首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the most important questions in ecology is the relative importance of local conditions (niche processes) and dispersal ability (neutral processes) in driving metacommunity structure. Although many studies have been conducted in recent years, there is still much debate. We evaluated the processes (niche and neutral) responsible for variation in anuran composition in 28 lentic water bodies in southeastern Brazil. Because anurans depend heavily on environmental conditions, we hypothesized that environmental variables (niche processes) are the most important drivers of community composition. Additionally, as anurans have limited dispersal abilities, and the study region presents harsh conditions (high forest fragmentation, low rainfall and long dry season), we expected a lower, but significant, spatial signature in metacommunity structure, due to neutral dynamics. We used a partial redundancy analysis with variation partitioning to evaluate the relative influence of environmental and spatial variables as drivers of metacommunity structure. Additionally, we used a recently developed spatial autocorrelation analysis to test if neutral dynamics can be attributed to the pure spatial component. This analysis is based on predictions that species abundances are independent but similarly spatially structured, with correlograms similar in shape. Therefore, under neutral dynamics there is no expectation of a correlation between the pairwise distance of spatial correlograms and the pairwise correlation of species abundances predicted by the pure spatial component. We found that the environmental component explained 21.5%, the spatial component 10.2%, and the shared component 6.4% of the metacommunity structure. We found no correlation between correlograms and correlation of abundances predicted by the pure spatial component (Mantel test = ?0.109, P = 0.961). In our study, niche‐based processes are the dominant process that explained community composition. However, neutral processes are important because spatial variation can be attributed to pure neutral dynamics rather than to missing spatially structured environmental factors.  相似文献   

2.
The cichlid family features some of the most spectacular examples of adaptive radiation. Evolutionary studies have highlighted the importance of both trophic adaptation and sexual selection in cichlid speciation. However, it is poorly understood what processes drive the composition and diversity of local cichlid species assemblages on relatively short, ecological timescales. Here, we investigate the relative importance of niche‐based and neutral processes in determining the composition and diversity of cichlid communities inhabiting various environmental conditions in the littoral zone of Lake Tanganyika, Zambia. We collected data on cichlid abundance, morphometrics, and local environments. We analyzed relationships between mean trait values, community composition, and environmental variation, and used a recently developed modeling technique (STEPCAM) to estimate the contributions of niche‐based and neutral processes to community assembly. Contrary to our expectations, our results show that stochastic processes, and not niche‐based processes, were responsible for the majority of cichlid community assembly. We also found that the relative importance of niche‐based and neutral processes was constant across environments. However, we found significant relationships between environmental variation, community trait means, and community composition. These relationships were caused by niche‐based processes, as they disappeared in simulated, purely neutrally assembled communities. Importantly, these results can potentially reconcile seemingly contrasting findings in the literature about the importance of either niche‐based or neutral‐based processes in community assembly, as we show that significant trait relationships can already be found in nearly (but not completely) neutrally assembled communities; that is, even a small deviation from neutrality can have major effects on community patterns.  相似文献   

3.
Rocks of the Ediacaran System (635–541 Ma) preserve fossil evidence of some of the earliest complex macroscopic organisms, many of which have been interpreted as animals. However, the unusual morphologies of some of these organisms have made it difficult to resolve their biological relationships to modern metazoan groups. Alternative competing phylogenetic interpretations have been proposed for Ediacaran taxa, including algae, fungi, lichens, rhizoid protists, and even an extinct higher‐order group (Vendobionta). If a metazoan affinity can be demonstrated for these organisms, as advocated by many researchers, they could prove informative in debates concerning the evolution of the metazoan body axis, the making and breaking of axial symmetries, and the appearance of a metameric body plan. Attempts to decipher members of the enigmatic Ediacaran macrobiota have largely involved study of morphology: comparative analysis of their developmental phases has received little attention. Here we present what is known of ontogeny across the three iconic Ediacaran taxa Charnia masoni, Dickinsonia costata and Pteridinium simplex, together with new ontogenetic data and insights. We use these data and interpretations to re‐evaluate the phylogenetic position of the broader Ediacaran morphogroups to which these taxa are considered to belong (rangeomorphs, dickinsoniomorphs and erniettomorphs). We conclude, based on the available evidence, that the affinities of the rangeomorphs and the dickinsoniomorphs lie within Metazoa.  相似文献   

