首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fixation of new deleterious mutations is analyzed for a randomly mating population of constant size with no environmental or demographic stochasticity. Mildly deleterious mutations are far more important in causing loss of fitness and eventual extinction than are lethal and semilethal mutations in populations with effective sizes, Ne, larger than a few individuals. If all mildly deleterious mutations have the same selection coefficient, s against heterozygotes and 2s against homozygotes, the mean time to extinction, , is asymptotically proportional to for 4Nes > 1. Nearly neutral mutations pose the greatest risk of extinction for stable populations, because the magnitude of selection coefficient that minimizes is about ? = 0.4/Ne. The influence of variance in selection coefficients among mutations is analyzed assuming a gamma distribution of s, with mean and variance . The mean time to extinction increases with variance in selection coefficients if is near ?, but can decrease greatly if is much larger than ?. For a given coefficient of variation of , the mean time to extinction is asymptotically proportional to for . When s is exponentially distributed, (c = 1) is asymptotically proportional to . These results in conjunction with data on the rate and magnitude of mildly deleterious mutations in Drosophila melanogaster indicate that even moderately large populations, with effective sizes on the order of Ne = 103, may incur a substantial risk of extinction from the fixation of new mutations.  相似文献   

2.
A mother can influence a trait in her offspring both by the genes she transmits (Mendelian inheritance) and by maternal attributes that directly affect that trait in her offspring (maternal inheritance). Maternal inheritance can alter the direction, rate, and duration of adaptive evolution from standard Mendelian models and its impact on adaptive evolution is virtually unexplored in natural populations. In a hierarchical quantitative genetic analysis to determine the magnitude and structure of maternal inheritance in the winter annual plant, Collinsia verna, I consider three potential models of inheritance. These range from a standard Mendelian model estimating only direct (i.e., Mendelian) additive and environmental variance components to a maternal inheritance model estimating six additive and environmental variance components: direct additive and environmental variances; maternal additive and environmental variances; and the direct-maternal additive () and environmental covariances. The structure of maternal inheritance differs among the 10 traits considered at four stages in the life cycle. Early in the life cycle, seed weight and embryo weight display substantial , a negative , and a positive . Subsequently, cotyledon diameter displays and of roughly the same magnitude and negative . For fall rosettes, leaf number and length are best described by a Mendelian model. In the spring, leaf length displays maternal inheritance with significant and and a negative . All maternally inherited traits show significant negative . Predicted response to selection under maternal inheritance depends on and as well as . Negative results in predicted responses in the opposite direction to selection for seed weight and embryo weight and predicted responses near zero for all subsequent maternally inherited traits. Maternal inheritance persists through the life cycle of this annual plant for a number of size-related traits and will alter the direction and rate of evolutionary response in this population.  相似文献   

3.
Models of the maintenance of genetic variance in a polygenic trait have usually assumed that population size is infinite and that selection is weak. Consequently, they will overestimate the amount of variation maintained in finite populations. I derive approximations for the equilibrium genetic variance, in finite populations under weak stabilizing selection for triallelic loci and for an infinite “rare alleles” model. These are compared to results for neutral characters, to the “Gaussian allelic” model, and to Wright's approximation for a biallelic locus under arbitrary selection pressures. For a variety of parameter values, the three-allele, Gaussian, and Wrightian approximations all converge on the neutral model when population size is small. As expected, far less equilibrium genetic variance can be maintained if effective population size, N, is on the order of a few hundred than if N is infinite. All of the models predict that comparisons among populations with N less than about 104 should show substantial differences in . While it is easier to maintain absolute when alleles interact to yield dominance or overdominance for fitness, less additivity also makes more susceptible to differences in N. I argue that experimental data do not seem to reflect the predicted degree of relationship between N and . This calls into question the ability of mutation-selection balance or simple balancing selection to explain observed . The dependence of on N could be used to test the adequacy of mutation-selection balance models.  相似文献   

