共查询到20条相似文献,搜索用时 15 毫秒
1.
The assignment is presented for the principal phosphorescence bands of protochlorophyll(ide), chlorophyllide and chlorophyll in etiolated and greening bean leaves measured at -196°C using a mechanical phosphoroscope. Protochlorophyll(ide) phosophorescence spectra in etiolated leaves consist of three bands with maxima at 870, 920 and 970 nm. Excitation spectra show that the 870 nm band belongs to the short wavelength protochlorophyll(ide), P627. The latter two bands correspond to the protochlorophyll(ide) forms, P637 and P650. The overall quantum yield for P650 phosphorescence in etiolated leaves is near to that in solutions of monomeric protochlorophyll, indicating a rather high efficiency of the protochlorophyll(ide) triplet state formation in frozen plant material. Short-term (2–20 min) illumination of etiolated leaves at the temperature range from -30 to 20°C leads to the appearance of new phosphorescence bands at about 990–1000 and 940 nm. Judging from excitation and emission spectra, the former band belongs to aggregated chlorophyllide, the latter one, to monomeric chlorophyll or chlorophyllide. This indicates that both monomeric and aggregated pigments are formed at this stage of leaf greening. After preillumination for 1 h at room temperature, chlorophyll phosphorescence predominates. The spectral maximum of this phosphorescence is at 955–960 nm, the lifetime is about 2 ms, and the maximum of the excitation spectrum lies at 668 nm. Further greening leads to a sharp drop of the chlorophyll phosphorescence intensity and to a shift of the phosphorescence maximum to 980 nm, while the phosphorescence lifetime and a maximum of the phosphorescence excitation spectrum remains unaltered. The data suggest that chlorophyll phosphorescence belongs to the short wavelength, newly synthesized chlorophyll, not bound to chloroplast carotenoids. Thus, the phosphorescence measurement can be efficiently used to study newly formed chlorophyll and its precursors in etiolated and greening leaves and to address various problems arising in the analysis of chlorophyll biosynthesis.Abbreviations Pchl
protochlorophyll and protochlorophyllide
- Chld
chlorophyllide
- Chl
chlorophyll 相似文献
2.
The activity of NAD(P)H-dependent glutamate synthase (E.C. 1.4.1.14) has been demonstrated in extracts from etiolated shoots of pea (Pisum sativum L.) and barley (Hordeum vulgare L.). This activity does not significantly alter upon greening of the etiolated shoots, and is at a similar level in light-grown material. Ferredoxin-dependent glutamate synthase (E.C. 1.4.7.1) has low activity in etiolated shoots but increases rapidly on greening. In light grown leaves ferredoxin-dependent activity is 30–40-fold higher than NAD(P)H-dependent activity. It is not considered that the NAD(P)H-dependent glutamate synthase plays an important role in ammonia assimilation in the photosynthetic tissue of higher plants. 相似文献
3.
S. T. C. Wright 《Planta》1981,153(2):172-180
Light was found to inhibit substantially (i.e. up to 88%) the production of ethylene induced by water stress in excised wheat leaves and from the shoots of intact plants. The relatively small amounts of ethylene emanating fron non-stressed leaves were also inhibited by light but to a smaller degree (i.e. up to 61%). In water-stressed leaves the degree of light inhibition of ethylene production was shown to be related to the age of the leaves; the amounts of ethylene diffusing from young leaves (i.e. 6-days old) was inhibited 52% by light whereas in older leaves (i.e. 9-days old) it was inhibited by 85%. Previous studies [Wright (1979) Planta 144, 179–188 and (1980) Planta 148, 381–388] had shown that application of 6-benzyladenine (BA) to leaves a day before wilting, greatly increases the amount of ethylene diffusing from the leaves following wilting (e.g. 8-fold), and to smaller degrees do applications of indole-3-acetic acid (IAA) and gibberellic acid (GA3). On the other hand abscisic acid (ABA) treatment reduces the amount of ethylene produced. In these earlier experiments the ethylene was collected from leaves held under dark or near-dark conditions, so in the present study the activities of these growth regulators (10-4 mol l-1 solutions) under dark and light conditions were compared. It was found that they maintained the same relative activities on ethylene emanation (i.e. BA>IAA>GA3>water controls>ABA) under both light and dark conditions. However, because of the inhibitory effect of light, the absolute amounts of ethylene produced from all treatments were always much higher in the dark than in the light (usually about a 6-fold difference). An interesting effect of light treatment on ethylene biosynthesis was found when water-stressed leaves were kept in dark chambers for 41/2 h and then transferred to light. Quite unexpectedly, instead of the rate of ethylene production falling immediately, it continued to be produced at the dark rate (i.e. no light inhibition!) for over 2 h before the rate began to decline, and for a much longer period (i.e. in excess of 41/2 h) if the leaves had previously been sprayed with BA. Predictably, leaves placed in the light (i.e. in leaf chambers) and then transferred to darkness, immediately or very soon produced ethylene at the dark rate. One explanation of these results, which is discussed, would be that the biosynthesis of an ethylene precursor requires an obligatory dark stage. The possible implications of these studies to a survival role of ethylene in plants during periods of water stress is discussed.Abbreviations ABA
abscisic acid
- ACC
1-aminocyclopropane-1-carboxylic acid
- BA
6-benzyladenine
- GA3
gibberellic acid
- GLC
gas-liquid chromatography
- IAA
indole-3-acetic acid
- TLC
thin-layer chromatography
- leaf
leaf water potential 相似文献
4.
