首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A kinetic model was proposed to simulate an isometric contraction curve in smooth muscle on the basis of the myosin phosphorylation hypothesis. The Ca2+-calmodulin-dependent activation of myosin light-chain kinase and the phosphorylation-dephosphorylation reaction of myosin were mathematically treated. Solving the kinetic equations at a steady state, we could calculate the relationship between the Ca2+ concentration and the myosin phosphorylation. Assuming that two-head-phosphorylated myosin has an actin-activated Mg2+-ATPase activity and that this state corresponds to an active state, we computed the time courses of the myosin phosphorylation and the active state for various Ca2+ transients. The time course of the active state was converted into that of isometric tension by use of Sandow's model composed of a contractile element and a series elastic component. The model could simulate not only the isometric contraction curves for any given Ca2+ transient but also the following experimental results: the calmodulin-dependent shift of the Ca2+ sensitivity of isometric tension observed in skinned muscle fibers, the disagreement between the Ca2+ sensitivity of myosin phosphorylation and that of isometric tension at a steady state, and the disagreement between the time course of myosin phosphorylation and that of isometric tension development.  相似文献   

2.
In order to examine the involvement of troponin-linked Ca(2+)-regulation, in addition to well-known myosin-linked Ca(2+)-regulation, in the contraction of molluscan striated muscle, myofibrils from Ezo-giant scallop striated muscle were desensitized to Ca(2+) by removing both myosin regulatory light chain and troponin C by treatment with a strong divalent cation chelator, CDTA. The ATPase level in the desensitized myofibrils was about half the maximum level in intact myofibrils regardless of the Ca(2+)-concentration at 25 and 15 degrees C. In the absence of Ca(2+), the ATPase of the desensitized myofibrils was suppressed by myosin regulatory light chain but not affected by troponin C at either temperature. The ATPase was activated at higher Ca(2+)-concentrations by both myosin regulatory light chain and troponin C, but the activating effects of these two proteins were affected differently by temperature. The activation of ATPase by myosin regulatory light chain was much greater than that by troponin C at 25 degrees C, whereas the activation by troponin C was much greater than that by myosin regulatory light chain at 15 degrees C. The maximum activation was only obtained in the presence of both myosin regulatory light chain and troponin C at these temperatures. These findings strongly suggest that the contraction of scallop striated muscle is regulated through both myosin-linked and troponin-linked Ca(2+)-regulation, and that the troponin-linked Ca(2+)-regulation is more significant at lower temperature.  相似文献   

3.
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.  相似文献   

4.
Muscle contraction is regulated by the intracellular Ca(2+ )concentration. In vertebrate striated muscle, troponin and tropomyosin on actin filaments comprise a Ca(2+)-sensitive switch that controls contraction. Ca(2+ )binds to troponin and triggers a series of changes in actin-containing filaments that lead to cyclic interactions with myosin that generate contraction. However, the precise location of troponin relative to actin and tropomyosin and how its structure changes with Ca(2+ )have been not determined. To understand the regulatory mechanism, we visualized the location of troponin by determining the three-dimensional structure of thin filaments from electron cryo-micrographs without imposing helical symmetry to approximately 35 A resolution. With Ca(2+), the globular domain of troponin was gourd-shaped and was located over the inner domain of actin. Without Ca(2+), the main body of troponin was shifted by approximately 30 A towards the outer domain and bifurcated, with a horizontal branch (troponin arm) covering the N and C-terminal regions of actin. The C-terminal one-third of tropomyosin shifted towards the outer domain of actin by approximately 35 A supporting the steric blocking model, however it is surprising that the N-terminal half of tropomyosin shifted less than approximately 12 A. Therefore tropomyosin shifted differentially without Ca(2+). With Ca(2+), tropomyosin was located entirely over the inner domain thereby allowing greater access of myosin for force generation. The interpretation of three-dimensional maps was facilitated by determining the three-dimensional positions of fluorophores labelled on specific sites of troponin or tropomyosin by applying probabilistic distance geometry to data from fluorescence resonance energy transfer measurements.  相似文献   

5.
The following arguments are presented for the observation that curves relating free Ca2+ and force development of thin filament regulated myofilaments of skinned muscle fibers have Hill coefficient (n) greater than 4, which is the number of Ca2+ binding sites on troponin: Activation of the myofilaments is a process relaxing to a nonequilibrium steady state or stationary state. Systems operating at nonequilibrium stationary states are known to display Hill coefficients greater than the number of interacting sites and similar results have been obtained for Ca2+ activation of myofilament isometric force. The size of the basic subunit of thin filament regulated muscle may be the entire thin filament rather than seven actins, one tropomyosin, and one troponin. In this case the number of interacting sites may be on the order of hundreds. Hysteresis in the Ca2+ activation of isometric force might result from multiple stationary states and also might give rise to Hill coefficients greater than 4.  相似文献   

