首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We previously showed that 1-[3-(3-pyridyl)-acryloyl]-2-pyrrolidinone hydrochloride (N2733) inhibits lipopolysaccharide (LPS)-induced tumour necrosis factor (TNF)-alpha secretion and improves the survival of endotoxemic mice. Since overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) in vascular smooth muscle cells (VSMCs) is largely responsible for the development of endotoxemic shock, and iNOS gene expression is mainly regulated by LPS and inflammatory cytokines, we studied whether or not N2733 affects interleukin (IL)-1beta-induced iNOS gene expression, NF-kappaB activation, and NF-kappaB inhibitor (IkappaB)-alpha degradation in cultured rat VSMCs. N2733 dose-dependently (10-100 microM) inhibited IL-1beta-stimulated NO production, and decreased IL-1beta-induced iNOS mRNA and protein expression, as found on Northern and Western blot analyses, respectively. Gel shift assay and an immunocytochemical study showed that N2733 inhibited IL-1beta-induced NF-kappaB activation and its nuclear translocation. Western blot analyses involving anti-IkappaB-alpha and anti-phospho IkappaB-alpha antibodies showed that IL-1beta induced transient degradation of IkappaB-alpha preceded by the rapid appearance of phosphorylated IkappaB-alpha, both of which were markedly blocked by N2733. N2733 blocked IL-1beta-induced phosphorylated IkappaB-alpha even in the presence of a proteasome inhibitor (MG115). Immunoblot analysis involving anti-IkappaB kinase (IKK)-alpha and anti-phosphoserine antibodies revealed that N2733 inhibited IL-1beta-induced IKK-alpha phosphorylation, whereas N2733 had no inhibitory effect on IL-1beta-stimulated p42/p44 MAP kinase or p38 MAP kinase activity. Our results suggest that the inhibitory action of N2733 toward IL-1beta-induced NF-kappaB activation and iNOS expression is due to its blockade of the upstream signal(s) leading to IKK-alpha activation, and subsequent phosphorylation and degradation of IkappaB-alpha in rat VSMCs.  相似文献   

2.
3.
Han YL  Kang J  Li SH 《生理学报》2003,55(3):265-272
采用Spprague-Dawley大鼠胸主动脉中膜、外膜和培养的血管平滑肌细胞(VSMCs)作材料,鉴定不同类型的血管组织经炎性介质刺激后其一氧化氮(NO)的产生来源,闻明蛋白激酶C(PKC)和蛋白酪氨酸激酶(PTK)介导大鼠VSMCs生成NO的调控机制。大鼠VSMCs经脂多糖(LPG)和细胞因子(TNF-α,IL-1β)处理后,以剂量依赖方式促进NO释放。采用Western Blot证实经刺激的VSMCs伴有iNOS表达上调。进一步实验表明PKC和PTK参与LPS和细胞因子诱导NO生成的胞内信号转导。用PKC抑制剂H7与VSMCs共培育,H7能明显减少LPS、TNF-α和IL-1β诱导细胞NO的形成。白屈菜赤碱亦可抑制NO的生成,但HAl004对VSMCs的NO生成无抑制作用,提示PKC参与NO的生成与调控。PTK抑制剂genistein和tyrphostin AG18均能抑制由LPS、TNF-α和IL-1β引发VSMCs释放NO,同时伴iNOS蛋白表达下调,而PKC抑制剂不能阻断iNOS的表达。上述观察结果提示,PKC介导LPS和细胞因子诱导细胞合成NO可能是通过iNOS翻译后加工;而PTK则以上调iNOS表达而促增NO生成。  相似文献   

4.
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.  相似文献   

5.
6.
7.
L-buthionine-S,R-sulfoximine (BSO), an inhibitor of GSH synthesis, decreased IL-1 beta-induced nitrite release in rat islets and purified rat beta cells, nitrite formation and iNOS gene promoter activity in insulinoma cells, and iNOS mRNA expression in rat islets. The thiol depletor diethyl maleate (DEM) and an inhibitor of glutathione reductase 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) reduced IL-1 beta-stimulated nitrite release in islets. We conclude that GSH regulates IL-1 beta-induced NO production in islets, purified beta cells and insulinoma cells by modulation of iNOS gene expression.  相似文献   

