首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strains containing phage Mucts inserted into glpT were isolated as fosfomycin-resistant clones. These mutants did not transport sn-glycerol-3-phosphate, and they lacked GLPT, a protein previously shown to be a product of the glpT operon. By plating these mutants on sn-glycerol-3-phosphate at 43 degrees C, we isolated revertants that regained the capacity to grow on G3P. Most of these revertants did not map in glpT and did not regain GLPT. These revertants exhibited a highly efficient uptake system for sn-glycerol-3-phosphate within an apparent Km of 5 micron. In addition, three new proteins (GP 1, 2, and 3) appeared in the periplasm of these revertants. None of these proteins were antigentically related to GLPT. However, like GLPT, GP1 exhibits abnormal behavior on sodium dodecyl sulfate-polyacrylamide gels. GP 2 is an efficient binding protein. The new uptake system showed different characteristics than the system that is coded for by the glpT operon. It was inhibited neither by phosphate nor fosfomycin. So far, none of the systems that transport organic acids in Escherichia coli could be implicated in the new sn-glycerol-3-phosphate uptake activity. The mutation ugp+, which was responsible for the appearance of the new transport system and the appearance of GP 1, 2, and 3 in the periplasm was cotransducible with araD by phage P1 transduction and was recessive in merodiploids.  相似文献   

2.
sn-Glycerol-3-phosphate transport in Salmonella typhimurium   总被引:7,自引:5,他引:2  
Salmonella typhimurium contains a transport system for sn-glycerol-3-phosphate that is inducible by growth on glycerol and sn-glycerol-3-phosphate. In fully induced cells, the system exhibited an apparent Km of 50 microM and a Vmax of 2.2 nmol/min . 10(8) cells. The corresponding system in Escherichia coli exhibits, under comparable conditions, a Km of 14 microM and a Vmax of 2.2 nmol/min . 10(8) cells. Transport-defective mutants were isolated by selecting for resistance against the antibiotic fosfomycin. They mapped in glpT at 47 min in the S. typhimurium linkage map, 37% cotransducible with gyrA. In addition to the glpT-dependent system, S. typhimurium LT2 contains, like E. coli, a second, ugp-dependent transport system for sn-glycerol-3-phosphate that was derepressed by phosphate starvation. A S. typhimurium DNA bank containing EcoRI restriction fragments in phage lambda gt7 was used to clone the glpT gene in E. coli. Lysogens that were fully active in the transport of sn-glycerol-3-phosphate with a Km of 33 microM and a Vmax of 2.0 nmol/min . 10(8) cells were isolated in a delta glpT mutant of E. coli. The EcoRI fragment harboring glpT was 3.5 kilobases long and carried only part of glpQ, a gene distal to glpT but on the same operon. The fragment was subcloned in multicopy plasmid pACYC184. Strains carrying this hybrid plasmid produced large amounts of cytoplasmic membrane protein with an apparent molecular weight of 33,000, which was identified as the sn-glycerol-3-phosphate permease. Its properties were similar to the corresponding E. coli permease. The presence of the multicopy glpT hybrid plasmid had a strong influence on the synthesis or assembly of other cell envelope proteins of E. coli. For instance, the periplasmic ribose-binding protein was nearly absent. On the other hand, the quantity of an unidentified E. coli outer membrane protein usually present only in small amounts increased.  相似文献   

3.
4.
The Escherichia coli glpT gene encodes a transport protein that mediates uptake of sn-glycerol-3-phosphate. This permease is a member of a class of bacterial organophosphate permeases which transport substrates by antiport with inorganic phosphate. The glpT gene product, probably an oligomer of a single polypeptide chain, is thought to span the cytoplasmic membrane several times, as predicted by the hydropathic profile. Protein fusions, in which varying lengths of the amino-terminal end of the permease is attached to alkaline phosphatase (phoA) and to beta-galactosidase (lacZ) were constructed. On the assumption that phoA fusions only exhibit high enzymatic activity when fused to extra-cytoplasmic regions of the target protein, whereas lacZ fusions will only be active when the beta-galactosidase portion is attached to cytoplasmic domains of the target protein, the activities of the fusions were used to test a two-dimensional model for the permease. The model proposes that GlpT contains 12 transmembrane segments divided by a larger cytoplasmic region. Despite some limitation caused by hot-spot sites of transpositions, the TnphoA approach was consistent with the model. In contrast, we feel that the enzymatic activity of lacZ fusions is only a limited parameter for studying the topology of a complex membrane protein.  相似文献   