6.
Thin filament regulation of muscle contraction is believed to be mediated by both Ca2+ and strongly bound myosin cross-bridges. We found that secophalloidin (SPH, 5-8 mM) activates cross-bridge cycling without Ca2+ causing isometric force comparable to that induced by Ca2+. At saturated [SPH], Ca2+ further increased force by 20%. SPH-induced force was reversible upon washing with a relaxing solution. However, there was more than 30% irreversible loss in subsequent Ca2+-activated force. We hypothesize that SPH activates muscle via strongly bound cross-bridges. SPH-activated contraction provides a new model for studying the role of Ca2+ and cross-bridges in muscle regulation.  相似文献   

7.
The trigger Ca2+-binding sites in troponin C, those which initiate muscle contraction, are thought to be the first two of four potential sites (sites I-IV). In cardiac troponin C, the first Ca2+-binding site is inactive, and initiation of contraction in cardiac muscle appears to involve only the second site. To study this phenomenon and associated Ca2+-dependent protein conformational changes in cardiac troponin C, the cDNA for the chicken protein was incorporated into a bacterial expression plasmid to allow site-specific mutagenesis. Ca2+-binding site I was activated by deletion of Val-28 and conversion of amino acids 29-32 to those found at the first four positions in the active site I of fast skeletal troponin C. In a series of proteins, Ca2+-binding site II was inactivated by mutation of amino acids Asp-65, Asp-67, and Gly-70. All mutated proteins exhibited the predicted calcium-binding characteristics. The single mutation of converting Asp-65 to Ala was sufficient to inactivate site II. Ca2+-dependent conformational changes in the normal and mutated proteins were monitored by labeling with a sulfhydryl-specific fluorescent dye. Activation of Ca2+-binding site I or inactivation of site II, eliminated the large Ca2+-dependent increase in fluorescence seen in the wild type protein and there was, instead, a Ca2+-dependent decrease in fluorescence. All mutant proteins could associate with troponin I and troponin T to form a troponin complex. Activation of Ca2+-binding site I changed the characteristics of contraction in skinned slow skeletal muscle fibers such that the response to Ca2+ was more cooperative. Inactivation of Ca2+-binding site II abolished Ca2+-dependent contraction in skinned muscle fibers. The data provide a direct demonstration that Ca2+-binding site II in cardiac troponin C is essential for triggering muscle contraction and support the hypothesis that site I functions to modify the characteristics of contraction.  相似文献   

8.
Troponin is a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle by participating in a series of conformational events within the actin-based thin filament. Troponin is a heterotrimeric complex consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT). Ternary troponin complexes have been produced by assembling recombinant chicken skeletal muscle TnC, TnI and the C-terminal portion of TnT known as TnT2. A full set of small-angle neutron scattering data has been collected from TnC-TnI-TnT2 ternary complexes, in which all possible combinations of the subunits have been deuterated, in both the +Ca2+ and -Ca2+ states. Small-angle X-ray scattering data were also collected from the same troponin TnC-TnI-TnT2 complex. Guinier analysis shows that the complex is monomeric in solution and that there is a large change in the radius of gyration of TnI when it goes from the +Ca2+ to the -Ca2+ state. Starting with a model based on the human cardiac troponin crystal structure, a rigid-body Monte Carlo optimization procedure was used to yield models of chicken skeletal muscle troponin, in solution, in the presence and in the absence of regulatory calcium. The optimization was carried out simultaneously against all of the scattering data sets. The optimized models show significant differences when compared to the cardiac troponin crystal structure in the +Ca2+ state and provide a structural model for the switch between +Ca2+ and -Ca2+ states. A key feature is that TnC adopts a dumbbell conformation in both the +Ca2+ and -Ca2+ states. More importantly, the data for the -Ca2+ state suggest a long extension of the troponin IT arm, consisting mainly of TnI. Thus, the troponin complex undergoes a large structural change triggered by Ca2+ binding.  相似文献   