8.
Expression of inducible nitric oxide synthase (iNOS) and the resultant increased nitric oxide (NO) production are associated with septic shock, atherosclerosis, and cytokine-induced vascular injury. Estrogen is known to impact vascular injury and vascular tone, in part through regulation of NO production. In the current study, we examined the effect of physiological concentrations of estradiol on interleukin-1beta (IL-1beta)-induced NO production in rat aortic endothelial cells (RAECs). 17Beta-estradiol significantly decreased IL-1beta-induced iNOS protein levels and reduced NO production in RAECs. High glucose (25 mM) elevated the increase in IL-1beta-induced iNOS protein and NO production. Nevertheless, estradiol still inhibited IL-1beta-induced iNOS and NO production even in the presence of high glucose. These data suggest that estradiol may exert its beneficial effects in part by inhibiting induction of endothelial iNOS, a possible mechanism for the protective effect of estradiol against diabetes-associated cardiovascular complications.  相似文献   

9.
We have reported recently that intrathecal (i.t.) injection of interleukin-1beta (IL-1beta), at a dose of 100 ng, induces inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in the spinal cord and results in thermal hyperalgesia in rats. This study further examines the role of mitogen-activated protein kinase (MAPK) in i.t. IL-1beta-mediated iNOS-NO cascade in spinal nociceptive signal transduction. All rats were implanted with an i.t. catheter either with or without an additional microdialysis probe. Paw withdrawal latency to radiant heat is used to assess thermal hyperalgesia. The iNOS and MAPK protein expression in the spinal cord dorsal horn were examined by western blot. The [NO] in CSF dialysates were also measured. Intrathecal IL-1beta leads to a time-dependent up-regulation of phosphorylated p38 (p-p38) MAPK protein expression in the spinal cord 30-240 min following IL-1beta injection (i.t.). However, neither the phosphorylated extracellular signal-regulated kinase (p-ERK) nor phosphorylated c-Jun NH2-terminal kinase (p-JNK) was affected. The total amount of p38, ERK, and JNK MAPK proteins were not affected following IL-1beta injection. Intrathecal administration of either selective p38 MAPK, or JNK, or ERK inhibitor alone did not affect the thermal nociceptive threshold or iNOS protein expression in the spinal cord. However, pretreatment with a p38 MAPK inhibitor significantly reduced the IL-1beta-induced p-p38 MAPK expression by 38-49%, and nearly completely blocked the subsequent iNOS expression (reduction by 86.6%), NO production, and thermal hyperalgesia. In contrast, both ERK and JNK inhibitor pretreatments only partially (approximately 50%) inhibited the IL-1beta-induced iNOS expression in the spinal cord. Our results suggest that p38 MAPK plays a pivotal role in i.t. IL-1beta-induced spinal sensitization and nociceptive signal transduction.  相似文献   

10.
The role of reactive oxygen species (ROS) in regulating the expression of the inducible nitric oxide synthase (iNOS) was studied in rat aortic vascular smooth muscle cells (VSMC). We hypothesized that ROS regulate iNOS expression through the mitogen-activated protein kinases ERK and p38(MAPK). We found that interleukin-1beta (IL-1beta) stimulated the production of hydrogen peroxide (H2O2) which could be inhibited by loading the cells with the H2O2-scavenging enzyme catalase. Inhibition of the upstream ERK1,2 activator MEK1,2 with U0126 prevented IL-1beta-stimulated iNOS expression, while the p38MAPK inhibitor SB03580 potentiated iNOS expression. Loading the cells with catalase enhanced ERK activation and iNOS expression but had no effect on p38MAPK activation or PDGF-induced ERK activation. These data indicated that H2O2 negatively regulates iNOS expression through ERK inhibition independently of p38MAPK. The present results outline a novel role for H2O2 in suppressing signaling pathways leading to gene expression such as iNOS in VSMC in response to cytokines.  相似文献   

