首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
RNA editing by adenosine deaminases acting on RNAs (ADARs) can be both specific and non-specific, depending on the substrate. Specific editing of particular adenosines may depend on the overall sequence and structural context. However, the detailed mechanisms underlying these preferences are not fully understood. Here, we show that duplex structures mimicking an editing site in the Gabra3 pre-mRNA unexpectedly fail to support RNA editing at the Gabra3 I/M site, although phylogenetic analysis suggest an evolutionarily conserved duplex structure essential for efficient RNA editing. These unusual results led us to revisit the structural requirement for this editing by mutagenesis analysis. In vivo nuclear injection experiments of mutated editing substrates demonstrate that a non-conserved structure is a determinant for editing. This structure contains bulges either on the same or the strand opposing the edited adenosine. The position of these bulges and the distance to the edited base regulate editing. Moreover, elevated folding temperature can lead to a switch in RNA editing suggesting an RNA structural change. Our results indicate the importance of RNA tertiary structure in determining RNA editing.  相似文献   

4.
Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.  相似文献   

5.
RNA editing by adenosine deaminases generates RNA and protein diversity   总被引:8,自引:0,他引:8  
Schaub M  Keller W 《Biochimie》2002,84(8):791-803
  相似文献   

6.
Stephens OM  Yi-Brunozzi HY  Beal PA 《Biochemistry》2000,39(40):12243-12251
ADARs are adenosine deaminases responsible for RNA editing reactions that occur in eukaryotic pre-mRNAs, including the pre-mRNAs of glutamate and serotonin receptors. Here we describe the generation and analysis of synthetic ADAR2 substrates that differ in structure around an RNA editing site. We find that five base pairs of duplex secondary structure 5' to the editing site increase the single turnover rate constant for deamination 17-39-fold when compared to substrates lacking this structure. ADAR2 deaminates an adenosine in the sequence context of a natural editing site >90-fold more rapidly and to a higher yield than an adjacent adenosine in the same RNA structure. This reactivity is minimally dependent on the base pairing partner of the edited nucleotide; adenosine at the editing site in the naturally occurring A.C mismatch is deaminated to approximately the same extent and only 4 times faster than adenosine in an A.U base pair at this site. A steady-state rate analysis at a saturating concentration of the most rapidly processed substrate indicates that product formation is linear with time through at least three turnovers with a slope of 13 +/- 1.5 nM.min(-1) at 30 nM ADAR2 for a k(ss) = 0.43 +/- 0.05 min(-1). In addition, ADAR2 induces a 3.3-fold enhancement in fluorescence intensity and a 14 nm blue shift in the emission maximum of a duplex substrate with 2-aminopurine located at the editing site, consistent with a mechanism whereby ADAR2 flips the reactive nucleotide out of the double helix prior to deamination.  相似文献   

7.
8.
RNA editing at adenosine 1012 (amber/W site) in the antigenomic RNA of hepatitis delta virus (HDV) allows two essential forms of the viral protein, hepatitis delta antigen (HDAg), to be synthesized from a single open reading frame. Editing at the amber/W site is thought to be catalyzed by one of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). In vitro, the enzymes ADAR1 and ADAR2 deaminate adenosines within many different sequences of base-paired RNA. Since promiscuous deamination could compromise the viability of HDV, we wondered if additional deamination events occurred within the highly base paired HDV RNA. By sequencing cDNAs derived from HDV RNA from transfected Huh-7 cells, we determined that the RNA was not extensively modified at other adenosines. Approximately 0.16 to 0.32 adenosines were modified per antigenome during 6 to 13 days posttransfection. Interestingly, all observed non-amber/W adenosine modifications, which occurred mostly at positions that are highly conserved among naturally occurring HDV isolates, were found in RNAs that were also modified at the amber/W site. Such coordinate modification likely limits potential deleterious effects of promiscuous editing. Neither viral replication nor HDAg was required for the highly specific editing observed in cells. However, HDAg was found to suppress editing at the amber/W site when expressed at levels similar to those found during HDV replication. These data suggest HDAg may regulate amber/W site editing during virus replication.  相似文献   