Young-Yell Yang Janny L. Peters Richard E. Kendrick Marie-Michèle Cordonnier-Pratt Yuji Kamiya 《Planta》1998,206(4):685-688
A single pulse of red light (R) given to 4-d-old etiolated high-pigment-1 (hp-1) mutant tomato (Solanum lycopersicum L.) seedlings followed by a 3-d dark period is demonstrated to result in a block of greening in subsequent white light. Wild-type
seedlings green normally under this regime. The block of greening in the hp-1 mutant depends on the length of the dark period before and after the R pulse and operates via the low-fluence-response mode
of phytochrome action. This block of greening takes place in hp-1 double mutants lacking either phytochrome A or phytochrome B1, but is absent in the hp-1 triple mutant lacking both phytochromes A and B1. These observations enable a screen to be devised for new phytochrome B1
mutants either within the photoreceptor or mutants defective in phytochrome B1-signalling steps which result in loss of capacity
to green, by mutagenising the phytochrome A-deficient hp-1, fri double mutant.
Received: 20 February 1998 / Accepted: 18 June 1998 相似文献
5.
Spundová M Popelková H Ilík P Skotnica J Novotný R Naus J 《Journal of plant physiology》2003,160(9):1051-1058
Changes in the chloroplast ultra-structure and photochemical function were studied in detached barley (Hordeum vulgare L. cv. Akcent) leaf segments senescing in darkness or in continuous white light of moderate intensity (90 mumol m-2 s-1) for 5 days. A rate of senescence-induced chlorophyll degradation was similar in the dark- and light-senescing segments. The Chl a/b ratio was almost unchanged in the dark-senescing segments, whereas in the light-senescing segments an increase in this ratio was observed indicating a preferential degradation of light-harvesting complexes of photosystem II. A higher level of thylakoid disorganisation (especially of granal membranes) and a very high lipid peroxidation were observed in the light-senescing segments. In spite of these findings, both the maximal and actual photochemical quantum yields of the photosystem II were highly maintained in comparison with the dark-senescing segments. 相似文献
6.
The activities of nitrate reductase (EC1.6.6.1), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC6.3.1.2), glutamate synthase (EC1.4.7.1) and NAD(P)H-dependent glutamate dehydrogenase (EC 1.4.1.3) were investigated in mesophyll and bundle sheath cells of maize leaves (Zea mays L.). Whereas nitrate and nitrite reductase appear to be restricted to the mesophyll and GDH to the bundle sheath, glutamine synthetase and glutamate synthase are active in both tissues.During the greening process, the activities of nitrate and nitrite reductase increased markedly, but glutamine synthetase, glutamate synthase and glutamate dehydrogenase changed little.Abbreviations BDH
British Drug Houses
- EDTA
Ethylene diamine tetra-acetic acid
- GDH
Glutamate dehydrogenase
- NADH
Nicotinamide-adenine dinucleotide reduced form
- NADPH
Nicotnamide-adenine dinucleotide phosphate reduced form
- PMSF
Phenylmethyl sulphonyl fluoride 相似文献
7.
Hydrogen sulfide emission by cucumber leaves in response to sulfate in light and dark 总被引:1,自引:0,他引:1
Jiro Sekiya Ahlert Schmidt Heinz Rennenberg Lloyd G. Wilson Philip Filner 《Phytochemistry》1982,21(9):2173-2178
Young leaf discs of cucumber (Cucumis sativus) emit H2S at 50–100 pmol/min/cm2 in response to 25 mM K2SO4 and light. The light-de 相似文献
8.