4.
This study utilized individual senesced sugar maple and beech leaves as natural sampling units within which to quantify saprotrophic fungal diversity. Quantifying communities in individual leaves allowed us to determine if fungi display a classic taxa–area relationship (species richness increasing with area). We found a significant taxa–area relationship for sugar maple leaves, but not beech leaves, consistent with Wright's species‐energy theory. This suggests that energy availability as affected plant biochemistry is a key factor regulating the scaling relationships of fungal diversity. We also compared taxa rank abundance distributions to models associated with niche or neutral theories of community assembly, and tested the influence of leaf type as an environmental niche factor controlling fungal community composition. Among rank abundance distribution models, the zero‐sum model derived from neutral theory showed the best fit to our data. Leaf type explained only 5% of the variability in community composition. Habitat (vernal pool, upland or riparian forest floor) and site of collection explained > 40%, but could be attributed to either niche or neutral processes. Hence, although niche dynamics may regulate fungal communities at the habitat scale, our evidence points towards neutral assembly of saprotrophic fungi on individual leaves, with energy availability constraining the taxa–area relationship.  相似文献   

5.
Oceanic oxygenation events in the anoxic Ediacaran ocean   总被引:1,自引:0,他引:1       下载免费PDF全文
The ocean‐atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising fundamental debates about the timing of ocean oxygenation, its purported unidirectional rise, and its causal relationship, if any, with the evolution of early animal life. To better understand the Ediacaran ocean redox evolution, we have conducted a multi‐proxy paleoredox study of a relatively continuous, deep‐water section in South China that was paleogeographically connected with the open ocean. Iron speciation and pyrite morphology indicate locally euxinic (anoxic and sulfidic) environments throughout the Ediacaran in this section. In the same rocks, redox sensitive element enrichments and sulfur isotope data provide evidence for multiple oceanic oxygenation events (OOEs) in a predominantly anoxic global Ediacaran–early Cambrian ocean. This dynamic redox landscape contrasts with a recent view of a redox‐static Ediacaran ocean without significant change in oxygen content. The duration of the Ediacaran OOEs may be comparable to those of the oceanic anoxic events (OAEs) in otherwise well‐oxygenated Phanerozoic oceans. Anoxic events caused mass extinctions followed by fast recovery in biologically diversified Phanerozoic oceans. In contrast, oxygenation events in otherwise ecologically monotonous anoxic Ediacaran–early Cambrian oceans may have stimulated biotic innovations followed by prolonged evolutionary stasis.  相似文献   

6.
SUMMARY Dickinsonia is one of the most recognizable forms in the Ediacaran fauna, but its phylogenetic position has been contentious, and it has been placed in almost every kingdom of life. Here, it is hypothesized that the affinities of Dickinsonia lie with the Placozoa (Metazoa), an understudied phylum that is widespread in tropical seas worldwide. Modern placozoans show obvious differences in size and axial organization compared with Dickinsonia, but these differences can be accounted for by the stem‐group/crown‐group distinction. The affinity with placozoans is evidenced primarily by the unique feeding mode of Dickinsonia, which is demonstrated by a series of feeding traces. These traces indicate that Dickinsonia moved over the Ediacaran matgrounds, and digested the mat using its entire lower sole. The ability of Dickinsonia to move negates an algal, fungal, or sponge affinity, while the feeding mode, external digestion with a ventral sole, rules out placement within any sponge or eumetazoan lineage. The only organisms that both move and feed in this manner are placozoans. Recent molecular phylogenetic studies have demonstrated that placozoans lie above sponges but below Eumetazoa. We hypothesize that Dickinsonia and other externally digesting Ediacaran forms are either stem‐placozoans, or a series of extinct lineages above sponges and below eumetazoans on the metazoan tree. We discuss the potential evolutionary transitions between the main metazoan feeding modes in the context of the emerging molecular phylogeny, and suggest that aspects of the sponge and placozoan feeding strategies are relicts of nonuniformitarian Proterozoic ocean conditions.  相似文献   