5.
Reconstitution of sugar phosphate transport systems of Escherichia coli   总被引:19,自引:0,他引:19  
Studies with Escherichia coli cells showed that the transport systems encoded by glpT (sn-glycerol 3-phosphate transport) and uhpT (hexose phosphate transport) catalyze a reversible 32Pi:Pi exchange. This reaction could be used to monitor the glpT or uhpT activities during reconstitution. Membranes from suitably constructed strains were extracted with octylglucoside in the presence of lipid and glycerol, and proteoliposomes were formed by dilution in 0.1 M KPi (pH 7). Both reconstituted systems mediated a 32Pi:Pi exchange which was blocked by the appropriate heterologous substrate, sn-glycerol 3-phosphate (G3P) or 2-deoxyglucose 6-phosphate (2DG6P), with an apparent Ki near 50 microM. In the absence of an imposed cation-motive gradient, Pi-loaded proteoliposomes also transported the expected physiological substrate; Michaelis constants for the transport of G3P or 2DG6P were near 20 microM. The heterologous exchange showed a maximal velocity of 130 nmol/min/mg protein via the glpT system and 11 nmol/min/mg protein for the uhpT system. This difference was expected because the G3P transport activity had been reconstituted from a strain carrying multiple copies of the glpT gene. Taken together, these results suggest that anion exchange may be the molecular basis for transport by the glpT and uhpT proteins.  相似文献   

6.
MalF is an essential cytoplasmic membrane protein of the maltose transport system of Escherichia coli. We have developed a general approach for analysis of the mechanism of integration of membrane proteins and their membrane topology by characterizing a series of fusions of beta-galactosidase to MalF. The properties of the fusion proteins indicate the following. (1) The first two presumed transmembrane segments of MalF are sufficient to anchor beta-galactosidase firmly to the inner membrane. (2) Hybrid proteins with beta-galactosidase fused to a presumed cytoplasmic domain of MalF have high beta-galactosidase specific activity; fusions to periplasmic domains have low activity. We propose therefore, that periplasmic and cytoplasmic domains of integral membrane proteins can be distinguished by the enzymatic properties of such hybrid proteins. In general, it appears that cleaved or non-cleaved signal sequences when attached to beta-galactosidase cause it to become embedded in the membrane, and this results in the inability of the hybrid proteins to assemble into active enzyme. Additional properties of these fusion proteins contribute to our understanding of the regulation of MalF synthesis. The MalF protein, synthesized as part of the malEFG operon of E. coli, is approximately 30-fold less abundant in the cell than MalE protein (the maltose-binding protein). Differential amounts of the fusion proteins indicate that a regulatory signal occurs within the malF gene that is responsible for the step-down in expression from the malE gene to the malF gene.  相似文献   

7.
In vivo 31P nuclear magnetic resonance analysis of Escherichia coli cells showed that the intracellular concentration of P(i) remained constant in wild-type and in a glpT mutant strain whether the cells were grown on excess (2 mM) P(i) or sn-glycerol-3-phosphate as a phosphate source. The function of the phoA promoter (measured by beta-galactosidase activity in a phoA-lacZ fusion strain) was repressed when glpT+ cells were utilizing sn-glycerol-3-phosphate as the sole source of phosphate. These cells were devoid of alkaline phosphatase activity. However, the phoA promoter was fully active in a glpT mutant. These results indicated that the repression of the enzyme synthesis was not due to a variation in the level of cytoplasmic P(i) but was due to the P(i) excreted into the periplasm and/or to the medium.  相似文献   

8.
This report describes a new transposon designed to facilitate the combined use of beta-galactosidase and alkaline phosphatase gene fusions in the analysis of protein localization. The transposon, called TnlacZ, is a Tn5 derivative that permits the generation of gene fusions encoding hybrid proteins carrying beta-galactosidase at their C termini. In tests with plasmids, TnlacZ insertions that led to high cellular beta-galactosidase activity were restricted to sequences encoding either cytoplasmic proteins or cytoplasmic segments of a membrane protein. The fusion characteristics of TnlacZ are thus complementary to those of TnphoA, a transposon able to generate alkaline phosphatase fusions whose high-activity insertion sites generally correspond to periplasmic sequences. The structure of TnlacZ allows the conversion of a TnlacZ fusion into the corresponding TnphoA fusion (and vice versa) through recombination or in vitro manipulation in a process called fusion switching. Fusion switching was used to generate the following two types of fusions with unusual properties: a low-specific-activity beta-galactosidase-alkaline phosphatase gene fusion and two toxic periplasmic-domain serine chemoreceptor-beta-galactosidase gene fusions. The generation of both beta-galactosidase and alkaline phosphatase fusions at exactly the same site in a protein permits a comparison of the two enzyme activities in evaluating the subcellular location of the site, such as in studies of membrane protein topology. In addition, fusion switching makes it possible to generate gene fusions whose properties should facilitate the isolation of mutants defective in the export or membrane anchoring of different cell envelope proteins.  相似文献   

