首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
LANA is the KSHV-encoded terminal repeat binding protein essential for viral replication and episome maintenance during latency. We have determined the X-ray crystal structure of LANA C-terminal DNA binding domain (LANADBD) to reveal its capacity to form a decameric ring with an exterior DNA binding surface. The dimeric core is structurally similar to EBV EBNA1 with an N-terminal arm that regulates DNA binding and is required for replication function. The oligomeric interface between LANA dimers is dispensable for single site DNA binding, but is required for cooperative DNA binding, replication function, and episome maintenance. We also identify a basic patch opposite of the DNA binding surface that is responsible for the interaction with BRD proteins and contributes to episome maintenance function. The structural features of LANADBD suggest a novel mechanism of episome maintenance through DNA-binding induced oligomeric assembly.  相似文献   

3.
4.
The essential Saccharomyces cerevisiae regulatory protein Rap1 contains two tandem Myb-like DNA binding sub-domains that interact with two defined DNA "hemisites", separated by a trinucleotide linker sequence. We have mapped the thermodynamically defined DNA-binding site of Rap1 by a primer extension method coupled with electrophoretic separation of bound and unbound DNAs. Relative to published consensus sequences, we detect binding interactions that extend 3 bp beyond the 5'-end of the putative DNA-binding site. This new site of interaction is located where the DNA minor groove faces the protein, and may account for the major DNA bending induced by Rap1p that previous studies have mapped to a site immediately upstream of the consensus binding site. In addition, we show that a minimal DNA-binding site made of one single consensus hemisite, preceded or followed by a spacer trinucleotide that interacts with the unstructured protein linker between the two Rap1p DNA binding domains, is able to bind the protein, although at lower affinity. These findings may explain the observed in vivo binding properties of Rap1p at many promoters that lack canonical binding sites.  相似文献   

5.
6.
7.
The Epstein-Barr virus (EBV) nuclear antigen EBNA-1 plays an integral role in the maintenance of latency in EBV-infected B lymphocytes. EBNA-1 binds to sequences within the plasmid origin of replication (oriP). It is essential for the replication of the latent episomal form of EBV DNA and may also regulate the expression of the EBNA group of latency gene products. We have used sequence-specific DNA-binding assays to purify EBNA-1 away from nonspecific DNA-binding proteins in a B-lymphocyte cell extract. The availability of this eucaryotic protein has allowed an examination of the interaction of EBNA-1 with its specific DNA-binding sites and an evaluation of possible roles for the different binding loci within the EBV genome. DNA filter binding assays and DNase I footprinting experiments showed that the intact Raji EBNA-1 protein recognized the two binding site loci in oriP and the BamHI-Q locus and no other sites in the EBV genome. Competition filter binding experiments with monomer and multimer region I consensus binding sites indicated that cooperative interactions between binding sites have relatively little impact on EBNA-1 binding to region I. An analysis of the binding parameters of the Raji EBNA-1 to the three naturally occurring binding loci revealed that the affinity of EBNA-1 for the three loci differed. The affinity for the sites in region I of oriP was greater than the affinity for the dyad symmetry sites (region II) of oriP, while the physically distant region III locus showed the lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can mediate differing regulatory functions through differential binding to its recognition sequence.  相似文献   

8.
Kaposi's sarcoma-associated herpesvirus (KSHV) DNA persists in latently infected cells as an episome via tethering to the host chromosomes. The latency-associated nuclear antigen (LANA) of KSHV binds to the cis-acting elements in the terminal repeat (TR) region of the genome through its carboxy terminus. Previous studies have demonstrated that LANA is important for episome maintenance and replication of the TR-containing plasmids. Here we report that LANA associates with origin recognition complexes (ORCs) when bound to its 17-bp LANA binding cognate sequence (LBS). Chromatin immunoprecipitation of multiple regions across the entire genome from two KSHV-infected cell lines, BC-3 and BCBL-1, revealed that the ORCs predominantly associated with the chromatin structure at the TR as well as two regions within the long unique region of the genome. Coimmunoprecipitation of ORCs with LANA-specific antibodies shows that ORCs can bind and form complexes with LANA in cells. This association was further supported by in vitro binding studies which showed that ORCs associate with LANA predominantly through the carboxy-terminal DNA binding region. KSHV-positive BC-3 and BCBL-1 cells arrested in G(1)/S phase showed colocalization of LANA with ORCs. Furthermore, replication of The TR-containing plasmid required both the N- and C termini of LANA in 293 and DG75 cells. Interestingly, our studies did not detect cellular ORCs associated with packaged viral DNA as an analysis of purified virions did not reveal the presence of ORCs, minichromosome maintenance proteins, or LANA.  相似文献   