7.
1. Occupancy frequency distributions (OFDs) are one means to study species distribution patterns, allowing the delineation of rare and common species. Very few studies have deconstructed entire assemblages by ecological or biological characteristics and subsequently examined OFDs in subgroups of species. 2. The effect of deconstruction of entire assemblages by niche breadth, niche position or body size classes on OFDs in stream insects in three drainage basins was examined. It was hypothesized that OFDs should not vary between different drainage basins, but they should be affected by deconstruction into different niche breadth, niche position or body size classes. 3. The OFDs were typically strongly right‐skewed in all drainage basins. The set of small‐sized species was strongly dominated by rare species, whereas the importance of rare species decreased with increasing body size. Further, while the OFDs of sets of species with marginal niche position or small niche breadth were strongly dominated by rare species, those of species with non‐marginal niche position or large niche breadth showed highly variable degrees of occupancy. The OFDs of non‐marginal species were even uniform in the entire data and one drainage basin, providing partial support to the a priori hypothesis. 4. Niche‐based explanations are likely to account for occupancies of marginal and small‐niched species, whereas the distributions of non‐marginal and broad‐niched species may be not only affected by niche‐based mechanisms but also by spatial dynamics. Deconstruction of OFDs by ecological and biological traits thus showed that the patterns may vary between different subgroups of species.  相似文献   

8.
The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the ‘Cambrian explosion’, is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so‐called ‘Ediacaran’ taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total‐group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran–Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat‐dominated substrates that the enigmatic Ediacaran taxa were associated with, the so‐called ‘Cambrian substrate revolution’, leading to the loss of almost all Ediacara‐aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late‐Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world of the Cambrian. The Ediacaran biota thus played an enabling role in bilaterian evolution similar to that proposed for the Savannah environment for human evolution and bipedality. Rather than being obliterated by the rise of the bilaterians, the subtle remnants of Ediacara‐style taxa within the Cambrian suggest that they remained significant components of Phanerozoic communities, even though at some point their enabling role for bilaterian evolution was presumably taken over by bilaterians or other metazoans. Bilaterian evolution was thus an essentially benthic event that only later impacted the planktonic environment and the style of organic export to the sea floor.  相似文献   

9.
Niche‐based selection and stochastic processes can operate simultaneously to generate spatial and temporal variation in species composition. Yet, the conditions under which ecological dynamics are dominated by niche‐based versus stochastic processes are poorly understood. Using a field experiment in early‐successional temperate grassland and null models of beta diversity, this study investigates the effects of soil nutrient supply on the relative importance of niche‐based selection versus stochastic dynamics for variation in species composition among sites. Nutrient availability was manipulated experimentally, individual seed mixtures with 25 species were sown in each experimental plot, and then stochastic and deterministic niche‐based assembly processes were allowed to happen. We found that compositional variation among grassland plots with low nutrient supply was driven by stochastic immigration and extinctions. In contrast, nutrient enrichment reduced the importance of stochasticity and imposed a deterministic environmental filter that homogenized communities through the selection of few species with greater competitive ability for light. This demonstrates that soil nutrient availability is a critical environmental feature that dictates the degree to which terrestrial plant communities are controlled by niche‐based selection versus stochastic assembly processes. Our study shows further that alternative states of eutrophic grasslands emerge from initial stochastic variation in the composition of a particular functional group of species that can become dominant at high nutrient supply. We discuss potential mechanisms underlying the shift from stochastic to niche‐driven dynamics along soil nutrient gradients.  相似文献   

10.
1.  Ecologists have identified two types of processes promoting species coexistence: stabilizing mechanisms (niche differentiation and related processes) that increase negative intraspecific interactions relative to negative interspecific interactions, and equalizing mechanisms (neutrality) that minimize the differences in species' demographic parameters. It has been theoretically and empirically shown that the two types of mechanisms can operate simultaneously; however, their relative importance remains unstudied although this is a key question in the synthesis of niche and neutral theories.
2.  We experimentally quantified the relative importance of niche and neutral mechanisms in promoting phenotypic diversity in a model microbial system involving different phenotypes of the bacterium Pseudomonas fluorescens . Initially isogenic populations of the bacterium can diversify into a series of major and minor classes of phenotypes that can be treated as analogues of species. We estimated the relative population growth rate when rare of 32 phenotypes from six replicate microcosms. Each phenotype was assessed in a re-assembled microcosm in which the relative densities of all phenotypes remained the same except for the focal one which was reduced in frequency. A growth rate advantage when rare was considered evidence of non-neutral processes.
3.  Approximately one-third of the phenotypes had a growth rate advantage when rare while the remaining two-thirds showed neutral or near-neutral dynamics. Furthermore, there was overall little evidence that productivity increased with phenotypic diversity.
4.  Our results suggest that niche and neutral processes may simultaneously contribute to the maintenance of biodiversity, with the latter playing a more important role in our system, and that the operation of niche mechanisms does not necessarily lead to a positive biodiversity effect on ecosystem properties.  相似文献   