11.
12.
Guo L  Zhang Z  Green K  Stanton RC 《Biochemistry》2002,41(50):14726-14733
In rat pancreatic islets and insulin-producing cell lines, IL-1beta induces expression of inducible nitric oxide synthase and NO production leading to impairment of glucose-stimulated insulin release and decreased cell survival. NADPH is an obligatory cosubstrate for iNOS synthesis of NO. We hypothesized that IL-1beta stimulates an increase in activity of NADPH-producing enzyme(s) prior to NO production and that this increase is necessary for NO production. Using rat insulin-secreting RINm5F cells, we found that (1) IL-1beta caused a biphasic change in the NADPH level (increased by 6 h and decreased after prolonged incubation in the presence of 2 ng/mL IL-1beta); (2) IL-1beta stimulated increased activity of glucose-6-phosphate dehydrogenase (G6PD) in a time- and dose-dependent manner, and G6PD expression was increased by about 80% after exposure to 2 ng/mL IL-1beta for 18 h: (3) IL-1beta-stimulated NO production was positively correlated with increased G6PD activity; (4) IL-1beta did not cause any significant change in enzyme activity of another NADPH-producing enzyme, malic enzyme; (5) IL-1beta-induced NO production was significantly reduced either by inhibiting G6PD activity using an inhibitor of G6PD (dehydroepiandrosterone) or by inhibiting G6PD expression using an antisense oligonucleotide to G6PD mRNA; and (6) IL-1beta stimulated a decrease in the cAMP level. 8-Bromo-cAMP caused decreased G6PD activity, and the protein kinase A inhibitor H89 led to a increase in G6PD activity in RINm5F cells. In conclusion, our data show that IL-1beta stimulated G6PD activity and expression level, providing NADPH that is required by iNOS for NO production in RINm5F cells. Also, inhibition of the cAMP-dependent PKA signal pathway is involved in an IL-1beta-stimulated increase in G6PD activity.  相似文献   

13.
Increasing evidence indicates that beta-cell apoptosis and impaired secretory function were partly mediated by interleukin (IL)-1beta and/or high-glucose-induced beta-cell production of IL-1beta. However, the specific signal transduction pathways and molecular events involved in beta-cell dysfunction remain largely unresolved. In this study, we investigated whether Ca(2+) and extracellular signal-regulated kinase (ERK) activation plays a role for IL-1beta action in rat islets. Exposure of rat islets for 4 days to 33.3 mM glucose and 140 ng/ml IL-1beta- induced beta-cell apoptosis and impaired glucose-stimulated insulin secretion. By Western blotting with phosphospecific antibodies, glucose and IL-1beta were shown to activate ERK. Ca(2+) channel blocker nimodipine or ERK inhibitor PD98059 prevented glucose- and IL-1beta-induced ERK activation, beta-cell apoptosis, and impaired function. Furthermore, treatment with Ca(2+) ionophore ionomycin, or exposure to thapsigargin, an inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPase, all caused an amplification of IL-1beta-induced ERK activation in rat islet. On the other hand, a chelator of intracellular free Ca(2+) [bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-acetoxymethyl] (BAPTA/AM) and an inhibitor of calmodulin (W7) diminished IL-1beta-induced phosphorylation of ERK. Finally, islet release of IL-1beta in response to high glucose could be abrogated by nimodipine, mibefradil, or PD98059. Together, these data suggest that glucose- and IL-1beta-induced beta-cell secretory dysfunction and apoptosis are Ca(2+) influx and ERK dependent in rat islets.  相似文献   

14.
For understanding of signaling molecules important in lung cancer growth and progression, IL-1beta effect was analyzed on iNOS expression and key signaling molecules in human lung carcinoma A549 cells and established the role of specific signaling molecules by using specific chemical inhibitors. IL-1beta exposure (10 ng/ml) induced strong iNOS expression in serum starved A549 cells. Detailed molecular analyses showed that IL-1beta increased expression of phosphorylated STAT1 (Tyr701 and Ser727) and STAT3 (Tyr705 and Ser727) both in total cell lysates and nuclear lysates. Further, IL-1beta exposure strongly activated MAPKs (ERK1/2, JNK1/2 and p38) and Akt as well as increased nuclear levels of NF-kappaB and HIF-1alpha in A549 cells. Use of specific chemical inhibitors for JAK1 kinase (piceatannol), JAK2 kinase (AG-490), MEK1/2 (PD98059) and JNK1/2 (SP600125) revealed that IL-1beta-induced iNOS expression involved signaling pathways in addition to JAK-STAT and ERK1/2-JNK1/2 activation. Overall, these results suggested that instead of specific pharmacological inhibitors, use of chemopreventive agents with broad spectrum efficacy to inhibit IL-1beta-induced signaling cascades and iNOS expression would be a better strategy towards lung cancer prevention and/or treatment.  相似文献   