9.
10.
11.
Kaposi's sarcoma-associated herpesvirus (KSHV) persists as episomes in infected cells by circularizing at the terminal repeats (TRs). The KSHV episome carries multiple reiterated copies of the terminal repeat, and each copy is capable of supporting replication. Expression of the latency-associated nuclear antigen (LANA) is critical for the replication of TR-containing plasmids. A 32-bp sequence upstream of LANA binding site 1 (LBS1), referred to as RE (replication element), along with LANA binding sites 1 and 2 (RE-LBS1/2), is sufficient to support replication (J. Hu and R. Renne, J. Virol. 79:2637-2642, 2005). In this report we demonstrate that the minimal replicator element (RE-LBS1/2) replicates in synchrony with the host cellular DNA, and only once, in a cell-cycle-dependent manner. Overexpression of the mammalian replication inhibitor geminin blocked replication of the plasmid containing the minimal replicator element, confirming the involvement of the host cellular replication control mechanism, and prevented rereplication of the plasmid in the same cell cycle. Overexpression of Cdt1 also rescued the replicative ability of the RE-LBS1/2-containing plasmids. A chromatin immunoprecipitation assay performed using anti-origin recognition complex 2 (alpha-ORC2) and alpha-LANA antibodies from cells transfected with RE-LBS1/2, RE-LBS1, LBS1, or RE showed the association of ORC2 with the RE region. Expression of LANA increased the number of copies of chromatin-bound DNA of replication elements, suggesting that LANA is important for the recruitment of ORCs and may contribute to the stabilization of the replication protein complexes at the RE site.  相似文献   

12.
13.
Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a 1,162-amino-acid protein that acts on viral terminal repeat (TR) DNA to mediate KSHV episome persistence. The two essential components of episome persistence are DNA replication prior to cell division and episome segregation to daughter nuclei. These functions are located within N- and C-terminal regions of LANA. N- and C-terminal regions of LANA are sufficient for TR DNA replication. In addition, N- and C-terminal regions of LANA tether episomes to mitotic chromosomes to segregate episomes to progeny cell nuclei. To generate a tethering mechanism, N-terminal LANA binds histones H2A/H2B to attach to mitotic chromosomes, and C-terminal LANA binds TR DNA and also associates with mitotic chromosomes. Here, we test the importance of the internal LANA sequence for episome persistence. We generated LANA mutants that contain N- and C-terminal regions of LANA but have most of the internal sequence deleted. As expected, the LANA mutants bound mitotic chromosomes in a wild-type pattern and also bound TR DNA as assayed by electrophoretic mobility shift assays (EMSA). The mutants mediated TR DNA replication, although with reduced efficiency compared with LANA. Despite the ability to replicate DNA and exert the chromosome and DNA binding functions necessary for segregating episomes to daughter nuclei, the mutants were highly deficient for the ability to mediate both short- and long-term episome persistence. These data indicate that internal LANA sequence exerts a critical effect on its ability to maintain episomes, possibly through effects on TR DNA replication.  相似文献   

14.
Kaposi''s sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a 1,162-amino-acid protein that mediates the maintenance of episomal viral genomes in latently infected cells. The two central components of episome persistence are DNA replication with each cell division and the segregation of DNA to progeny nuclei. LANA self-associates to bind KSHV terminal-repeat (TR) DNA and to mediate its replication. LANA also simultaneously binds to TR DNA and mitotic chromosomes to mediate the segregation of episomes to daughter nuclei. The N-terminal region of LANA binds histones H2A and H2B to attach to mitotic chromosomes, while the C-terminal region binds TR DNA and also associates with chromosomes. Both the N- and C-terminal regions of LANA are essential for episome persistence. We recently showed that deletion of all internal LANA sequences results in highly deficient episome maintenance. Here we assess independent internal LANA regions for effects on episome persistence. We generated a panel of LANA mutants that included deletions in the large internal repeat region and in the unique internal sequence. All mutants contained the essential N- and C-terminal regions, and as expected, all maintained the ability to associate with mitotic chromosomes in a wild-type fashion and to bind TR DNA, as assessed by electrophoretic mobility shift assays (EMSA). Deletion of the internal regions did not reduce the half-life of LANA. Notably, deletions within either the repeat elements or the unique sequence resulted in deficiencies in DNA replication. However, only the unique internal sequence exerted effects on the ability of LANA to retain green fluorescent protein (GFP) expression from TR-containing episomes deficient in DNA replication, consistent with a role in episome segregation; this region did not independently associate with mitotic chromosomes. All mutants were deficient in episome persistence, and the deficiencies ranged from minor to severe. Mutants deficient in DNA replication that contained deletions within the unique internal sequence had the most-severe deficits. These data suggest that internal LANA regions exert critical roles in LANA-mediated DNA replication, segregation, and episome persistence, likely through interactions with key host cell factors.  相似文献   