11.
Unravelling the timing of the metazoan radiation is crucial for elucidating the macroevolutionary processes associated with the Cambrian explosion. Because estimates of metazoan divergence times derived from molecular clocks range from quite shallow (Ediacaran) to very deep (Mesoproterozoic), it has been difficult to ascertain whether there is concordance or quite dramatic discordance between the genetic and geological fossil records. Here, we show using a range of molecular clock methods that the major pulse of metazoan divergence times was during the Ediacaran, which is consistent with a synoptic reading of the Ediacaran macrobiota. These estimates are robust to changes in priors, and are returned with or without the inclusion of a palaeontologically derived maximal calibration point. Therefore, the two historical records of life both suggest that although the cradle of Metazoa lies in the Cryogenian, and despite the explosion of ecology that occurs in the Cambrian, it is the emergence of bilaterian taxa in the Ediacaran that sets the tempo and mode of macroevolution for the remainder of geological time.  相似文献   

12.
Macroscopic impression fossils from the Xingmincun Formation of the Jinxian Group, Liaoning Province of northeastern China, are identified as members of the Aspidella plexus of Ediacaran age. This is the first recognition of the taxon in the Liaoning Province, although such fossils have been previously recorded in the succession, but were referred to as new species and relegated to an earlier Neoproterozoic age. A revision of the taxonomic interpretation and relative age estimation of the previous record is provided, as well as an evaluation of abiotic vs. biotic processes that could produce similar structures to studied impressions. The mode of preservation of the fossils is considered from a biochemical point of view and along with the properties of organic matter in the integument of soft‐bodied metazoans. The selective preservation of the Ediacaran organisms, including metazoans, as impressions (moulds and casts) against the organically preserved contemporaneous cyanobacterial and algal microfossils, and an exceptionally small number of terminal Ediacaran metazoan fossils (Sabellidites, Conotubus and Shaanxilithes), demonstrates the non‐resistant characteristics and the very different biochemical constitution of the Ediacaran metazoans compared with those that evolved in the Cambrian and after. The refractory biomacromolecules in cell walls of photosynthesizing microbiota (bacterans, cutans, algaenan and sporopollenin groups) and in the chitinous body walls of Sabellidites contrast sharply with the labile biopolymers in Ediacaran metazoans known only from impressions. The newly emerging biosynthesis of resistant biopolymers in metazoans (chitin and collagen groups) initiated by the annelids at the end of Ediacaran and fully evolved in Cambrian metazoans, considered with the ability to biomineralize, made their body preservation possible. The Chengjiang and Burgess Shale metazoans show evidence of this new biochemistry in body walls and cuticles, and not only because of the specific taphonomic window that enhanced their preservation.  相似文献   

13.
Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral–niche community dynamics. The neutral–niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology.  相似文献   

14.
Despite decades of study, the relative importance of niche‐based versus neutral processes in community assembly remains largely ambiguous. Recent work suggests niche‐based processes are more easily detectable at coarser spatial scales, while neutrality dominates at finer scales. Analyses of functional traits with multi‐year multi‐site biodiversity inventories may provide deeper insights into assembly processes and the effects of spatial scale. We examined associations between community composition, species functional traits, and environmental conditions for plant communities in the Kouga‐Baviaanskloof region, an area within South Africa's Cape Floristic Region (CFR) containing high α and β diversity. This region contains strong climatic gradients and topographic heterogeneity, and is comprised of distinct vegetation classes with varying fire histories, making it an ideal location to assess the role of niche‐based environmental filtering on community composition by examining how traits vary with environment. We combined functional trait measurements for over 300 species with observations from vegetation surveys carried out in 1991/1992 and repeated in 2011/2012. We applied redundancy analysis, quantile regression, and null model tests to examine trends in species turnover and functional traits along environmental gradients in space and through time. Functional trait values were weakly associated with most spatial environmental gradients and only showed trends with respect to vegetation class and time since fire. However, survey plots showed greater compositional and functional stability through time than expected based on null models. Taken together, we found clear evidence for functional distinctions between vegetation classes, suggesting strong environmental filtering at this scale, most likely driven by fire dynamics. In contrast, there was little evidence of filtering effects along environmental gradients within vegetation classes, suggesting that assembly processes are largely neutral at this scale, likely the result of very high functional redundancy among species in the regional species pool.  相似文献   