Photosynthesis and photosynthate partitioning in leaves of Sorghum bicolor (L.) Moench exhibited a cyclic dependence on the duration (10–62 h) of dark periods inserted prior to bright light test periods (550 mol·s-1·m-2, photosynthetic photon flux). Maximum rates of net photosynthesis and of accumulation of starch and soluble sugars were, in the order given, two-, three- and fourfold greater than minimum values. Between 14 and 53% of photosynthate was retained in leaves depending on the length of the dark period. These changes were sufficient to account for the previously described stimulatory effect of short daylengths (i.e., long nights) on carbohydrate accumulation in leaves (N.J. Chatterton and J.E. Silvius, 1980, Physiol. Plant. 49, 141–144). The freerunning periods for the rhythmic dependence on darkness, determined either directly or by curve fitting, were about 24 h for net photosynthesis, 23 h for starch accumulation, and 26 h for solublesugar cccumulation. The deviation from period lengths of 24 h for carbohydrate accumulation indicates that these rhythms are probably endogenous and circadian. Initial maxima were observed after 14 h of darkness for photosynthesis, after 18–22 h for starch, and after 26 h for soluble sugars. The differences in period length and phase indicate that at least three separate rhythms underlie the dependence of photosynthate partitioning in Sorghum on darkness. Periods of low leaf dry-matter accumulation coincided approximately with periods of high net photosynthesis. As a result, maximum photoassimination and maximum export were synchronized and, furthermore, occurred at about the same time as expected light periods.Abbreviations and symbols DD
(the nth h of) continuous darkness
- LT
Iocal time of day
-
free-running period length
This paper is dedicated to Professor Wilhelm Nultsch on his 60 th birthdayMention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable 相似文献
9.
The fast (1 min) regeneration process of the photoactive Pchlide forms after a light flash was studied in etiolated wheat leaves, and this process was simulated in vitro by incubating etioplast inner membranes of wheat with excess NADPH or NADP+. The 77 K fluorescence spectra were recorded after flash illumination, dark incubation and a subsequent flash illumination of the samples. A non-photoactive Pchlide form with an emission maximum at 650 nm was transiently detected in leaves during regeneration of a photoactive Pchlide form with an emission maximum at 654 nm. Gaussian deconvolution of fluorescence spectra of isolated membranes showed that this 650 nm form appeared in conditions of excess NADP+, as suggested in previous studies. Additionally a Pchlide form emitting at 638.5 nm was detected in the same conditions. The analysis of the spectra of leaves at different times after a flash indicated that these two non-photoactive forms are involved as intermediates in the regeneration of photoactive Pchlide. This regeneration is in correlation with the production of the Chlide form emitting at 676 nm. The results demonstrate that, in vivo, part of the NADPH:protochlorophyllide oxidoreductase is reloading with nonphotoactive Pchlide on a fast time-scale and that the 676 nm Chlide form is the released product of the phototransformation in this process. 相似文献
10.
Etiolated barley seedlings lose the ability to produce chlorophyll and soluble protein on exposure to light with increasing age. Similarly, the production of δ-aminolaevulinic acid-dehydratase and succinyl-CoA synthetase is decreased in older etiolated leaves exposed to light. The rate of protochlorophyllide652 regeneration decreased well before the rates of exogenous δ-aminolaevulinic acid conversion to protochlorophyllide632 was affected by ageing. Application of kinetin retarded these ageing symptoms in the etiolated leaves. 相似文献
11.
Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light 总被引:3,自引:0,他引:3
The response of photosynthesis to absorbed light by intact leaves of wild-type ( Hordeum vulgare L. cv. Gunilla) and chlorophyll b -less barley ( H. vulgare L. cv. Dornaria, chlorina-f22800 ) was measured in a light integrating sphere. Up to the section where the light response curve bends most sharply the responses of the b -less and wild-type barley were similar but not identical. Average quantum yield and convexity for the mutant light response curves were 0.89 and 0.90, respectively, times those of the wild-type barley. The maximum quantum yield for PSII photochemistry was also 10% lower as indicated by fluorescence induction kinetics (Fv /Fm ). Just above the region where the light curve bends most sharply, photosynthesis decreased with time in the mutant but not in the wild-type barley. This decrease was associated with a decrease in Fv /Fm indicating photoinhibition of PSII. This photoinhibition occurred in the same region of the light response curve where zeaxanthin formation occurs. Zeaxanthin formation occurred in both the chlorophyll b -less and wild-type leaves. However, the epoxidation state was lower in the mutant than in the wild-type barley. The results indicate that chlorophyll b -less mutants will have reduced photosynthetic production as a result of an increased sensitivity to photoinhibition and possibly a lowered quantum yield and convexity in the absence of photoinhibition. 相似文献
12.
