首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lange AB 《Peptides》2002,23(11):2063-2070
The pentapeptide proctolin, originally identified in the cockroach, has been shown to be widely distributed in many insects and to have a broad range of physiological functions. In the oviduct of the locust, Locusta migratoria, proctolin's role as a neurotransmitter/neuromodulator has been well documented; however, a neurohormonal role in the locust is less certain. This review will examine the various roles of proctolin in locust oviduct contraction and will present evidence that a substance chromatographically, immunologically and physiologically indistinguishable from proctolin is present in the hemolymph of the locust, L. migratoria. This material is concentrated in the plasma, rather than the hemocytes, and is present at concentrations ranging from 0.1 to 0.2nM. This review extends the role of proctolin in insects, and suggests that proctolin may play a neurohormonal role in the locust.  相似文献   

2.
Proctolin is a neuroactive pentapeptide first isolated from the cockroach Periplaneta americana in which it has an excitatory effect on contractions on visceral muscles of the hindgut. Subsequently, proctolin is reported in a wide variety of invertebrates, and considerable efforts have been made to determine its mode of action. Its primary role appears to be that of a neuromodulator rather than a classical neurotransmitter, and it may also serve as a neurohormone, depending on the muscles examined. The present study identifies the vagina muscles of the blood‐sucking insect Rhodnius prolixus (Stål) as a proctolinergic system. Physiological doses of proctolin generate prolonged contractions that closely mimic the effects of motor nerve stimulation. This preparation is convenient and robust, warranting its use as an experimental system to further understand the role of proctolin in the regulation of muscle contractions in insects. Moreover, these muscles are innervated by an identifiable inhibitory component providing a means to investigate the interaction between proctolin excitation and neural inhibition.  相似文献   

3.
Proctolin is a pentapeptide (arg-tyr-leu-pro-thr) found in nervous tissues throughout the phylum Arthropoda. Initially described as a peptidergic neuromuscular transmitter, it now appears that proctolin is a major arthropod neurohormone modulating nervous activity, muscle tonus and contractile force. Structure-function studies with synthetic analogues demonstrate diverse peptides which retain agonistic activity, but few exhibit a high degree of affinity for the cockroach hindgut receptor compared with proctolin (Kdapp = 2 x 10(-8) M). High affinity agonists (Kdapp less than or equal to 10(-7) M) are limited to [phe2]-proctolin, [lys1]-proctolin and specific N-terminal additions. In this regard the hindgut receptor differs in its ligand specificity from that reported for the locust extensor tibia receptor. Using the analogue studies to predict sequences which may act as agonists, we have examined the known vertebrate peptide hormones for proctolin-like sequences. A possible relationship between vasoactive intestinal peptide, proctolin and erythrophore concentrating hormone is critically evaluated.  相似文献   

4.
Neuromuscular transmission in an insect visceral muscle   总被引:2,自引:0,他引:2  
The electrical properties of the muscles of locust oviduct have been examined using intracellular recordings. The muscle cells are both dye and electrically coupled. They possess a wide array of spontaneous electrical activity ranging from slow oscillations of membrane potential to action potentials. In addition to possessing spontaneous electrical activity, certain regions of the oviduct are under motor control. The amplitude of evoked excitatory junction potentials (EJPs) increased step wise revealing innervation from a maximum of three motor units. These EJPs underwent summation and facilitation, and reached a critical threshold at which point the membrane revealed an active response. Bath applied glutamate, aspartate, proctolin, and octopamine were tested for their ability to alter resting potential and EJPs. L-glutamate (1.6 X 10(-5) M and above) produced a dose-dependent depolarization of membrane potential accompanied by a reduction in amplitude of EJPs. Although L-aspartate resulted in similar effects, the concentrations required were higher than those for glutamate. Proctolin (6.3 X 10(-11) M-6.0 X 10(-9) M) resulted in a dose-dependent depolarization but had little or no effect on amplitude of EJPs. Application of D, L-octopamine (3.2 X 10(-5) M-1.7 X 10(-4) M) induced a small hyperpolarization and a reduction in amplitude of EJP. It is suggested that contractions of locust oviduct appear to be regulated by a combination of a classical neurotransmitter such as glutamate, along with the neuromodulators octopamine and proctolin.  相似文献   

