首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
ABSTRACT.
  • 1 The female of the solitary bee Ceratina calcarata (Robertson) (Hymenoptera: Anthophoridae) excavates a tunnel in a pithy twig and then constructs and provisions a linear series of brood cells that make up her nest.
  • 2 Adult females are, on the average, 1.3 times heavier than the males, a significant difference (P<0.001). There is no difference between the sexes in the amount of weight gained per unit of larval food.
  • 3 Larger females occur because their provision masses are, on the average, 1.3 times heavier than male-producing provision masses, a significant difference (P<0.001).
  • 4 Because mothers invest more time and energy in their daughters, Fisher's theory predicts that they should produce more sons. When available resources are fewer in a given year as reflected in lighter provision masses, more males are produced during the year.
  • 5 The observed sex ratio did not differ significantly from the expected, calculated as mean female weight/mean male weight and was male-biased.
  • 6 Unlike species which nest in pre-formed tunnels, the sex of any brood cell except the innermost is random with respect to that cell's position in the nest and the tunnel's depth and diameter. The innermost position contained offspring with a female biased sex ratio (P<0.005).
  相似文献   

2.
As urbanization continues to increase, it is expected that two-thirds of the human population will reside in cities by 2050. Urbanization fragments and degrades natural landscapes, threatening wildlife including economically important species such as bees. In this study, we employ whole genome sequencing to characterize the population genetics, metagenome and microbiome, and environmental stressors of a common wild bee, Ceratina calcarata. Population genomic analyses revealed the presence of low genetic diversity and elevated levels of inbreeding. Through analyses of isolation by distance, resistance, and environment across urban landscapes, we found that green spaces including shrubs and scrub were the most optimal pathways for bee dispersal, and conservation efforts should focus on preserving these land traits to maintain high connectivity across sites for wild bees. Metagenomic analyses revealed landscape sites exhibiting urban heat island effects, such as high temperatures and development but low precipitation and green space, had the highest taxa alpha diversity across all domains even when isolating for potential pathogens. Notably, the integration of population and metagenomic data showed that reduced connectivity in urban areas is not only correlated with lower relatedness among individuals but is also associated with increased pathogen diversity, exposing vulnerable urban bees to more pathogens. Overall, our combined population and metagenomic approach found significant environmental variation in bee microbiomes and nutritional resources even in the absence of genetic differentiation, as well as enabled the potential early detection of stressors to bee health.  相似文献   

3.
4.
Viewed within a historical context, Asia has experienced dramatic land transformations, and currently more than 50% of Asian land area is under agriculture. The consequences of this transformation are manifold. Southeast Asia has the highest deforestation rate of any major tropical region. Many of the world’s large rivers and lakes in Asia have been heavily degraded. About 11 of 19 world megacities with more than 10 million inhabitants are in Asia. These land use activities have resulted in substantial negative ecological consequences, including increased anthropogenic CO2 emissions, deteriorated air and water quality, alteration of regional climate, an increase of disease and a loss of biodiversity. Although land use occurs at the local level, it has the potential to cause ecological impact across local, regional and global scales. Reducing the negative environmental impacts of land use change while maintaining economic viability and social acceptability is an major challenge for most developing countries in Asia.  相似文献   

5.
Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate‐only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species‐specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns.  相似文献   

6.
The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type. BB was reconstructed by means of 88 sedimentary charcoal records divided into six different site clusters. A statistical approach was used to explore the relative contribution of (a) pollen‐based mean July/summer temperature and mean annual precipitation reconstructions, (b) an independent model‐based scenario of past land use (LU), and (c) pollen‐based reconstructions of plant functional types (PFTs) on BB. Our hypotheses were tested with: (a) a west‐east northern boreal sector with changing climatic conditions and a homogeneous vegetation, and (b) a north‐south European boreal sector characterized by gradual variation in both climate and vegetation composition. The processes driving BB in boreal forests varied from one region to another during the Holocene. However, general trends in boreal biomass burning were primarily controlled by changes in climate (mean annual precipitation in Alaska, northern Quebec, and northern Fennoscandia, and mean July/summer temperature in central Canada and central Fennoscandia) and, secondarily, by fuel composition (BB positively correlated with the presence of boreal needleleaf evergreen trees in Alaska and in central and southern Fennoscandia). Land use played only a marginal role. A modification towards less flammable tree species (by promoting deciduous stands over fire‐prone conifers) could contribute to reduce circumboreal wildfire risk in future warmer periods.  相似文献   