13.
Inhibition of stomatal opening in sunflower leaves by carbon monoxide,and reversal of inhibition by light 总被引:3,自引:0,他引:3
When leaves of Helianthus annuus, whose stomates had been opened in the dark in the absence of CO2, were exposed to 25% carbon monoxide (CO), stomatal conductivity for water vapor decreased from about 0.4 to 0.2 cm·s-1. The CO effect on stomatal aperture required a CO/O2 ratio of about 25. As this ratio was decreased the stomata opened, indicating that inhibitio of cytochrome-c oxidase by CO is competitive in respect to O2. Photosynthetically active red light was unable to reverse CO-induced stomatal closure even at high irradiances, when CO2 was absent. When it was present, stomatal opening was occasionally, but not consistently observed. Carbon monoxide did not inhibit photosynthetic carbon reduction in leaves of Helianthus.In contrast to red light, very weak blue light (405 nm) increased the stomatal aperture in the presence of CO. It also increased leaf ATP/ADP ratios which had been decreased in the presence of CO. The blue-light effect was not related to photosynthesis. Neither could it be explained by photodissociation of the cytochrome a3-CO complex which has an absorption maximum at 430 nm. The data indicate that ATP derived from mitochondrial oxidative phosphorylation provides energy for stomatal opening in sunflower leaves in the dark as well as in the light. Indirect transfer of ATP from chloroplasts to the cytosol via the triose phosphate/phosphoglycerate exchange which is mediated by the phosphate translocator of the chloroplast envelope can support stomatal opening only if metabolite concentrations are high enough for efficient shuttle transfer of ATP. Blue light causes stomatal opening in the presence of CO by stimulating ATP synthesis. 相似文献
14.
15.
At the developmental stage at which the apical hook passed the 3rd and 4th nodes, dark-grown seedlings of pea ( Pisum sativum L. cv. Progress No.9) opened the hook upright and then formed a new hook above the node nearly in the opposite direction to the previous one. In cv. Alaska, in contrast, many (about 84%) seedlings closed the hook in the original direction after they partially (up to about 110°) opened it at the 3rd node, thus doing a wagging movement, while a small percentage (about 16%) of the seedlings reversed the hook direction. Exposure to red light of cv. Alaska seedlings for 10 min increased the percentage of the hook reversion up to 71% or more. The hook reversion was never observed except when the hook part passed the nodes, suggesting the involvement of the nodes in the phenomenon. 相似文献
16.
Early life experiences are important for the development of neurobiobehavioral mechanisms and subsequent establishment of mental functions. In experimental animals, early life experiences can be studied using the maternal separation model. Maternal separation has been described to induce neurobiological changes and thus affect brain function, mental state and behavior. We have established a protocol in order to study the effects of repeated short and prolonged periods of maternal separation during the postnatal period on adult neurochemistry, voluntary ethanol intake and behavior. In the present experiment, we focus on the long-term effects of maternal separation on exploration and risk assessment behavior as well corticosteroid secretion. Rat pups were assigned to 15 min (MS15) or 360 min (MS360) of daily maternal separation and normal animal facility rearing (AFR) during postnatal days 1-21. To establish the adult behavioral profile in male rats, three tests were used: the Concentric Square Field (CSF), the Open Field (OF) and the Elevated Plus-maze (EPM). No differences between the three experimental groups were found in the traditional OF and EPM tests. The CSF test indicated that the MS360 rats were more explorative and expressed an altered risk assessment and risk-taking profile. In response to a restraint stress, MS360 rats had a blunted corticosterone release in contrast to MS15 and AFR rats. In contrast to previous results, the outcome of the present investigation does not support the notion that a prolonged period of maternal separation results in an adult phenotype characterized by an increased emotional reactivity. 相似文献
17.