4.
5.
The equilibrium phenotypic variance of a normally distributed quantitative character P under soft selection is studied. This character is assumed to undergo Gaussian stabilizing selection W(p, x) = exp[–(px)2/2w2]. The environmentally determined optimum (x) is a normal variable with variance s2. A stable equilibrium with is found, so that increases both with increasing environmental heterogeneity and with increasing local intensity of stabilizing selection. It is shown that both genetic and environmental components of the variance are selected until this equilibrium is reached. Habitat selection, supposed to be normal (with variance H2) around the optimum, also increases the value. Nevertheless, relatively intense local stabilizing selection (w < s) and accurate habitat choice (H < s) are required for the initial spread and the evolutionary stability of this habitat selection.  相似文献   

6.
The study of modularity is paramount for understanding trends of phenotypic evolution, and for determining the extent to which covariation patterns are conserved across taxa and levels of biological organization. However, biologists currently lack quantitative methods for statistically comparing the strength of modular signal across datasets, and a robust approach for evaluating alternative modular hypotheses for the same dataset. As a solution to these challenges, we propose an effect size measure () derived from the covariance ratio, and develop hypothesis‐testing procedures for their comparison. Computer simulations demonstrate that displays appropriate statistical properties and low levels of mis‐specification, implying that it correctly identifies modular signal, when present. By contrast, alternative methods based on likelihood (EMMLi ) and goodness of fit (MINT ) suffer from high false positive rates and high model mis‐specification rates. An empirical example in sigmodontine rodent mandibles is provided to illustrate the utility of for comparing modular hypotheses. Overall, we find that covariance ratio effect sizes are useful for comparing patterns of modular signal across datasets or for evaluating alternative modular hypotheses for the same dataset. Finally, the statistical philosophy for pairwise model comparisons using effect sizes should accommodate any future analytical developments for characterizing modular signal.  相似文献   

7.
Calmodulin (CaM) functions depend on interactions with CaM‐binding proteins, regulated by . Induced structural changes influence the affinity, kinetics, and specificities of the interactions. The dynamics of CaM interactions with neurogranin (Ng) and the CaM‐binding region of /calmodulin‐dependent kinase II (CaMKII290−309) have been studied using biophysical methods. These proteins have opposite dependencies for CaM binding. Surface plasmon resonance biosensor analysis confirmed that and CaM interact very rapidly, and with moderate affinity ( ). Calmodulin‐CaMKII290−309 interactions were only detected in the presence of , exhibiting fast kinetics and nanomolar affinity ( ). The CaM–Ng interaction had higher affinity under ‐depleted ( and k −1 = 1.6 × 10−1s−1) than ‐saturated conditions ( ). The IQ motif of Ng (Ng27−50) had similar affinity for CaM as Ng under ‐saturated conditions ( ), but no interaction was seen under ‐depleted conditions. Microscale thermophoresis using fluorescently labeled CaM confirmed the surface plasmon resonance results qualitatively, but estimated lower affinities for the Ng ( ) and CaMKII290−309( ) interactions. Although CaMKII290−309 showed expected interaction characteristics, they may be different for full‐length CaMKII. The data for full‐length Ng, but not Ng27−50, agree with the current model on Ng regulation of /CaM signaling.  相似文献   

