groups (≥1.0 μM) showed significantly higher mean plasma lysozyme activity. Kidney lysozyme activity of fish exposed to phenanthrene (≥1.0 μM) was also significantly higher than that of control fish. The central finding from these data is that olive flounder exposed to waterborne phenanthrene at more than 1.0 μM are likely to experience negative impacts on fish health and basic physiological functions.  相似文献   

13.
Liver nucleotides (ATP, ADP, AMP, IMP), the adenylate energy charge (AEC), total adenylate concentration (TA), and IMP-load were used as measures of stress in rainbow trout (Oncorhynchus mykiss) acclimated to normoxic (10.0 mg/l), hypoxic (6.5 mg/l), and supersaturated (13.0 mg/l) dissolved oxygen concentrations and subjected to a challenge by confinement. Liver ATP (783.0 nmol/g) was significantly different in the normoxic fish compared to either hyperoxic (447.7 nmol/g) or hypoxic (402.0 nmol/g) fish at the end of the confinement. Within 6.0 hr in the confinement, liver AEC in the normoxic fish increased significantly (0.58) compared to hypoxic (0.42) and hyperoxic fish (0.42). Similarly, the IMP-load in normoxic fish (0.16) decreased to near prestress levels by 6.0 hr in confinement compared to either the hypoxic (0.31) or hyperoxic (0.30) fish. Nucleotides in liver were significantly affected by the dissolved oxygen treatments and the confinement stress in contrast to the muscle nucleotides which were not.  相似文献   

14.
Dissolved oxygen (DO) is proving to be one of the most important abiotic factors determining growth and survival of juvenile estuarine fish. In shallow, throughout estuarine systems, low DO can occur in two broad categories: a diel oscillating pattern resulting in repeated nocturnal hypoxia due to the photosynthesis-respiration cycle of algal populations, or as prolonged bottom water hypoxia or anoxia caused by stratification. A series of laboratory experiments was conducted to characterize the physiological performance of juvenile southern flounder, Paralichthys lethostigma, (55-65 mm TL) exposed to four treatments of DO: (1) constant normoxia (6.50+/-0.50 mg O(2) l(-1)), (2) constant hypoxia (2.79+/-0.19 mg O(2) l(-1)), (3) constant intermediate hypoxia (4.74+/-0.18 mg O(2) l(-1)), and (4) an oscillating oxygen environment cycling dielly between the normoxic and hypoxic levels (2.8-6.2 mg O(2) l(-1), daily mean=4.40 mg O(2) l(-1)). Routine respiration was positively correlated with DO level and increased significantly during the day in the oscillating treatment in response to increasing DO. Ventilation rates were negatively correlated with the DO level in the constant treatments and increased significantly at night in the oscillating treatment in response to nocturnal hypoxia. Similarly, hematocrit levels were negatively related to DO levels in the constant treatments after 5 and 26 days of exposure to the treatments. Hematocrit levels also increased significantly the oscillating treatment, apparently in response to the episodic nocturnal hypoxia. Growth was significantly reduced in the 2.8 mg O(2) l(-1) treatment and the oscillating treatment but not in the 4.7 mg O(2) l(-1) treatment. Acclimation was evident by an increase in growth rates from week 2 to week 3 and a decrease in hematocrit levels between 5 and 26 days of exposure in the 2.7 and 4.5 mg O(2) l(-1) treatments but was not evident in the normoxic or oscillating treatments. These results suggest that a juvenile fish must remain in even moderately low DO in order for acclimation to occur. The research presented demonstrates that correctly assessing habitat quality in terms of DO requires knowledge of a fish's physiological and environmental history.  相似文献   

15.
The effect of an acute LD50 dose of Echis coloratus crude venom in male albino rats was tested on blood parameters: white blood cells (WBCs), red blood cells (RBCs), platelets count, hemoglobin, hematocrit, mean cell volume (MCV), mean cell hemoglobin (MCH) and mean cell hemoglobin concentration (MCHC), also serum glucose, total protein, triglycerides with alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT) enzyme activities. The effect of the LD50 dose was monitored over a period of seven days, with time intervals of 1, 3, 6, 12, 24, 72 h. All of the tested parameters show fluctuations with time and with tendency to regain normal control level after 12 h. At 12–24 h it seems to be crucial for the process of physiological recovery, in spite of the irreversible damage and tissue distraction. The process of physiological adaptation and recovery from the lethal destructive venom effect seems to stabilize after one week, leaving the animal alive with several biochemical altered metabolisms and disturbed physiological profile.  相似文献   