In etiolated barley (Hordeum vulgare L.) seedlings the light-induced accumulation of chlorophyll is controlled by two light-dependent NADPH-proto-chlorophyllide oxidoreductase (POR; EC 1.6.99.1) enzymes. While the concentration of one of these enzymes (POR A) and its mRNA rapidly decline during illumination, the second POR protein (POR B) and its mRNA remain at an approximately constant level during the transition from dark growth to the light. These results may suggest that only one of the enzymes, POR B, operates throughout the greening process and in light-adapted mature plants while the second enzyme, POR A, is active only in etiolated seedlings at the beginning of illumination. The fate of the two POR proteins and their mRNAs in fully green plants, however, has not been studied yet. In the present work we determined changes in the level of POR A and POR B proteins and mRNAs in green barley plants kept under a diurnal 12 h light/12 h dark cycle. In green barley plants, not only POR B is present but also trace amounts of POR A continue to reappear transiently at the end of a night period and seem to be involved in the synthesis and accumulation of chlorophyll at the beginning of each day.Abbreviations Chl
chlorophyll
- Chlide
chlorophyllide
- Lhcb
light-harvesting chlorophyll a/b protein
- Pchlide
protochlorophyllide
- POR
NADPH-protochlorophyllide oxidoreductase
Dedicated to Horst Senger on the occasion of his 65th birthday.We thank Dr. Dieter Rubli for photography and Renate Langjahr for typing. This work was supported by the Swiss National Science Foundation and the ETH-Zürich. 相似文献
18.
Vanadate inhibits fructose-2,6-bisphosphatase and leads to an inhibition of sucrose synthesis in barley leaves 总被引:1,自引:0,他引:1
Vanadate (0.1–1 mM) was supplied to leaves of barley (Hordeum vulgare var. Roland) via the transpiration stream. It led to a selective inhibition of the rate of photosynthesis at high light without altering the initial slope of the light response curve, produced markedly biphasic photosynthesis induction kinetics, and selectively decreased sucrose synthesis compared to starch synthesis. There was a 3-fold increase of the steady state level of the signal metabolite fructose-2,6-bisphosphate in near saturating light. Fructose-2,6-bisphosphate is a potent inhibitor of cytosolic fruc-tose-l,6-bisphosphatase and, in agreement, the fructose-1,6-bisphosphatc level doubled. The increase of fructose-2,6-bisphosphate could not be accounted for by the known regulation of fructose-6-phosphate,2-kinase and fructose 2,6-bisphosphatase by 3-phosphoglycerate and fiuctose-6-phosphate, because these metabolites remained constant or even changed in the opposite direction to that required to generate an increase of fructose-2,6-bisphosphate. Instead, vanadate strongly inhibited the hydrolysis of fructose-2,6-bisphosphate in extracts, producing a half maximal inhibition at 2 nM and 50 iM in assays designed to preferentially measure the high-and low-affinity forms of fructose-2,6-bisphosphatase, respectively. Vanadale had no effect on fructosc-6-phosphate,2-kinase activity at these concentrations. Vanadate also led to a deactivation of sucrose phosphate synthase. The results are discussed in relation to the role of fructose-2,6-bisphosphate in regulating sucrose synthesis, and its interaction with the 'coarse' control of sucrose phosphate synthase. 相似文献
19.
Goltsev V Zaharieva I Lambrev P Yordanov I Strasser R 《Journal of theoretical biology》2003,225(2):171-183
An attempt is made to reveal the relation between the induction curves of delayed fluorescence (DF) registered at 0.35-5.5 ms and the prompt chlorophyll fluorescence (PF). A simple formulation was proposed to link the ratio of the transient values of delayed and variable fluorescence with the redox state of the primary electron acceptor of Photosystem II--QA, and the thylakoid membrane energization. The term luminescence potential (UL) was introduced, defined as the sum of the redox potential of QA and the transmembrane proton gradient. It was shown that UL is proportional to the ratio of DF to the variable part of PF. The theoretical model was verified and demonstrated by analysing induction courses of PF and millisecond DF, simultaneously registered from leaves of barley--wild-type and the chlorophyll b-less mutant chlorina f2. A definitive correlation between PF and DF was established. If the luminescence changes are strictly due to UL, the courses of DF and PF are reciprocal and the millisecond DF curve resembles the first derivative of the PFt function. 相似文献
20.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl
Chlorophyll
- CL
Continuous light
- CPa
the reaction center complex of PSII
- CPI
the reaction center complex of PSI
- CPIa
Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI
- fr w
fresh weight
- LDC
Light dark cycles
- LHC-I
Light-harvesting complex of PSI
- LHC-II
Light harvesting complex of PSII
- PS
photosystem
- PSI
photosystem I
- PSII
photosystem II 相似文献