8.
Nocturnal geckos are active at body temperatures 10–35°C below the thermal optima for maximum rate of aerobic metabolism of diurnal lizards. Therefore, given ancestral (diurnal) lizard physiology, nocturnality causes a substantial thermal handicap in locomotor performance. In prior studies, we hypothesized that a low minimum cost of locomotion (Cmin) in geckos was an adaptation that increased locomotor endurance capacity at low, nocturnal temperatures. However, Cmin is only part of an integrated system that, in conjunction with the maximum rate of oxygen consumption, sets the maximum speed that can be sustained aerobically (termed the maximum aerobic speed or MAS). We conducted the first phylogenetic analysis of MAS and lizards and found that the greatest changes in MAS, Cmin and (at activity temperatures) in the evolutionary history of lizards all coincided with the evolution of nocturnality in geckos. Geckos active at 15–25°C did not become optimized for nocturnal temperatures, or fully offset the thermal effects of nocturnality by evolving maximal rates of oxygen consumption comparable to diurnal lizards active at 35°C. Geckos did evolve MAS twice that of diurnal lizards running at low temperatures by evolving a remarkably low Cmin. Allometric analysis and phylogenetically independent contrasts of , Cmin, and MAS indicate a 72% evolutionary decrease in , (at activity temperatures) and a 50% evolutionary decrease in Cmin concordant with the evolution of nocturnality in geckos. Experimental measurements show that decreased Cmin in six species of gecko increased MAS by 50–120% compared to diurnal lizards at low temperatures. Thus, geckos sufficiently overcame the near paralyzing effects of nocturnal temperatures, but only offset about 50% of the decrease in MAS resulting from the low maximum rate of oxygen consumption. Although the nocturnal environment remains severely suboptimal, the evolution of a low cost of locomotion in the ancestor of geckos was highly adaptive for nocturnality. We also present a generalized approach to ecophysiological evolution that integrates phylogeny with the causal relationships among environment, physiology, and performance capacity. With respect to a clade, two hypotheses are central to our integrative approach: (1) a change of an environmental variable (e.g., temperature) causes a performance handicap; and (2) evolution of a physiological variable (e.g., minimum cost of locomotion [Cmin]) increases performance in the derived environment. To test the hypothesis that evolution of a physiological variable is adaptive in nature, we suggest determining if individuals in nature perform at levels exceeding the performance capacity of their hypothetical ancestors and if this additional performance capacity is due to the evolution of the physiological variable in question.  相似文献   

9.
Reliable estimates of effective population size are of central importance in population genetics and evolutionary biology. For populations that fluctuate in size, harmonic mean population size is commonly used as a proxy for (multi‐) generational effective size. This assumes no effects of density dependence on the ratio between effective and actual population size, which limits its potential application. Here, we introduce density dependence on vital rates in a demographic model of variance effective size. We derive an expression for the ratio in a density‐regulated population in a fluctuating environment. We show by simulations that yearly genetic drift is accurately predicted by our model, and not proportional to as assumed by the harmonic mean model, where N is the total population size of mature individuals. We find a negative relationship between and N. For a given N, the ratio depends on variance in reproductive success and the degree of resource limitation acting on the population growth rate. Finally, our model indicate that environmental stochasticity may affect not only through fluctuations in N, but also for a given N at a given time. Our results show that estimates of effective population size must include effects of density dependence and environmental stochasticity.  相似文献   

10.
Wild populations of deer mice (Peromyscus maniculatus) contain hemoglobin polymorphisms at both alpha-globin (Hba, Hbc) and beta-globin (Hbd) loci. Population gene frequencies of beta-globin variants (d0 and d1 haplotypes) are not correlated with altitude, whereas a1c1 alpha-globin haplotypes are fixed in low-altitude populations, and a0c0 haplotypes reach near fixation at high altitudes. We examined the effects of alpha- and beta-globin variants on blood oxygen affinity and on aerobic performance, measured as maximum oxygen consumption (). Exercise and cold exposure were used to elicit . Experiments were performed at low (340 m) and high (3,800 m) altitude to include the range of oxygen partial pressures encountered by wild deer mice. Beta-globin variants had little effect on blood oxygen affinity or . Oxygen-dissociation curves from a0c0 and a1c1 homozygotes and heterozygotes had similar shapes, but the P50 of a0c0 homozygotes was significantly lower than that of other genotypes. Mice carrying a1c1/a1c1 genotypes had the highest at low altitude, but mice with a0c0/a0c0 genotypes had the highest at high altitude. Mice carrying rare recombinant alpha-globin haplotypes (a0c1) had lower than nonrecombinant genotypes as a whole but in most cases were not significantly different from nonrecombinant heterozygotes (a0c0/a1c1). We conclude that genetic adaptation to different altitudes was important in the evolution of deer mouse alpha-globin polymorphisms and in the maintenance of linkage disequilibrium in the alpha-globin loci but was not a significant factor in the evolution of beta-globin polymorphisms.  相似文献   