15.
Angiotensin II is implicated in pathophysiological processes associated with vascular injury and repair, which include regulating the expression of numerous NF-kappaB-dependent genes. The present study examined the effect of angiotensin II on interleukin-1beta-induced NF-kappaB activation and the subsequent expression of inducible NO synthase (iNOS) and vascular cell adhesion molecule-1 (VCAM-1) in cultured rat vascular smooth muscle cells. Neither NF-kappaB activation nor iNOS or VCAM-1 expression was induced in cells treated with angiotensin II alone. However, when added together with interleukin-1beta, angiotensin II, through activation of the AT(1) receptor, inhibited iNOS expression and enhanced VCAM-1 expression induced by the cytokine. The inhibitory effect of angiotensin II on iNOS expression was associated with a down-regulation of the sustained activation of extracellular signal-regulated kinase (ERK) and NF-kappaB by interleukin-1beta, whereas the effect on VCAM-1 was independent of ERK activation. The effect of angiotensin II on iNOS was abolished by inhibition of p38 mitogen-activated protein kinase (MAPK) with SB203580, but not by inhibition of PI3 kinase with wortmannin or stress-activated protein kinase/c-Jun NH(2)-terminal kinase (JNK) with JNK inhibitor II. Thus, angiotensin II, by a mechanism that requires the participation of p38 MAPK, differentially regulates the expression of NF-kappaB-dependent genes in response to interleukin-1beta stimulation by controlling the duration of activation of ERK and NF-kappaB.  相似文献   

16.
Previously we found that interleukin-1beta (IL-1beta)-activated inducible nitric oxide (NO) synthase (iNOS) expression and that NO production can trigger cardiac fibroblast (CFb) apoptosis. Here, we provide evidence that angiotensin II (ANG II) significantly attenuated IL-1beta-induced iNOS expression and NO production in CFbs while simultaneously decreasing apoptotic frequency. The anti-apoptotic effect of ANG II was abolished when cells were pretreated with the specific ANG II type 1 receptor (AT1) antagonist losartan, but not by the AT2 antagonist DP-123319. Furthermore, ANG II also protected CFbs from apoptosis induced by the NO donor diethylenetriamine NONOate and this effect was associated with phosphorylation of Akt/protein kinase B at Ser473. The effects of ANG II on Akt phosphorylation and NO donor-induced CFb apoptosis were abrogated when cells were preincubated with the specific phosphatidylinositol 3-kinase inhibitors wortmannin or LY-294002. These data demonstrate that ANG II protection of CFbs from IL-1beta-induced apoptosis is associated with downregulation of iNOS expression and requires an intact phosphatidylinositol 3-kinase-Akt survival signal pathway. The findings suggest that ANG II and NO may play a role in regulating the cell population size by their countervailing influences on cardiac fibroblast viability.  相似文献   