9.
It is of paramount importance to investigate the relation between the time-dependent change in intracellular Ca2+ concentration ([Ca2+]i) (Ca2+ transients) and the mechanical activity of isolated single myocytes to understand the regulatory mechanisms of heart function. However, because of technical difficulties in performing mechanical measurements with single myocytes, the simultaneous recording of Ca2+ transients and mechanical activity has mainly been performed with multicellular cardiac preparations that give conflicting results concerning Ca2+ transients during isometric twitches and during twitches with unloaded shortening. In the present study, we coupled intracellular Ca2+ measurement optics with a force measurement system using carbon fibers to examine the relation between Ca2+ transients and the mechanical activity of rat single ventricular myocytes over a wide range of load. To minimize the possible load dependence of sarcoplasmic reticulum Ca2+ loading, contraction mode was switched at every twitch from unloaded shortening to isometric contraction. During a twitch with unloaded shortening, the Ca2+ transients exhibited a higher peak and a higher rate of decay than transients during an isometric twitch. Similarly, when we changed the contraction mode in every pair of twitches, Ca2+ transients were dependent only on the mode of contraction. Mechanical uncoupling with 2,3-butanedione monoxime abolished this dependence on the mode of contraction. Our results suggest that Ca2+ transients reflect the affinity of troponin C for Ca2+, which is influenced by the change in strain on the thin filament but not by the length change per se.  相似文献   

10.
The retinal cones of teleost fish contract at dawn and elongate at dusk. We have previously reported that we can selectively induce detergent-lysed models of cones to undergo either reactivated contraction or reactivated elongation, with rates and morphology comparable to those observed in vivo. Reactivated contraction is ATP dependent, activated by Ca2+, and inhibited by cAMP. In addition, reactivated cone contraction exhibits several properties that suggest that myosin phosphorylation plays a role in mediating Ca2+-activation (Porrello, K., and B. Burnside, 1984, J. Cell Biol., 98:2230-2238). We report here that lysed cone models can be induced to contract in the absence of Ca2+ by incubation with trypsin-digested, unregulated myosin light chain kinase (MLCK) obtained from smooth muscle. This observation provides further evidence that MLCK plays a role in regulating cone contraction. We also report here that lysed cone models can be induced to contract in the absence of Ca2+ by incubation with high concentrations of MgCl2 (10-20 mM). Mg2+-induced reactivated contraction is supported by inosine triphosphate (ITP) just as well as by ATP. Because ITP will not serve as a substrate for MLCK, this finding suggests that Mg2+-activation of contraction does not require myosin phosphorylation. Although Ca2+-induced contraction is completely blocked by cAMP at concentrations less than 10 microM, cAMP has no effect on cone contraction activated by unregulated MLCK or by high Mg2+ in the absence of Ca2+. Because trypsin digestion of MLCK cleaves off not only the Ca2+/calmodulin-binding site but also the site phosphorylated by cAMP-dependent protein kinase, and because Mg2+ activation of cone contraction circumvents MLCK action altogether, both these observations would be expected if cAMP inhibits reactivated cone contraction by catalyzing the phosphorylation of MLCK and thus reducing its affinity for Ca2+, as has been described for smooth muscle. Together our results suggest that in lysed cone models, myosin phosphorylation is sufficient for activating cone contraction, even in the absence of other Ca2+-mediated events, that cAMP inhibition of contraction is mediated by cAMP-dependent phosphorylation of MLCK, and that 10-20 mM Mg2+ can activate actin-myosin interaction to produce contraction in the absence of myosin phosphorylation.  相似文献   

11.
1. A purified preparation of myosin light-chain kinase (MLCK) was obtained from chicken gizzard, and it was shown to consist of two subunits; 130,000 (130 K)-dalton subunit and 17,000 (17 K)-dalton subunit. In amino acid composition the 130 K and 17 K subunits were identical with the 105 K and 17 K subunits of Dabrowska et al. (1977 and 1978), respectively. In disc gel electrophoresis, the 17 K subunit of our MLCK preparation responded to Ca2+ ions in the same way as bovine calmodulin, and differently from skeletal troponin C. There appeared to be one minor difference between 17 K subunit and calmodulin in the primary structure of the C-terminal region. 2. The Ca2+ and Sr2+ concentrations required for the three activities (ATPase and superprecipitation activities and MLCK activity) were measured. Two types of "reconstituted" myosin B were used; one contained 17 K subunit of gizzard MLCK and the other contained bovine brain calmodulin. The two types of "reconstituted" myosin B were practically identical with "natural" myosin B in the Ca2+ and Sr2+ requirements for the three activities measured above. 3. Both the extent and the activity of superprecipitation, and both the limited and steady activities of ATPase were measured. The MLCK activity was estimated in two ways; by urea gel electrophoresis and by measuring 32 P incorporation from [gamma-32P]ATP into myosin. The results thus obtained favor the kinase-phosphatase mechanism of calcium regulation of gizzard muscle contraction.  相似文献   