11.
Yen‐Tsung Huang 《Biometrics》2019,75(4):1191-1204
Mediation effects of multiple mediators are determined by two associations: one between an exposure and mediators (‐) and the other between the mediators and an outcome conditional on the exposure (‐). The test for mediation effects is conducted under a composite null hypothesis, that is, either one of the ‐ and ‐ associations is zero or both are zeros. Without accounting for the composite null, the type 1 error rate within a study containing a large number of multimediator tests may be much less than the expected. We propose a novel test to address the issue. For each mediation test , , we examine the ‐ and ‐ associations using two separate variance component tests. Assuming a zero‐mean working distribution with a common variance for the element‐wise ‐ (and ‐) associations, score tests for the variance components are constructed. We transform the test statistics into two normally distributed statistics under the null. Using a recently developed result, we conduct hypothesis tests accounting for the composite null hypothesis by adjusting for the variances of the normally distributed statistics for the ‐ and ‐ associations. Advantages of the proposed test over other methods are illustrated in simulation studies and a data application where we analyze lung cancer data from The Cancer Genome Atlas to investigate the smoking effect on gene expression through DNA methylation in 15 114 genes.  相似文献   

12.
Mutation may impose a substantial load on populations, which varies according to the reproductive mode of organisms. Over the past years, various authors used adaptive landscape models to predict the long‐term effect of mutation on mean fitness; however, many of these studies assumed very weak mutation rates, so that at most one mutation segregates in the population. In this article, we derive several simple approximations (confirmed by simulations) for the mutation load at high mutation rate (U), using a general model that allows us to play with the number of selected traits (n), the degree of pleiotropy of mutations, and the shape of the fitness function (which affects the average sign and magnitude of epistasis among mutations). When mutations have strong fitness effects, the equilibrium fitness of sexuals and asexuals is close to ; under weaker mutational effects, sexuals reach a different regime where is a simple function of U and of a parameter describing the shape of the fitness function. Contrarily to weak mutation results showing that is an increasing function of population size and a decreasing function of n, these parameters may have opposite effects in sexual populations at high mutation rate.  相似文献   

13.
The mating system of a species is expected to have important effects on its genetic diversity. In this article, we explore the effects of partial selfing on the equilibrium genetic variance Vg, mutation load L, and inbreeding depression δ under stabilizing selection acting on a arbitrary number n of quantitative traits coded by biallelic loci with additive effects. When the ratio is low (where U is the total haploid mutation rate on selected traits) and effective recombination rates are sufficiently high, genetic associations between loci are negligible and the genetic variance, mutation load, and inbreeding depression are well predicted by approximations based on single‐locus models. For higher values of and/or lower effective recombination, moderate genetic associations generated by epistasis tend to increase Vg, L, and δ, this regime being well predicted by approximations including the effects of pairwise associations between loci. For yet higher values of and/or lower effective recombination, a different regime is reached under which the maintenance of coadapted gene complexes reduces Vg, L, and δ. Simulations indicate that the values of Vg, L, and δ are little affected by assumptions regarding the number of possible alleles per locus.  相似文献   

14.
Genetic variability at a locus under stabilizing selection in a finite population is investigated using analytic methods and computer simulations. Three measures are examined: the number of alleles k, heterozygosity H, and additive genetic variance Vg. A nearly-neutral theory results. The composite parameter S = NVM/Vs (where N is the population size, VM the variance of new mutant allelic effects and Vs the weakness of stabilizing selection) figures prominently in the results. The equilibrium heterozygosity is similar to that of strictly neutral theory, H = 4Nμc/ (1 + 4Nμc), except that μc = where c is about 0.5. Simulations corroborate except for very low N. Genetic variability attains similar equilibrium values at both a “lone” locus and at an “embedded” locus. This agrees with my earlier work concerning molecular clock rates. These results modify the neutralist interpretation of data concerning genetic variability and genetic distances between populations. Low H values are proportional not to N but to . This may explain the narrow observed range of H among species. Heterozygosities need not be highly correlated to genetic variances. Genetic variances are not highly dependent on population size except in very small populations which are difficult to sample without bias because the smallest populations go extinct the fastest. Nearly neutral evolution will not be easily distinguished from strictly neutral theory under the Hudson-Kreitman-Aguade inter-/intraspecific variation ratio test, since a similar effective mutation rate holds for genetic distances and D =ct, where . As with strictly neutral theory, comparisons across loci should show D and H to be positively correlated because of the shared μc. But unlike neutral theory, for a given locus, comparisons across species should show D and H to be negatively correlated. There is no obvious threshold of population size below which genetic variability inevitably declines. Extinction depends on both genetic variation and natural selection. Neither theory nor observation presently indicates the measure of genetic variability (k, H, VG or other) that best indicates vulnerability of a small population to extinction.  相似文献   