9.
For construction of bifunctionally active membrane-bound fusion proteins, we designed plasmids encoding fusion proteins in which the carboxyl terminus of Escherichia coli proline carrier was joined to the amino terminus of E. coli beta-galactosidase directly or with a collagen linker inserted between the two. The expressions of these fusion proteins complemented deficiencies in both proline transport and beta-galactosidase activity in E. coli cells. The fusion proteins were stable and mostly localized in the cytoplasmic membrane. The proline transport activities of the fusion proteins were kinetically similar to that of the wild type proline carrier. The beta-galactosidase moiety of the collagen-linked fusion protein was liberated from membrane vesicles by collagenase treatment. The Km value of released beta-galactosidase for o-nitrophenyl beta-D-galactopyranoside hydrolysis was similar to that of membrane-bound beta-galactosidase in the fusion protein. These results indicated that the fusion proteins are bifunctionally active and exhibit normal proline transport and beta-galactosidase activities. The crypticity of the beta-galactosidase activity associated with the fusion proteins indicated that the carboxyl terminus of the proline carrier was located on the cytoplasmic side of the membrane.  相似文献   

10.
The cold osmotic shock procedure releases a protein (GLPT) from the cell envelope of Escherichia coli that is related to the transport of sn-glycerol-3-phosphate in this organism. The evidence for this correlation is as follows: (1) GLPT is under the regulatory control of the glpR gene. (2) Some glpT mutants that were isolated as phosphonomycin resistant clones do not synthesize GLPT. Revertants of these mutants (growth on sn-glycerol 3-phosphate) again synthesize GLPT. (3) Some amber mutations in glpT reduce the amount of GLPT while suppressed strains produce normal amounts. (4) Transfer of a plasmid carrying the glpT genes into a strain lacking GLPT and sn-glycerol-3-phosphate transport restores both functions in the recipient. Transport and GLPT synthesis in the plasmid carrying strain are increased 2- to 3-fold over a fully induced wild-type strain, but appear to be constitutive. GLPT is a soluble protein of molecular weight 160,000 composed of 4 identical subunits. The 160,000 molecular weight complex is stable in 1% sodium dodecylsulfate at room temperature. Upon boiling in 1% sodium dodecylsulfate GLPT dissociates into its subunits. Likewise, 8 M urea at room temperature dissociates GLPT into its subunits. Dialysis of dissociated GLPT against phosphate or Tris-HCl buffer, pH 7.0, allows renaturation to the tetrameric form. The protein is acidic in nature (isoelectric point 4.4). In contrast to the typical transport-related periplasmic-binding proteins, no conditions could be found where pure GLPT exhibited binding activity toward its supposed substrate, sn-glycerol-3-phosphate. In vivo new appearance of transport activity for sn-glycerol-3-phosphate transport occurs only shortly before cell division. However, GLPT synthesis does not fluctuate during the cell cycle. The available evidence indicates a cell-division-dependent processing of GLPT in the cell envelope as a reason for the alteration in transport activity. Transport in whole cells is sensitive to the cold osmotic shock procedure, demonstrating the participation of an essential periplasmic component. However, isolated membrane vesicles that are devoid of periplasmic components, including GLPT, are fully active in sn-glycerol-3-phosphate transport. Therefore, we conclude that GLPT is essential in overcoming a diffusion barrier for sn-glycerol-3-phosphate established by the outer membrane. Attempts to isolate mutants that are transport negative in whole cells due to a defect in GLPT but are active in isolated membrane vesicles have failed so far. All GLPT mutants tested, whether or not they synthesize GLPT, are not active in isolated membrane vesicles. Iodination of whole cells with [125I] followed by osmotic shock reveals that several shock-releasable proteins including GLPT become radioactively labeled. This indicates that some portions of GLPT are accessible to the external medium.  相似文献   