15.
16.
Wong LY  Wilson AC 《Journal of virology》2005,79(21):13829-13836
During latency, the Kaposi's sarcoma-associated herpesvirus genome is maintained as a circular episome, replicating in synchrony with host chromosomes. Replication requires the latency-associated nuclear antigen (LANA) and an origin of latent DNA replication located in the viral terminal repeats, consisting of two LANA binding sites (LBSs) and a GC-rich sequence. Here, we show that the recruitment of a LANA dimer to high-affinity site LBS-1 bends DNA by 57 degrees and towards the major groove. The cooccupancy of LBS-1 and lower-affinity LBS-2 induces a symmetrical bend of 110 degrees . By changing the origin architecture, LANA may help to assemble a specific nucleoprotein structure important for the initiation of DNA replication.  相似文献   

17.
Allosteric interactions between the strong and weak nucleotide-binding sites and the total and proper single-stranded (ss)DNA-binding sites of the Escherichia coli PriA helicase have been analyzed using the fluorescence titration technique. Binding of the DNA exclusively to the proper DNA-binding site of the helicase, profoundly affects the intrinsic affinities of both nucleotide-binding sites, indicating a direct communication between the nucleotide-binding sites and the proper DNA-binding site. The communication involves conformational changes of the entire protein molecule. Nevertheless, the bound DNA differently affects the structures of the strong and weak nucleotide-binding sites. While the polarity of the strong site is moderately diminished, the polarity of the weak site is dramatically increased, indicating an intimate involvement of the weak site in controlling the helicase interactions with the DNA. The strong site does not directly control the DNA affinity of the enzyme. Only when the helicase has both nucleotide-binding sites saturated with ADP but not with ATP analogues does the enzyme have an increased affinity for the ssDNA, indicating that the control of ssDNA affinity involves a coordinated action of both nucleotide-binding sites and depends upon the phosphate group of the bound cofactor. A dramatic increase of the DNA affinity, when the DNA encompasses the total DNA-binding site of the enzyme, with both nucleotide-binding sites saturated with ADP or NDP, indicates that an additional area of the protein within the total DNA-binding site becomes engaged in interactions with the DNA. The significance of these results for the enzyme activities in the DNA unwinding and recognition is discussed.  相似文献   

18.
The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. To identify novel LANA protein-cell protein interactions that could contribute to these activities, we performed a proteomic screen in which purified, adenovirus-expressed Flag-LANA protein was incubated with an array displaying 4,192 nonredundant human proteins. Sixty-one interacting cell proteins were consistently detected. LANA interactions with high-mobility group AT-hook 1 (HMGA1), HMGB1, telomeric repeat binding factor 1 (TRF1), xeroderma pigmentosum complementation group A (XPA), pygopus homolog 2 (PYGO2), protein phosphatase 2A (PP2A)B subunit, Tat-interactive protein 60 (TIP60), replication protein A1 (RPA1), and RPA2 proteins were confirmed in coimmunoprecipitation assays. LANA-associated TIP60 retained acetyltransferase activity and, unlike human papillomavirus E6 and HIV-1 TAT proteins, LANA did not reduce TIP60 stability. The LANA-bound PP2A B subunit was associated with the PP2A A subunit but not the catalytic C subunit, suggesting a disruption of PP2A phosphatase activity. This is reminiscent of the role of simian virus 40 (SV40) small t antigen. Chromatin immunoprecipitation (ChIP) assays showed binding of RPA1 and RPA2 to the KSHV terminal repeats. Interestingly, LANA expression ablated RPA1 and RPA2 binding to the cell telomeric repeats. In U2OS cells that rely on the alternative mechanism for telomere maintenance, LANA expression had minimal effect on telomere length. However, LANA expression in telomerase immortalized endothelial cells resulted in telomere shortening. In KSHV-infected cells, telomere shortening may be one more mechanism by which LANA contributes to the development of malignancy.  相似文献   

19.
The high mobility group (HMG) protein HMG-D from Drosophila melanogaster is a highly abundant chromosomal protein that is closely related to the vertebrate HMG domain proteins HMG1 and HMG2. In general, chromosomal HMG domain proteins lack sequence specificity. However, using both NMR spectroscopy and standard biochemical techniques we show that binding of HMG-D to a single DNA site is sequence selective. The preferred duplex DNA binding site comprises at least 5 bp and contains the deformable dinucleotide TG embedded in A/T-rich sequences. The TG motif constitutes a common core element in the binding sites of the well-characterized sequence-specific HMG domain proteins. We show that a conserved aromatic residue in helix 1 of the HMG domain may be involved in recognition of this core sequence. In common with other HMG domain proteins HMG-D binds preferentially to DNA sites that are stably bent and underwound, therefore HMG-D can be considered an architecture-specific protein. Finally, we show that HMG-D bends DNA and may confer a superhelical DNA conformation at a natural DNA binding site in the Drosophila fushi tarazu scaffold-associated region.  相似文献   

20.
Drosophila P element transposase recognizes internal P element DNA sequences   总被引:24,自引:0,他引:24  
P D Kaufman  R F Doll  D C Rio 《Cell》1989,59(2):359-371
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号