17.
The 29-kDa amino-terminal fibronectin fragment (FN-f) has a potent chondrolytic effect and is thought to be involved in cartilage degradation in arthritis. However, little is known about signal transduction pathways that are activated by FN-f. Here we demonstrated that FN-f induced nitric oxide (NO) production from human articular chondrocytes. Expression of inducible nitric-oxide synthase (iNOS) mRNA and NO production were observed at 6 and 48 h after FN-f treatment, respectively. Interleukin-1beta (IL-1beta) mRNA up-regulation was stimulated by FN-f in human chondrocytes. To address the possibility that FN-f-induced NO release is mediated by IL-1beta production, the effect of IL-1 receptor antagonist (IL-1ra) was determined. IL-1ra partially inhibited FN-f-induced NO release although it almost completely inhibited IL-1beta-induced NO release. Tyrosine phosphorylation of focal adhesion kinase was induced transiently by FN-f treatment. Blocking antibodies to alpha(5) or beta(1) integrin and Arg-Gly-Asp-containing peptides did not inhibit FN-f-induced NO production. PP2, a Src family kinase inhibitor, or cytochalasin D, which selectively disrupts the network of actin filaments, inhibited both FAK phosphorylation and NO production induced by FN-f, but the phosphatidylinositol 3-kinase inhibitor wortmannin had no effect. Analysis of mitogen-activated protein kinases (MAPK) showed activation of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase, and p38 MAPK. High concentrations of SB203580, which inhibit both JNK and p38 MAPK, and PD98059 a selective inhibitor of MEK1/2 that blocks ERK activation, inhibited FN-f induced NO production. These data suggest that focal adhesion kinase and MAPK mediate FN-f induced activation of human articular chondrocytes.  相似文献   

18.
This study examined the role of nitric oxide (NO) in cytokine-induced apoptosis in adult cardiac fibroblasts (CFbs). In cultured adult rat CFbs, IL-1beta (5 ng/ml), but not interferon-gamma (10 ng/ml) or tumor necrosis factor-alpha (10 ng/ml), induced inducible NO synthase (iNOS) expression and NO production that was associated with an increase in caspase-3 activity and apoptotic cell death. Apoptotic frequency was reduced by the iNOS inhibitor S-methylisothiourea (3 x 10(-5) M). Apoptosis in response to IL-1beta was attenuated by the caspase-3 inhibitor [Z-Asp-Glu-Val-Asp-fluoromethyl ketone (Z-DVED-FMK)] but not by inhibition of guanylyl cyclase with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). IL-1beta-induced CFb apoptosis was associated with an increase in p53 and Bax protein expression with no changes in Bcl-2 or Bcl-x(L). Nuclear condensation and fragmentation occurred when isolated nuclei were exposed to an NO donor [Z-1[N-(2-aminoethyl)-N-(2-ammonoethyl)amino]diazen-1-ium-1,2-dioate (DETA-NONOate) 10(-5) M], an effect that was not blocked by the peroxynitrite scavenger Mn(III)tetrakis(4-benzoic acid) porphyrin chloride. Moreover, Mn(III)tetrakis(4-benzoic acid) porphyrin chloride attenuated but did not eliminate IL-1beta-induced CFb apoptosis, indicating that the proapoptotic effect of NO can occur independently of its conversion to peroxynitrite. Our results demonstrate that IL-1beta-induced iNOS expression can trigger NO-dependent apoptosis in adult CFbs, which appears to result from DNA damage and may be mediated by a p53-dependent apoptotic pathway.  相似文献   

19.
20.
In cultured rat vascular smooth muscle cells (VSMC), inducible nitric oxide synthase (iNOS) expression evoked by interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha was greatly enhanced in hypoxia (2% O(2)), compared to in normoxia. In contrast, iNOS induction by interferon-gamma, lipopolysaccharide or their combination was barely influenced by hypoxia. These results indicate that iNOS induction is regulated by hypoxia in different manners, depending on the stimuli in VSMC. Nitric oxide (NO) production in response to stimulation with interferon-gamma plus lipopolysaccharide was significantly decreased in hypoxia, due to a decrease in the concentration of O(2) as a substrate. In contrast, the level of NO production in hypoxia was almost the same as that in normoxia when the cells were stimulated by IL-1beta. In addition, cGMP increased in response to IL-1beta in hypoxia to a level comparable to that in normoxia. Thus, it seems that the IL-1beta-induced expression of iNOS is up-regulated in hypoxia to compensate for a decrease in the enzyme activity due to the lower availability of O(2) as a substrate, and consequently a sufficient amount of NO is produced to elevate cGMP to an adequate level. In addition, the IL-1beta-induced synthesis of tetrahydrobiopterin, a cofactor for iNOS, was also greatly stimulated by hypoxia in VSMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号