15.
In freshwaters, algal species are exposed to different inorganic nitrogen (Ni) sources whose incorporation varies in biochemical energy demand. We hypothesized that due to the lesser energy requirement of ammonium ()‐use, in contrast to nitrate ()‐use, more energy remains for other metabolic processes, especially under CO2‐ and phosphorus (Pi) limiting conditions. Therefore, we tested differences in cell characteristics of the green alga Chlamydomonas acidophila grown on or under covariation of CO2 and Pi‐supply in order to determine limitations, in a full‐factorial design. As expected, results revealed higher carbon fixation rates for ‐grown cells compared to growth with under low CO2 conditions. ‐grown cells accumulated more of the nine analyzed amino acids, especially under Pi‐limited conditions, compared to cells provided with . This is probably due to a slower protein synthesis in cells provided with . In contrast to our expectations, compared to ‐grown cells ‐grown cells had higher photosynthetic efficiency under Pi‐limitation. In conclusion, growth on the Ni‐source did not result in a clearly enhanced Ci‐assimilation, as it was highly dependent on Pi and CO2 conditions (replete or limited). Results are potentially connected to the fact that C. acidophila is able to use only CO2 as its inorganic carbon (Ci) source.  相似文献   

16.
The population structure of the mycophagous beetle Phalacrus substriatus is characterized by many small, local populations interconnected by migration over a small spatial scale (10 × 75 m2). Each local P. substriatus population has a relatively short expected persistence time, but persistence of the species occurs due to a balance between frequent local extinctions and recolonizations. This nonequilibrium population structure can have profound effects on how the genetic variation is structured between and within populations. Theoretical models have stated that the genetic differentiation among local populations will be enhanced relative to an island model at equilibrium if the number of colonizers is less than approximately twice the number of migrants among local populations. To study these effects, a set of 50 local P. substriatus populations were surveyed over a four-year period to record any naturally occurring extinctions and recolonizations. The per population colonization and extinction rate were 0.237 and 0.275, respectively. Mark-recapture techniques were used to estimate a number of demographic parameters: local population size (N = 11.1), migration rate , number of colonizers (k = 4.0), and the probability of common origin of colonizers (φ = 0.5). The theoretically predicted level of differentiation among local populations (measured as Wright's FST) was 0.070. Genetic data obtained from an electrophoretic survey of seven polymorphic loci gave an estimated degree of differentiation of 0.077. There was thus a good agreement between the empirical results and the theoretical predictions. Young populations had significantly higher levels of differentiation than old, more established populations . The extinction-recolonization dynamics resulted in an overall increase in the genetic differentiation among local populations by c. 40%. The global effective population size was also reduced by c. 55%. The results give clear evidence to how nonequilibrium processes shape the genetic structure of populations.  相似文献   

17.
The partial dominance model for the evolution of inbreeding depression predicts that tetraploids should exhibit less inbreeding depression than their diploid progenitors. We tested this prediction by comparing the magnitude of inbreeding depression in tetraploid and diploid populations of the herbaceous perennial Epilobium angustifolium (Onagraceae). Inbreeding depression was estimated in the greenhouse for three tetraploid and two diploid populations at four life stages. The mating system of a tetraploid population was estimated and compared to a previous estimate for diploids. Tetraploids showed less inbreeding depression than diploids at all life history stages, and these differences were significant for seed-set and cumulative fitness, but not for germination, survival, or plant dry mass at nine weeks. This result suggests that the genetic basis of inbreeding depression may differ among life stages. The primary selfing rate of the tetraploid population was r = 0.43, which is nearly identical to that of a diploid population (r = 0.45), indicating that differences in inbreeding depression between diploids and tetraploids are probably not due to differences in the mating system. Cumulative inbreeding depression, calculated from the four life history stages, was significantly higher for diploids () than for tetraploids (), supporting the partial dominance model of inbreeding depression.  相似文献   