9.
10.
Adenosine deaminases acting on RNA (ADAR1 and ADAR2) are human RNA-editing adenosine deaminases responsible for the conversion of adenosine to inosine at specific locations in cellular RNAs. Since inosine is recognized during translation as guanosine, this often results in the expression of protein sequences different from those encoded in the genome. While our knowledge of the ADAR2 structure and catalytic mechanism has grown over the years, our knowledge of ADAR1 has lagged. This is due, at least in part, to the lack of well defined, small RNA substrates useful for mechanistic studies of ADAR1. Here, we describe an ADAR1 substrate RNA that can be prepared by a combination of chemical synthesis and enzymatic ligation. Incorporation of adenosine analogs into this RNA and analysis of the rate of ADAR1 catalyzed deamination revealed similarities and differences in the way the ADARs recognize the edited nucleotide. Importantly, ADAR1 is more dependent than ADAR2 on the presence of N7 in the edited base. This difference between ADAR1 and ADAR2 appears to be dependent on the identity of a single amino acid residue near the active site. Thus, this work provides an important starting point in defining mechanistic differences between two functionally distinct human RNA editing ADARs.  相似文献   

11.
12.
Specific cleavage of hyper-edited dsRNAs   总被引:2,自引:0,他引:2  
Scadden AD  Smith CW 《The EMBO journal》2001,20(15):4243-4252
Extended double-stranded DNA (dsRNA) duplexes can be hyper-edited by adenosine deaminases that act on RNA (ADARs). Long uninterrupted dsRNA is relatively uncommon in cells, and is frequently associated with infection by DNA or RNA viruses. Moreover, extensive adenosine to inosine editing has been reported for various viruses. A number of cellular antiviral defence strategies are stimulated by dsRNA. An additional mechanism to remove dsRNA from cells may involve hyper-editing of dsRNA by ADARs, followed by targeted cleavage. We describe here a cytoplasmic endonuclease activity that specifically cleaves hyper-edited dsRNA. Cleavage occurs at specific sites consisting of alternating IU and UI base pairs. In contrast, unmodified dsRNA and even deaminated dsRNAs that contain four consecutive IU base pairs are not cleaved. Moreover, dsRNAs in which alternating IU and UI base pairs are replaced by isomorphic GU and UG base pairs are not cleaved. Thus, the cleavage of deaminated dsRNA appears to require an RNA structure that is unique to hyper-edited RNA, providing a molecular target for the disposal of hyper-edited viral RNA.  相似文献   

13.
14.
15.
ADARs are adenosine deaminases responsible for RNA-editing reactions that occur within duplex RNA. Currently little is known regarding the nature of the protein-RNA interactions that lead to site-selective adenosine deamination. We previously reported that ADAR2 induced changes in 2-aminopurine fluorescence of a modified substrate, consistent with a base-flipping mechanism. Additional data have been obtained using full-length ADAR2 and a protein comprising only the RNA binding domain (RBD) of ADAR2. The increase in 2-aminopurine fluorescence is specific to the editing site and dependent on the presence of the catalytic domain. Hydroxyl radical footprinting demonstrates that the RBD protects a region of the RNA duplex around the editing site, suggesting a significant role for the RBD in identifying potential ADAR2 editing sites. Nucleotides near the editing site on the non-edited strand become hypersensitive to hydrolytic cleavage upon binding of ADAR2 RBD. Therefore, the RBD may assist base flipping by increasing the conformational flexibility of nucleotides in the duplex adjacent to its binding site. In addition, an increase in tryptophan fluorescence is observed when ADAR2 binds duplex RNA, suggesting a conformational change in the catalytic domain of the enzyme. Furthermore, acrylamide quenching experiments indicate that RNA binding creates heterogeneity in the solvent accessibility of ADAR2 tryptophan residues, with one out of five tryptophans more solvent-accessible in the ADAR2.RNA complex.  相似文献   