15.
One of the most popular approaches for investigating the roles of niche and neutral processes driving metacommunity patterns consists of partitioning variation in species data into environmental and spatial components. The logic is that the distance decay of similarity in communities is expected under neutral models. However, because environmental variation is often spatially structured, the decay could also be attributed to environmental factors that are missing from the analysis. Here, we use a spatial autocorrelation analysis protocol, previously developed to detect isolation‐by‐distance in allele frequencies, to evaluate patterns of species abundances under neutral dynamics. We show that this protocol can be linked with variation partitioning analyses. Moreover, in an attempt to test the neutral model, we derive three predictions to be applied both to original species abundances and to abundances predicted by a pure spatial model species abundances will be uncorrelated; Moran's I correlograms will reveal similar short‐distance autocorrelation patterns; an increasing degree of non‐neutrality will tend to generate patterns of correlation among abundances within groups of species with similar correlograms (i.e. within species with neutral and non‐neutral dynamics). We illustrate our protocol by analyzing spatial patterns in abundance of 28 terrestrially breeding anuran species from Central Amazonia. We recommend that researchers should investigate spatial autocorrelation patterns of abundances predicted by pure spatial models to identify similar patterns of spatial autocorrelation at short distances and lack of correlation between species abundances. Therefore, the hypothesis that spatial patterns in abundances are primarily due to pure neutral dynamics (rather than to missing spatiallystructured environmental factors) can be confirmed after taking environmental variables into account.  相似文献   

16.
Namacalathus hermanastes is one of the oldest known skeletal metazoans, found in carbonate settings of the terminal Ediacaran (~550–541 million years ago [Ma]). The palaeoecology of this widespread, goblet‐shaped, benthic organism is poorly constrained yet critical for understanding the dynamics of the earliest metazoan communities. Analysis of in situ assemblages from the Nama Group, Namibia (~548–541 Ma), shows that Namacalathus exhibited size variation in response to differing water depths, hydrodynamic conditions and substrate types. In low‐energy, inner ramp environments, Namacalathus attains the largest average sizes but grew in transient, loosely aggregating, monospecific aggregations attached to microbial mats. In high‐energy mid‐ramp reefs, Namacalathus spatially segregated into different palaeoecological habitats with distinct size distributions. In outer ramp environments, individuals were small and formed patchy, dense, monospecific aggregations attached to thin microbial mats. Asexual budding is common in all settings. We infer that variations in size distribution in Namacalathus reflect differences in habitat heterogeneity and stability, including the longevity of mechanically stable substrates and oxic conditions. In the Nama Group, long‐lived skeletal metazoan communities developed within topographically heterogeneous mid‐ramp reefs, which provided diverse mechanically stable microbial substrates in persistently oxic waters, while inner and outer ramp communities were often ephemeral, developing during fleeting episodes of either oxia and/or substrate stability. We conclude that Namacalathus, which forms a component of these communities in the Nama Group, was a generalist that adapted to various palaeoecological habitats within a heterogeneous ecosystem landscape where favourable conditions persisted, and was also able to opportunistically colonise transiently hospitable environments. These early skeletal metazoans colonised previously unoccupied substrates in thrombolitic reefs and other microbial carbonate settings, and while they experienced relatively low levels of interspecific competition, they were nonetheless adapted to the diverse environments and highly dynamic redox conditions present in the terminal Ediacaran.  相似文献   

17.
The first animals appear during the late Ediacaran (572 to 541 Ma); an initial diversity increase was followed reduction in diversity, often interpreted as catastrophic mass extinction. We investigate Ediacaran ecosystem structure changes over this time period using the “Elements of Metacommunity Structure” framework to assess whether this diversity reduction in the Nama was likely caused by an external mass extinction, or internal metacommunity restructuring. The oldest metacommunity was characterised by taxa with wide environmental tolerances, and limited specialisation or intertaxa associations. Structuring increased in the second oldest metacommunity, with groups of taxa sharing synchronous responses to environmental gradients, aggregating into distinct communities. This pattern strengthened in the youngest metacommunity, with communities showing strong environmental segregation and depth structure. Thus, metacommunity structure increased in complexity, with increased specialisation and resulting in competitive exclusion, not a catastrophic environmental disaster, leading to diversity loss in the terminal Ediacaran. These results reveal that the complex eco-evolutionary dynamics associated with Cambrian diversification were established in the Ediacaran.