18.
In most plants, constitutes the major source of nitrogen, and its assimilation into amino acids is mainly achieved in shoots. Furthermore, recent reports have revealed that reduction of translocation from roots to shoots is involved in plant acclimation to abiotic stress. NPF2.3, a member of the NAXT (nitrate excretion transporter) sub‐group of the NRT1/PTR family (NPF) from Arabidopsis, is expressed in root pericycle cells, where it is targeted to the plasma membrane. Transport assays using NPF2.3‐enriched Lactococcus lactis membranes showed that this protein is endowed with transport activity, displaying a strong selectivity for against Cl?. In response to salt stress, translocation to shoots is reduced, at least partly because expression of the root stele transporter gene NPF7.3 is decreased. In contrast, NPF2.3 expression was maintained under these conditions. A loss‐of‐function mutation in NPF2.3 resulted in decreased root‐to‐shoot translocation and reduced shoot content in plants grown under salt stress. Also, the mutant displayed impaired shoot biomass production when plants were grown under mild salt stress. These mutant phenotypes were dependent on the presence of Na+ in the external medium. Our data indicate that NPF2.3 is a constitutively expressed transporter whose contribution to translocation to the shoots is quantitatively and physiologically significant under salinity.  相似文献   

19.
Accurate estimates of heritability () are necessary to assess adaptive responses of populations and evolution of fitness‐related traits in changing environments. For plants, estimates generally rely on maternal progeny designs, assuming that offspring are either half‐sibs or unrelated. However, plant mating systems often depart from half‐sib assumptions, this can bias estimates. Here, we investigate how to accurately estimate in nonmodel species through the analysis of sibling designs with a moderate genotyping effort. We performed simulations to investigate how microsatellite marker information available for only a subset of offspring can improve estimates based on maternal progeny designs in the presence of nonrandom mating, inbreeding in the parental population or maternal effects. We compared the basic family method, considering or not adjustments based on average relatedness coefficients, and methods based on the animal model. The animal model was used with average relatedness information, or with hybrid relatedness information: associating one‐generation pedigree and family assumptions, or associating one‐generation pedigree and average relatedness coefficients. Our results highlighted that methods using marker‐based relatedness coefficients performed as well as pedigree‐based methods in the presence of nonrandom mating (i.e. unequal male reproductive contributions, selfing), offering promising prospects to investigate in situ heritabilities in natural populations. In the presence of maternal effects, only the use of pairwise relatednesses through pedigree information improved the accuracy of estimates. In that case, the amount of father‐related offspring in the sibling design is the most critical. Overall, we showed that the method using both one‐generation pedigree and average relatedness coefficients was the most robust to various ecological scenarios.  相似文献   

20.
Understanding how demographic processes influence mating systems is important to decode ecological influences on sexual selection in nature. We manipulated sex ratio and density in experimental populations of the sex‐role reversed pipefish Syngnathus typhle. We quantified sexual selection using the Bateman gradient (), the opportunity for selection (I), and sexual selection (Is), and the maximum standardized sexual selection differential (). We also measured selection on body length using standardized selection differentials (s′) and mating differentials (m′), and tested whether the observed I and Is differ from values obtained by simulating random mating. We found that I, Is, and , but not , were higher for females under female than male bias and the opposite for males, but density did not affect these measures. However, higher density decreased sexual selection (m′ but not s′) on female length, but selection on body length was not affected by sex ratio. Finally, Is but not I was higher than expected from random mating, and only for females under female bias. This study demonstrates that both sex ratio and density affect sexual selection and that disentangling interrelated demographic processes is essential to a more complete understanding of mating behavior and the evolution of mating systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号