7.
为了明确热带天然林转变为橡胶林和槟榔后土壤质量变化,揭示土地利用变化下植物群落功能性状对土壤质量影响。在海南中部山区,以原始林(PF)、次生林(SF)、槟榔(Areca catechu)林(AP)、纯橡胶(Hevea brasiliensis)林(RP)和橡胶益智(Alpinia oxyphylla)林(RAP)为对象,探索天然林退化后土壤性质和质量变化,分析了植物群落功能性状(凋落物量、郁闭度、根长密度、细根密度和比根长)对土壤质量影响。结果表明:1)与原始林相比,其他土地利用类型凋落物量、根长密度、细根密度、土壤总孔隙度、最大持水量、土壤有机碳和总氮显著降低,土壤容重显著增加。人工林土壤碱解氮明显降低,但总磷、总钾和缓效钾明显升高(P0.05)。2)与原始林相比,次生林、槟榔林、纯橡胶林和橡胶益智林土壤质量指数分别降低63.4%、85.8%、81.2%和84.1%,随原始林、次生林和人工林梯度土地利用强度的增加,土壤质量显著降低(P0.05),但人工林间土壤质量无显著差异。3)凋落物量、郁闭度、根长密度和细根密度均与土壤质量指数显著正相关(P0.05),细根密度对土壤质量的直接影响效应最大,凋落物间接影响效应最大。天然林转变为橡胶和槟榔林显著改变土壤性质和质量,群落性状细根密度和凋落物可较好解释土壤质量变化,强化人工林林下植被和凋落物管理有利于土壤质量改善。  相似文献   

8.
9.
李丽娟  张吉  吴丹  殷旭旺  徐宗学  张远 《生态学报》2017,37(20):6863-6874
研究河岸带土地利用方式对河流生物群落的影响对河岸带管理和河流生态系统修复至关重要。研究了太子河河岸带的土地利用类型(森林用地、森林耕作用地、耕地和城镇建设用地)和鱼类功能群的关系,结果表明:栖息地质量参数在不同土地利用类型内具有显著差异,森林用地区电导率、总溶解固体、淤泥和底质含沙量比例的平均值均较低,分别为(105.05μs/cm、80.38 mg/L、65.00 mL和0%),底质类型以石块为主;耕作区的水深、流量和淤泥的平均值均是最高(186.83 m、80.11 m~3和5333.33 mL),底质类型以沙质和淤泥为主。太子河流域鱼类功能群划分为5种类型(18个亚类),在不同土地利用类型内具有差异显著,森林用地内的鱼食性、石块栖功能群、昆虫食性和黏性卵功能群的比例最高;森林耕作用地内的植食性和底层栖功能群的比例最高;耕地内的沙栖功能群、中下层栖功能群和筑巢产卵功能群的比例最高;城镇建设用地内的淤泥栖功能群、耐污种、中下层栖功能群和杂食性功能群的比例最高。研究显示,栖息地评价得分高、栖境复杂的区域其个体数量较高,而栖息地得分低、底质类型以淤泥为主的区域其个体数量较低。  相似文献   