This study shows that the eco-evolutionary dynamics of metazoan diversification known from the Cambrian Period started earlier in the Ediacaran Period with the Avalon assemblage and increased in complexity towards the Phanerozoic as new anatomical innovations appeared, culminating in the “Cambrian Explosion."  相似文献   

18.
Yayoi Takeuchi  Hideki Innan 《Oikos》2015,124(9):1203-1214
Understanding the processes that underlie species diversity and abundance in a community is a fundamental issue in community ecology. While the species abundance distributions (SADs) of various natural communities may be well explained by Hubbell's neutral model, it has been repeatedly pointed out that Hubbell's SAD‐fitting approach lacks the ability to detect the effects of non‐neutral factors such as niche differentiation; however, our understanding of its quantitative effect is limited. Herein, we conducted extensive simulations to quantitatively evaluate the performance of the SAD‐fitting method and other recently developed tests. For simulations, we developed a niche model that incorporates the random stochastic demography of individuals and the nonrandom replacements of those individuals, i.e. niche differentiation. It therefore allows us to explore situations with various degrees of niche differentiation. We found that niche differentiation has strong effects on SADs and the number of species in the community under this model. We then examined the performance of these neutrality tests, including Hubbell's SAD‐fitting method, using extensive simulations. It was demonstrated that all these tests have relatively poor performance except for the cases with very strong niche structure, which is in accordance with previous studies. This is likely because two important parameters in Hubbell's model are usually unknown and are commonly estimated from the data to be tested. To demonstrate this point, we showed that the precise estimation of the two parameters substantially improved the performance of these neutrality tests, indicating that poor performance can be owed to overfitting Hubbell's neutral model with unrealistic parameters. Our results therefore emphasize the importance of accurate parameter estimation, which should be obtained from data independent of the local community to be tested.  相似文献   

19.
To understand controls over biodiversity, it is necessary to take a multi‐scale approach to understand how local and regional factors affect the community assembly processes that drive emergent patterns. This need is reflected in the growing use of the metacommunity concept to interpret multi‐scale measures of biodiversity, including metrics derived from diversity partitioning (e.g. α, β and γ diversity) and variation partitioning (e.g. spatial and environmental components of compositional turnover) techniques. However, studies have shown limited success using these metrics to characterize underlying community assembly dynamics. Here we demonstrate how a metacommunity simulation package (MCSim) can be used to evaluate when and how biodiversity metrics can be used to make inferences about metacommunity characteristics. We examined a wide range of parameter settings representing ecologically relevant scenarios. We used artificial neural networks (ANNs) to assess the sensitivity of diversity and variation partitioning metrics (calculated from simulation outcomes) to metacommunity parameter settings. In the scenarios examined in this study, the niche‐neutral gradient strongly influenced most biodiversity metrics, metacommunity size exhibited a marginal influence over some metrics, and dispersal dynamics only affected a subset of variation partitioning outcomes. Variation partitioning response curves along the niche‐neutral gradient were not monotonic; however, simulation outcomes suggest other biodiversity metrics (e.g. dissimilarity saturation) can be used in combination with variation partitioning metrics to make inferences about metacommunity properties. With the growing availability of archived ecological data, we expect future work will apply simulation‐based techniques to better understand links between biodiversity and the metacommunity characteristics that are presumed to control the underlying community assembly processes.  相似文献   

20.
A theoretical dichotomy in community ecology distinguishes between mechanisms that stabilize species coexistence and those that cause neutral drift. Stable coexistence is predicted to occur in communities where competing species have niche-partitioning mechanisms that reduce interspecific competition. Neutral communities are predicted to be structured by stochastic processes that are not influenced by species identity, but that may be influenced by priority effects and dispersal limitation. Recent developments have suggested that neutral interactions may be more common at local scales, while niche structuring may be more common at larger scales. We tested for mechanisms that could promote either stable coexistence or neutral drift in a bromeliad-dwelling mosquito community by evaluating A) if a hypothesized within-bromeliad niche partitioning mechanism occurs in the community, B) if this mechanism correlates with local species co-occurrence patterns, and C) if patterns of coexistence at the larger (metacommunity) scale were consistent with those at the local scale. We found that mosquitoes in this community do partition space within containers, and that species with the strongest potential for competition co-occurred least. Species with overlapping spatial niches minimized co-occurrence by specialising in bromeliads of differing sizes, effectively changing the scale at which they coexist. In contrast, we found no evidence to support neutral dynamics in mosquito communities at either scale. In this community, a niche-based mechanism that is predicted to stabilize species coexistence explains co-occurrence patterns within and among bromeliads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号