16.
RNA编辑是RNA转录过程中序列变化而引起的一种基因动态调控机制。腺苷脱氨酶(adenosine deaminases acting on RNA, ADAR)参与RNA编辑,将双链RNA中腺苷残基(A)转化为肌苷(I),接着被转录和拼接成鸟苷(G)。由ADAR催化,作用于RNA的A-I型RNA编辑是人类最常见的转录后修饰。近年来,这种修饰不仅存在于编码RNA中,在非编码RNA(noncoding RNA, ncRNA)中也逐渐被发现,如microRNA(miRNA)、小分子干扰RNA(siRNA)、转运RNA(tRNA)和长链非编码RNA(lncRNA)。这种修饰可能通过对microRNA和mRNA之间结合位点创造或破坏,进而影响ncRNA的生物起源、稳定性和靶向识别功能。目前,对这种生物现象的机制及ADAR底物,尤其是在ncRNA中的特性仍然没有得到充分的认识。主要对哺乳动物中ncRNA上的RNA编辑进行总结,并列举一些阐明其生物学功能的计算方法。  相似文献   

17.
18.
ADAR enzymes, adenosine deaminases that act on RNA, form a family of RNA editing enzymes that convert adenosine to inosine within RNA that is completely or largely double-stranded. Site-selective A→I editing has been detected at specific sites within a few structured pre-mRNAs of metazoans. We have analyzed the editing selectivity of ADAR enzymes and have chosen to study the naturally edited R/G site in the pre-mRNA of the glutamate receptor subunit B (GluR-B). A comparison of editing by ADAR1 and ADAR2 revealed differences in the specificity of editing. Our results show that ADAR2 selectively edits the R/G site, while ADAR1 edits more promiscuously at several other adenosines in the double-stranded stem. To further understand the mechanism of selective ADAR2 editing we have investigated the importance of internal loops in the RNA substrate. We have found that the immediate structure surrounding the editing site is important. A purine opposite to the editing site has a negative effect on both selectivity and efficiency of editing. More distant internal loops in the substrate were found to have minor effects on site selectivity, while efficiency of editing was found to be influenced. Finally, changes in the RNA structure that affected editing did not alter the binding abilities of ADAR2. Overall these findings suggest that binding and catalysis are independent events.  相似文献   

19.
Members of the family of adenosine deaminases acting on RNA (ADARs) can catalyze the hydrolytic deamination of adenosine to inosine and thereby change the sequence of specific mRNAs with highly double-stranded structures. The ADARs all contain one or more repeats of the double-stranded RNA binding motif (DRBM). By both in vitro and in vivo assays, we show that the DRBMs of rat ADAR2 are necessary and sufficient for dimerization of the enzyme. Bioluminescence resonance energy transfer (BRET) demonstrates that ADAR2 also exists as dimers in living mammalian cells and that mutation of DRBM1 lowers the dimerization affinity while mutation of DRBM2 does not. Nonetheless, the editing efficiency of the GluR2 Q/R site depends on a functional DRBM2. The ADAR2 DRBMs thus serve differential roles in RNA dimerization and GluR2 Q/R editing, and we propose a model for RNA editing that incorporates the new findings.  相似文献   

20.
基于CRISPR/Cas系统出现的单碱基编辑技术可以实现高效且简便的单个碱基的替换编辑,其原理是将胞嘧啶脱氨酶(cytosine deaminase)或腺苷脱氨酶(adenosine deaminase)与Cas9n(D10A)形成融合蛋白,通过CRISPR/Cas精准识别和定位DNA上的靶位点后,利用胞嘧啶脱氨酶或腺苷脱氨酶将靶点距离sgRNA位点基序(protospacer adjacent motif,PAM)序列端的4~7位的单个碱基发生单碱基转换或颠换。对基于CRISPR/Cas系统的单碱基编辑技术发现的历史、组成和分类、工作原理进行了概述,并总结了该系统最新进展及应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号