12.
Ritter O  Haase H  Morano I 《FEBS letters》1999,446(2-3):233-235
Skeletal muscle contraction of Limulus polyphemus, the horseshoe crab, seemed to be regulated in a dual manner, namely Ca2+ binding to the troponin complex as well phosphorylation of the myosin light chains (MLC) by a Ca2+/calmodulin-dependent myosin light chain kinase. We investigated muscle contraction in Limulus skinned fibers in the presence of Ca2+ and of Ca2+/calmodulin to find out which of the two mechanisms prevails in Limulus skeletal muscle contraction. Although skinned fibers revealed high basal MLC mono- and biphosphorylation levels (0.48 mol phosphate/mol 31 kDa MLC; 0.52 mol phosphate/mol 21 kDa MLC), the muscle fibers were fully relaxed at pCa 8. Upon C2+ or Ca2+/calmodulin activation, the fibers developed force (357+/-78.7 mN/mm2; 338+/-69.7 mN/mm2, respectively) while the MLC phosphorylation remained essentially unchanged. We conclude that Ca2+ activation is the dominant regulatory mechanism in Limulus skeletal muscle contraction.  相似文献   

13.
The Ca2+-sensitive ATPase activity of rabbit skeletal myofibrils disappeared completely after treatment with a solution containing CDTA, a strong divalent cation chelator, at a low ionic strength. A gel electrophoretic study revealed that all troponin C and about half of myosin light chain 2 were removed from the myofibrils by the CDTA treatment. The CDTA-treated myofibrils, when reconstituted with skeletal troponin C, showed almost exactly the same Ca2+- or Sr2+-sensitive ATPase activity as that of intact myofibrils. The CDTA-treated myofibrils reconstituted with porcine cardiac troponin C showed the same Ca2+- or Sr2+-sensitivity of the ATPase as that of porcine cardiac myofibrils; Sr2+-sensitivity relative to Ca2+-sensitivity was about ten times higher than, and the maximal slope of the activation curve was about half that of skeletal myofibrils. These findings indicate that these characteristic features of divalent cation regulation in the contraction of skeletal and cardiac muscles are determined solely by the species of troponin C. Bovine brain calmodulin hardly activated the ATPase activity of the CDTA-treated myofibrils even in the presence of Ca2+. Excess calmodulin, however, was found to give Ca2+- or Sr2+-sensitivity to the ATPase activity of the CDTA-treated myofibrils. Frog skeletal parvalbumins 1 and 2, even in excess, did not affect the ATPase activity of the CDTA-treated myofibrils.  相似文献   

14.
Cardiac troponin C is the Ca2+-dependent switch for heart muscle contraction. Troponin C is associated with various other proteins including troponin I and troponin T. The interaction between the subunits within the troponin complex is of critical importance in understanding contractility. Following a Ca2+ signal to begin contraction, the inhibitory region of troponin I comprising residues Thr128-Arg147 relocates from its binding surface on actin to troponin C, triggering movement of troponin-tropomyosin within the thin filament and thereby freeing actin-binding site(s) for interactions with the myosin ATPase of the thick filament to generate the power stroke. The structure of calcium-saturated cardiac troponin C (C-domain) in complex with the inhibitory region of troponin I was determined using multinuclear and multidimensional nuclear magnetic resonance spectroscopy. The structure of this complex reveals that the inhibitory region adopts a helical conformation spanning residues Leu134-Lys139, with a novel orientation between the E- and H-helices of troponin C, which is largely stabilized by electrostatic interactions. By using isotope labeling, we have studied the dynamics of the protein and peptide in the binary complex. The structure of this inhibited complex provides a framework for understanding into interactions within the troponin complex upon heart contraction.  相似文献   