11.
Mutants of Escherichia coli K-12 requiring high concentrations of branched-chain amino acids for growth were isolated. One of the mutants was shown to be defective in transport activity for branched-chain amino acids. The locus of the mutation (hrbA) was mapped at 8.9 min on the E. coli genetic map by conjugational and transductional crosses. The gene order of this region is proC-hrbA-tsx. The hrbA system was responsible for the uptake activity of cytoplasmic membrane vesicles. It was not repressed by leucine. The substrate specificities and kinetics of the uptake activities were studied using cytoplasmic membrane vesicles and intact cells of the mutants grown in the presence or absence of leucine. Results showed that there are three transport systems for branched-chain amino acids, LIV-1, -2, and -3. The LIV-2 and -3 transport systems are low-affinity systems, the activities of which are detectable in cytoplasmic membrane vesicles. The systems are inhibited by norleucine but not by threonine. The LIV-2 system is also repressed by leucine. The LIV-1 transport system is a high-affinity system that is sensitive to osmotic shock. When the leucine-isoleucine-valine-threonine-binding protein is derepressed, the high-affinity system can be inhibited by threonine.  相似文献   

12.
The genes coding for the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter strain AR50 were cloned and partially sequenced. A novel lac operon was identified which contains genes coding for a lactose-binding protein (lacE), two integral membrane proteins (lacF and lacG), an ATP-binding protein (lacK) and beta-galactosidase (lacZ). The operon is transcribed in the order lacEFGZK. The operon is controlled by an upstream regulatory region containing putative -35 and -10 promoter sites, an operator site, a CRP-binding site probably mediating catabolite repression by glucose and galactose, and a regulatory gene (lacl) encoding a repressor protein which mediates induction by lactose and other galactosides in wild-type A. radiobacter (but not in strain AR50, thus allowing constitutive expression of the lac operon). The derived amino acid sequences of the gene products indicate marked similarities with other binding-protein-dependent transport systems in bacteria.  相似文献   

13.
We are studying the molecular mechanism of cellular protein localization. The availability of genetic techniques, such as gene fusion in Escherichia coli, has made this problem particularly amenable to study in this prokaryote. We have constructed a variety of strains in which the gene coding for an outer membrane protein is fused to the gene coding for a normally cytoplasmic enzyme, beta-galactosidase. The hybrid proteins produced by such strains retain beta-galactosidase activity; this activity serves as a simple biochemical tag for studying the localization of the outer membrane protein. In addition, we have exploited phenotypes exhibited by certain fusion strains to isolate mutants that are altered in the process of protein export. Genetic and biochemical analyses of such mutants have provided evidence that the molecular mechanism of cellular protein localization is strinkingly similar in both bacteria and animal cells.  相似文献   

14.
Oligonucleotide-directed mutagenesis was used to construct chimeric cDNAs that encode the extracellular and transmembrane domains of the vesicular stomatitis virus glycoprotein (G) linked to the cytoplasmic domain of either the immunoglobulin mu membrane heavy chain, the hemagglutinin glycoprotein of influenza virus, or the small glycoprotein (p23) of infectious bronchitis virus. Biochemical analyses and immunofluorescence microscopy demonstrated that these hybrid genes were correctly expressed in eukaryotic cells and that the hybrid proteins were transported to the plasma membrane. The rate of transport to the Golgi complex of G protein with an immunoglobulin mu membrane cytoplasmic domain was approximately sixfold slower than G protein with its normal cytoplasmic domain. However, this rate was virtually identical to the rate of transport of micron heavy chain molecules measured in the B cell line WEHI 231. The rate of transport of G protein with a hemagglutinin cytoplasmic domain was threefold slower than wild type G protein and G protein with a p23 cytoplasmic domain, which were transported at similar rates. The combined results underscore the importance of the amino acid sequence in the cytoplasmic domain for efficient transport of G protein to the cell surface. Also, normal cytoplasmic domains from other transmembrane glycoproteins can substitute for the G protein cytoplasmic domain in transport of G protein to the plasma membrane. The method of constructing precise hybrid proteins described here will be useful in defining functions of specific domains of viral and cellular integral membrane proteins.  相似文献   