10.
11.
鄱阳湖流域作为较突出的碳汇功能区,深入掌握不同土地覆被碳素利用率(CUE)和水分利用效率(WUE)的时空分异规律及其对气候因子的响应,对明确气候变化背景下该流域生态功能和碳水循环有重要意义。利用MODIS数据产品,结合流域土地利用和气象监测数据,辅以趋势分析和相关分析等方法研究了2000-2014年鄱阳湖流域不同土地利用类型CUE和WUE的时空变化特征,并探讨了其与降水、气温和日照时数的相关性。结果表明:1)鄱阳湖流域CUE和WUE多年平均值分别为0.458和0.682 gC/kgH2O,不同土地利用类型的CUE大小依次为草地 > 水田 > 其他林地 > 旱地 > 疏林地 > 灌木林 > 有林地,WUE大小依次为有林地 > 灌木林 > 旱地 > 疏林地 > 水田 > 其他林地 > 草地;2)鄱阳湖流域CUE、WUE在研究时段内均呈微弱下降趋势,各土地利用类型CUE和WUE则表现出较大的年际波动,且年际变化趋势率具有高度的相似性,其中林地各类型下降趋势最大,其次是旱地和水田,草地最小;3)降水是影响鄱阳湖流域土地覆被碳水利用效率变化的关键因素,其他因子与CUE和WUE的相关性均不显著,不同覆被CUE和WUE对气温、降水和日照时数的响应程度存在较大差异。  相似文献   

12.
罗谷松  李涛 《生态学报》2019,39(13):4751-4760
土地利用效率是衡量区域经济社会系统运行质量的重要参数。在构建了考虑非期望产出的土地利用效率评价指标体系基础之上,综合运用Super SBM-undesirable DEA和多元统计等研究方法,分析了2003—2016年碳排放影响下的中国省域土地利用效率的时空特征及其影响因素。研究结果表明:中国区域土地利用效率处于中低水平,碳排放非期望产出降低了15%的土地利用效率水平;与全国发展水平空间格局一致,土地利用效率省际差异在空间上呈现出自东向西逐渐递减的分异特征;2003—2016年,土地利用效率演化呈现出"U"型演进特征,区域差异呈现收敛态势;不考虑非期望产出的土地利用效率水平呈现下降态势;非期望产出和能源消费投入过大成为土地利用效率提升的主要限制因素。经济发展水平、对外开放程度以及固定资产投资对土地利用效率的提升起到了显著的正向作用;现阶段城镇化水平的增加对土地利用效率的提升具有微弱促进作用,且仅在东部地区具有显著性。基于松弛变量冗余度和影响因素分析,针对不同区域土地利用效率低效的差异性因素,提出了相应的对策措施。  相似文献   

13.
14.
Aim To address the relative role of adjacent land use, distance to forest edge, forest size and their interactions on understorey plant species richness and composition in perimetropolitan forests. Location The metropolitan area of Barcelona, north‐eastern Spain. Methods Twenty sampling sites were distributed in two forest size‐categories: small forest patches (8–90 ha) and large forest areas (> 18,000 ha). For each forest‐size category, five sites were placed adjacent to crops and five sites adjacent to urban areas. Vascular plant species were recorded and human frequentation was scored visually in 210 10 × 10 m plots placed at 10, 50 and 100 m from the forest edge, and additionally at 500 m in large forest areas. Plant species were grouped according to their ecology and rarity categories. A nonmetric multidimensional scaling (NMS) ordination was carried out to detect patterns of variation in species assemblage, and to explore the relationships between these patterns and the richness of the species groups and the studied factors. Factorial anovas were used to test the significance of the studied factors on the richness of species groups. Relationships between human frequentation and the studied variables were assessed through contingency tables. Results Forest‐size category was the main factor affecting synanthropic species (i.e. those thriving in man‐made or man‐disturbed habitats). Synanthropic species richness decreased with increasing distance from the forest edge and, when forests were adjacent to crops, it was higher in small forest patches than in large forest areas. Richness of rare forest species was lower in small forest patches than in large forest areas when forests were adjacent to urban areas. Richness of common forest species and of all forest species together were higher close to the forest edge than far from it when forests were adjacent to urban areas. Forests adjacent to urban areas were more likely to experience high human frequentation, particularly in those plots nearest to the forest edge. Main conclusions Forest‐size category and adjacent land use were the most important factors determining species richness and composition. The preservation of large forests adjacent to crops in peri‐urban areas is recommended, because they are less frequented by humans, are better buffered against the percolation of nonforest species and could favour the persistence of rare forest species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号