15.
The stiffness of the single myosin motor (epsilon) is determined in skinned fibers from rabbit psoas muscle by both mechanical and thermodynamic approaches. Changes in the elastic strain of the half-sarcomere (hs) are measured by fast mechanics both in rigor, when all myosin heads are attached, and during active contraction, with the isometric force (T0) modulated by changing either [Ca2+] or temperature. The hs compliance is 43.0+/-0.8 nm MPa-1 in isometric contraction at saturating [Ca2+], whereas in rigor it is 28.2+/-1.1 nm MPa-1. The equivalent compliance of myofilaments is 21.0+/-3.3 nm MPa-1. Accordingly, the stiffness of the ensemble of myosin heads attached in the hs is 45.5+/-1.7 kPa nm-1 in isometric contraction at saturating [Ca2+] (e0), and in rigor (er) it rises to 138.9+/-21.2 kPa nm-1. Epsilon, calculated from er and the lattice molecular dimensions, is 1.21+/-0.18 pN nm-1. epsilon estimated, using a thermodynamic approach, from the relation of T0 at saturating [Ca2+] versus the reciprocal of absolute temperature is 1.25+/-0.14 pN nm-1, similar to that estimated for fibers in rigor. Consequently, the ratio e0/er (0.33+/-0.05) can be used to estimate the fraction of attached heads during isometric contraction at saturating [Ca2+]. If the osmotic agent dextran T-500 (4 g/100 ml) is used to reduce the lateral filament spacing of the relaxed fiber to the value before skinning, both e0 and er increase by approximately 40%. Epsilon becomes approximately 1.7 pN nm-1 and the fraction and the force of myosin heads attached in the isometric contraction remain the same as before dextran application. The finding that the fraction of myosin heads attached to actin in an isometric contraction is 0.33 rules out the hypothesis of multiple mechanical cycles per ATP hydrolyzed.  相似文献   

16.
To investigate the relationship between thin filament Ca2+ binding and activation of the MgATPase rate of myosin subfragment 1, native cardiac thin filaments were isolated and characterized. Direct measurements of 45Ca binding to the thin filament were consistent with non-cooperative binding to two high affinity sites (Ka 7.3 +/- 0.8 x 10(6) M-1) and either cooperative or non-cooperative binding to one low affinity site (Ka 4 +/- 2 x 10(5) M-1) per troponin at 25 degrees C, 30 mM ionic strength, pH 7.06. Addition of a low concentration of myosin subfragment 1 to the native thin filaments produced a Ca2+-regulated MgATPase activity with Kapp (2.5 +/- 1.3 x 10(5) M-1), matching the low affinity Ca2+ site. The MgATPase rate was cooperatively activated by Ca2+ (Hill coefficient 1.8). To determine whether Ca2+ binding to the low affinity sites was cooperative, native thin filament troponin was exchanged with troponin labeled on troponin C with 2-(4'-iodoacetamidanilo)naphthalene-6-sulfonic acid. From the Ca2+-sensitive fluorescence of this complex, Ca2+ binding was cooperative with a Hill coefficient of 1.7-2.0. Using the troponin-exchanged thin filaments, myosin subfragment 1 MgATPase rate activation was also cooperative and closely proportional to Ca2+ thin filament binding. Reconstitution of the thin filament from its components raised the Ca2+ affinity by a factor of 2 (compared with native thin filaments) and incorporation of fluorescently modified troponin raised the Ca2+ affinity by another factor of 2. Stoichiometrically reconstituted thin filaments produced non-cooperative MgATPase rate activation, contrasting with cooperative activation with native thin filaments, troponin-exchanged thin filaments and thin filaments reconstituted with a stoichiometric excess of troponin. The Ca2+-induced fluorescence transition of stoichiometrically reconstituted thin filaments was non-cooperative. These results suggest that Ca2+ binds cooperatively to the regulatory sites of the cardiac thin filament, even in the absence of myosin, and even though cardiac troponin C has only one Ca2+-specific binding site. A theoretical model for these observations is described and related to the experimental data. Well-known interactions between neighboring troponin-tropomyosin complexes are the proposed source of cooperativity and also influence the overall Ka. The data indicate that Ca2+ is four times more likely to elongate a sequence of troponin-tropomyosin units already binding Ca2+ than to bind to a site interior to a sequence of units without Ca2+.  相似文献   

17.
On treatment with 10 mM EDTA at 30 degrees C, protein of 18,000 daltons was released from myofibrils, thin filaments and myosin B prepared from the smooth muscle of an ascidian, Halocynthia roretzi. This protein was purified from the EDTA extract of myofibrils by differential centrifugation, freeze-drying and gel-filtration. Based on its molecular weight, electrophoretic mobilities in the presence and absence of Ca2+ and other properties, it was identified as troponin C. By EDTA treatment, ascidian myosin B lost the Ca2+-sensitivity of Mg2+-ATPase, and EDTA-treated myosin B recovered the sensitivity by mixing with the EDTA extract of myosin B in the presence of Mg2+. Gel-electrophoretic patterns indicated that desensitization and resensitization of ascidian myosin B were accompanied by the removal and binding of troponin C. These results indicate that ascidian smooth muscle is regulated by a troponin-tropomyosin system, and desensitization induced by EDTA treatment is due to the removal of troponin C but not the release of the light chains of the myosin molecule. Based on these findings, we have established a simple method for the purification of troponin C from ascidian smooth muscle.  相似文献   