16.
Concern for the increasing occurrence of coastal zone hypoxia has generally focused on the direct, short-term impact of reduced dissolved oxygen (DO) concentrations on the survival of commercially important species such as fish and crabs. Copepods, especially the naupliar stages, are important pelagic food web components, yet only a few studies have considered the effect of reduced DO concentrations on their survival and population dynamics. This study considers the impact of both lethal and sublethal DO concentrations on copepods. Acartia tonsa were reared at 25 °C at saturating DO (normoxic control) and reduced (hypoxic) DO concentrations of 1.5 or 0.7 ml l−1. Oxygen concentrations were maintained in replicate flasks, by bubbling seawater with air (control), or mixtures of nitrogen and oxygen. Egg production, but not survival, was significantly higher in the controls compared to the 1.5 ml l−1 DO treatment. Survival and egg production were significantly lower at 0.7 ml l−1 DO compared to the control. The results suggest that the sublethal as well as the lethal effects of hypoxia may have important repercussions on population and community dynamics in coastal systems.  相似文献   

17.
Trypanoplasma salmositica was successfully cultured in Hanks' medium with 10% heated fetal calf serum. The culture forms were morphologically similar to blood forms and were infective to rainbow trout by inoculation. T. salmositica produced a disease in experimentally infected rainbow trout (Salmo gairdneri). The clinical signs were anemia, exophthalmia, abdominal distension with ascites, and splenomegaly. These clinical signs were observed in fish that were infected with three substrains (field substrain, cultured substrain, and cloned substrain) thus satisfying Koch's postulates. The anemia was microcytic and hypochromic and was coincident with increasing parasite number in the blood. The hemoglobin in the infected fish dropped from a normal of about 6 g% to about 1 g% in the first 10 weeks postinfection. Similarly, the hematocrit and red cell count declined as the infection progressed. Abdominal distension and exophthalmia was obvious 10 weeks postinfection. Up to 5 ml ascites fluid were recovered from each of three fish. The fluid contained large numbers of Trypanoplasma and macrophages. Some of the macrophages were engulfing the Trypanoplasma. At about this time the spleen in the infected fish was enlarged 5 to 10 times over that of control fish. The hematocrit centrifuge technique was less sensitive than wet mount examinations for the detection of the organism in blood. Fluctuations in parasite number during the course of infection may be due to antigenic change by the parasite to evade the host immune system.  相似文献   

18.
以耐低氧性具有明显差异的两个网纹甜瓜(Cucumis melo var. raticulalus)品种为试材,研究了根际低氧胁迫下幼苗生长、根系活力及根系呼吸关键酶活性的变化。结果表明,根际低氧胁迫下,两品种幼苗生长均受到明显抑制,而根系活力升高;根系PDC活性两品种均显著提高,品种间无显著差异; MDH活性两品种均显著降低,且耐低氧性弱的‘西域一号’下降幅度较大;根系ADH和LDH活性两品种均显著提高,耐低氧性强的‘东方星光’ADH活性增加的幅度显著高于耐低氧性弱的‘西域一号’,而‘西域一号’LDH活性增加幅度显著高于‘东方星光’。说明‘东方星光’在低氧胁迫下能保持较高的有氧呼吸水平,无氧呼吸的主要途径为乙醇发酵,而‘西域一号’在低氧胁迫下无氧呼吸的主要途径为乳酸发酵。  相似文献   

19.
The reaction of the growth optimum of fish to periodically fluctuating temperature is systemic: there is a synchronous increase in the specific growth rate, reduction of respiration intensity, an increase in red blood cell count and in hemoglobin level, and a decrease in the hemoglobin content in erythrocytes.  相似文献   

20.
The effect of four different light regimes on growth was studied in lenok, Brachymystax lenok. Fish with average weights of 5.5 g were subjected to four different photoperiods (0L:24D, 6L:18D, 12L:12D and 24L:0D) for 35 days. The specific growth rate (SGR) of lenok in 24‐h darkness had a significantly higher SGR than those in the continuous light regime (P < 0.05); however, there was no significant difference among fish exposed to 6L:18D, 12L:12D and 24L:0D photoperiods. There was a tendency for higher food intake over the light period extension from 0L to 24L, and feed intake was significantly higher in the continuous light group than in 24‐h darkness (P < 0.05). No significant difference in feed conversion efficiency (FCE) was observed between fish exposed to 0L:24D and 6L:18D photoperiods, however, the FCE in both photoperiods was significantly higher than that in the other two groups. The final survival rate of juveniles varied from 79.67 to 95.33%, with significant differences among experimental groups. Fish tested in continuous illumination spent much more energy on respiration and excretion while depositing less energy for growth than in the other photoperiods. In contrast, fish in 24‐h darkness deposited more energy for growth and spent less energy on respiration and excretion. Results show that photoperiod manipulation can affect growth, and that a continuous dark regime could improve growth in lenok at this stage of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号