15.
Two-dimensional gel electrophoresis of shock fluids of Escherichia coli K-12 revealed the presence of a periplasmic protein related to sn-glycerol-3-phosphate transport (GLPT) that is under the regulation of glpR, the regulatory gene of the glp regulon. Mutants selected for their resistance to phosphonomycin and found to be defective in sn-glycerol-3-phosphate transport either did not produce GLPT or produced it in reduced amounts. Other mutations exhibited no apparent effect of GLPT. Transductions of glpT+ nalA phage P1 into these mutants and selection for growth on sn-glycerol-3-phosphate revealed a 50% cotransduction frequency to nalA. Reversion of mutants taht did not produce GLPT to growth on sn-glycerol-3-phosphate resulted in strains that produce GLPT. This suggests a close relationship of GLPT to the glpT gene and to sn-glycerol-3-phosphate transport. Attempts to demonstrate binding activity of GLPT in crude shock fluid towards sn-glycerol-3-phosphate have failed so far. However, all shock fluids, independent of their GLPT content, exhibited an enzymatic activity that hydrolyzes under the conditions of the binding assay, 30 to 60% of the sn-glycerol-3-phosphate to glycerol and inorganic orthophosphate.  相似文献   

16.
The promoter-proximal gene (glpT) of the glpT-glpQ operon of Escherichia coli encodes a membrane permease responsible for active transport of sn-glycerol 3-phosphate. Promoter-distal glpQ encodes a periplasmic protein which is not required for active transport of sn-glycerol 3-phosphate (Larson, T.J., Schumacher, G., and Boos, W. (1982) J. Bacteriol. 152, 1008-1021). This periplasmic protein has now been identified as a phosphodiesterase which hydrolyzes glycerophosphodiesters into sn-glycerol 3-phosphate plus alcohol. The enzyme exhibited broad substrate specificity with respect to the alcohol moiety; sn-glycerol 3-phosphate was released from glycerophosphoethanolamine, glycerophosphocholine, glycerophosphoglycerol, and bis(glycerophospho)glycerol. The enzyme was specific for glycerophosphodiesters; bis(p-nitrophenyl)phosphate, a substrate for other phosphodiesterases, was not hydrolyzed. In a coupled spectrophotometric assay utilizing sn-glycerol 3-phosphate dehydrogenase and NAD, apparent activity was optimal at pH 9 and was stimulated by Ca2+. The substrates of the phosphodiesterase had no affinity for the glpT-encoded active transport system. Thus, the glpQ gene product expands the catabolic capability of the glp regulon to include a variety of glycerophosphodiesters.  相似文献   

17.
The glycerol facilitator is known as the only example of a transport protein that catalyzes facilitated diffusion across the Escherichia coli inner membrane. Here we show that the gene encoding the facilitator, glpF, is the first gene in an operon with glpK, encoding glycerol kinase, at 88 min of the E. coli chromosome. The operon is transcribed counterclockwise. We cloned the glpF gene, demonstrated that it complemented a chromosomal glycerol transport-minus mutation, and identified the gene product. The GlpF protein appeared in the membrane fraction of plasmid-bearing strains and had an apparent Mr of 25,000.  相似文献   

18.
C D Archer  J Jin    T Elliott 《Journal of bacteriology》1996,178(8):2462-2464
Transposon insertions that stabilize the beta-galactosidase activity of a HemA-LacZ hybrid protein following carbon starvation were mapped to the atp operon of Salmonella typhimurium. This effect is similar to that seen with nuo mutants defective in the energy-conserving type I NADH dehydrogenase. Insertions in several other genes, including such highly pleiotropic mutants as rpoS, polA, and hfq, were isolated with the same phenotypic screen, but they do not affect the beta-galactosidase activity of HemA-LacZ. All of these mutants act indirectly to alter the colony color of many different fusion strains on indicator plates.  相似文献   

19.
An Escherichia coli periplasmic protein (GlpT) related to sn-glycerol-3-phosphate transport was synthesized in a cell-free system directed by hybrid plasmic ColE1-glpT DNA. The in vitro product cross-reacted with antisera against the purified protein. The ColE1-glpT DNA-directed cell-free system was induced by sn-glycerol-3-phosphate and phosphonomycin and was dependent on cyclic AMP. The in vitro-synthesized protein showed the characteristics of a multimeric protein, as did the purified periplasmic protein. The main proportion of the newly synthesized product had a higher molecular weight than the mature protein found in the periplasm of cells and showed a more positive charge in two-dimensional gel electrophoresis. Thus, a proportion of this protein is presumed to be synthesized in vitro as a precursor. The cell-free system yielded a second protein that is likely to be also coded for by the glpT operon. This protein had a molecular weight of approximately 33,000 in sodium dodecyl sulfate-acrylamide gel electrophoresis and behaved like an intrinsic membrane protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号