18.
Recent data on the binding of Ca2+ to the specific sites on troponin, alone, in regulated actin, and in regulated actomyosin, as well as data on the Ca2+ activation of the actomyosin ATPase (Grabarek, Z., J. Grabarek, P.C. Leavis, and J. Gergely, 1983, J. Biol. Chem., 258:14098-14102.), are analyzed on the basis of a model used previously for qualitative theoretical studies of the Ca2+ activation of muscle contraction (Shiner and Solaro, 1982). The data allow and require an extension of the model to consider the effects of tropomyosin explicitly. Three major results of the analysis are at variance with previous investigations. A repulsive interaction between tropomyosins; and an attractive interaction between actins (or myosin heads attached to actin) are found, whereas others have found or assumed an attractive tropomyosin-tropomyosin interaction and no actin-actin interaction. The parameter values found here predict hysteresis under the conditions of the ATPase experiments; no other existing model for the interactions manifest in the Ca2+ activation of contraction can predict hysteresis. The prediction is of increased interest in light of experimental reports of hysteresis in the Ca2+ activation of isometric force (Ridgeway, E. B., A. M. Gordon, and D. A. Martyn, 1983, Science (Wash. DC), 219:1075-1077; Gordon, A. M., E. B. Ridgeway, and D. A. Martyn, 1984, Plenum Publishing Corp., New York, 553-563; Brandt, P. W., B. Gluck, M. Mini, and C. Cerri, 1985, J. Mus. Res. Cell Motil. 6:197-205.).  相似文献   

19.
The indirect flight muscles (IFM) of Drosophila melanogaster provide a good genetic system with which to investigate muscle function. Flight muscle contraction is regulated by both stretch and Ca(2+)-induced thin filament (actin + tropomyosin + troponin complex) activation. Some mutants in troponin-I (TnI) and troponin-T (TnT) genes cause a "hypercontraction" muscle phenotype, suggesting that this condition arises from defects in Ca(2+) regulation and actomyosin-generated tension. We have tested the hypothesis that missense mutations of the myosin heavy chain gene, Mhc, which suppress the hypercontraction of the TnI mutant held-up(2) (hdp(2)), do so by reducing actomyosin force production. Here we show that a "headless" Mhc transgenic fly construct that reduces the myosin head concentration in the muscle thick filaments acts as a dose-dependent suppressor of hypercontracting alleles of TnI, TnT, Mhc, and flightin genes. The data suggest that most, if not all, mutants causing hypercontraction require actomyosin-produced forces to do so. Whether all Mhc suppressors act simply by reducing the force production of the thick filament is discussed with respect to current models of myosin function and thin filament activation by the binding of calcium to the troponin complex.  相似文献   

20.
Skeletal and cardiac muscle contraction are inhibited by the actin-associated complex of tropomyosin-troponin. Binding of Ca(2+) to troponin or binding of ATP-free myosin to actin reverses this inhibition. Ca(2+) and ATP-free myosin stabilize different tropomyosin-actin structural arrangements. The position of tropomyosin on actin affects the binding of ATP-free myosin to actin but does not greatly affect myosin-ATP binding. Ca(2+) and ATP-free myosin alter both the affinity of ATP-free myosin for actin and the kinetics of that binding. A parallel pathway model of regulation simulated the effects of Ca(2+) and ATP-free myosin binding on both equilibrium binding of myosin-nucleotide complexes to actin and the general features of ATPase activity. That model was recently shown to simulate the kinetics of myosin-S1 binding but the analysis was limited to a single condition because of the limited data available. We have now measured equilibrium binding and binding kinetics of myosin-S1-ADP to actin at a series of ionic strengths and free Ca(2+) concentrations. The parallel pathway model of regulation is consistent with those data. In that model the interaction between adjacent regulatory complexes fully saturated with Ca(2+) was destabilized and the inactive state of actin was stabilized at high ionic strength. These changes explain the previously observed change in binding kinetics with increasing ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号