5.
The biogenic amine octopamine and the pentapeptide proctolin are two important neuroactive chemicals that control contraction of the oviducts of the African locust Locusta migratoria. The physiological responses and signal transduction pathways used by octopamine and proctolin have been well characterized in the locust oviducts and this therefore provides the opportunity to examine the interaction between these two pathways. Octopamine, via the intracellular messenger adenosine 3',5'-cyclic monophosphate (cyclic AMP), inhibits contraction of the oviducts, while proctolin, via the phosphoinositol pathway, stimulates contraction. We have examined the physiological response of the oviducts to combinations of octopamine and proctolin and also looked at how combinations of these affect one of the main intracellular mediators of the octopamine response, namely cyclic AMP. It was found that application of octopamine to the oviducts led to a dose-dependent reduction in tonus of the muscle and also a decrease in the amplitude and frequency of spontaneous phasic contractions. Octopamine-induced relaxation was enhanced in the presence of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX). Octopamine was also able to inhibit proctolin-induced contractions of the oviducts in a dose-dependent manner. A 10(-9) M proctolin-induced contraction was inhibited by 83% in the presence of 10(-5) M octopamine, and was completely inhibited in the presence of 10(-5) M octopamine plus 5x10(-4) M IBMX. Octopamine led to a dose-dependent increase in cyclic AMP content as measured by radioimmunoassay. In the presence of 10(-9) M proctolin, this octopamine-induced increase in cyclic AMP was reduced by as much as 60%. Proctolin also caused a dose-dependent decrease in the cyclic AMP elevation produced by 5x10(-6) M octopamine. These results indicate that octopamine and proctolin can antagonize each other's physiological response when added in combination, and that proctolin is able to modulate the response of the oviducts to octopamine by influencing cyclic AMP levels.  相似文献   

6.
The effects of various pharmacological agents on neurally evoked contractions of the visceral muscles of the oviduct of Locusta migratoria have been examined. The pentapeptide, proctolin, at low concentrations (10?11 M?10?10 M), induced an increase in the amplitude of neurally evoked contractions and basal tonus, and induced the appearance and increased the frequency of myogenic contractions. Glutamate, at 10?4 M, produced a small transient contraction which in some preparations was accompanied by a reduction in amplitude of neurally evoked contractions. Octopamine, at 10?6 M, reduced the amplitude of neurally evoked contractions and also resulted in a relaxation of the muscles. The octopaminergic effects were inhibited by the α-aminergic antagonist phentolamine. Neurally evoked contractions were unaffected by dopamine, 5-HT or the acetylcholine receptor antagonists atropine and hexamethonium. Acetylcholine increased the amplitude of neurally evoked contractions, but only at the high concentration of 10?3 M. The possible role of proctolin and glutamate as excitatory neuro-transmitters and the inhibitory action of octopamine is discussed.  相似文献   

7.
A N Starratt  B E Brown 《Life sciences》1975,17(8):1253-1256
Proctolin, a myotropic substance with potent activity on the proctodeal (hindgut) muscles of the cockroach, Periplaneta americana (L.), has been identified by the use of Edman degradation and dansylation techniques as Arg-Tyr-Leu-Pro-Thr. Synthesis of the pentapeptide having this sequence and exhibiting the properties of natural proctolin confirmed the structure. Threshold activity on proctodeal muscle occurs at about 10−9 M proctolin.  相似文献   

8.
Samples of tyramine purchased from six different manufacturers were tested for their effectiveness and specificity in blocking proctolin- and neurally-evoked contractions of the superior longitudinal muscles of the locust (Locusta migratoria) rectum. It was found that tyramine was neither specific (in that it also blocked glutamatergic responses) nor consistent in its action, as samples purchased from different manufacturers gave a range of different results. The venom of the wasp Philanthus triangulum was used to block glutamatergic responses to enable proctolinergic responses to be studied in isolation. Thin layer chromatography was performed to determine the purity of the tyramine samples but no correlation could be made between purity and efficacy or specificity of proctolinergic antagonism. It is concluded that, due to the inconsistency and non-specificity of its action, tyramine should not be used as an antagonist for proctolin.  相似文献   

9.
The role of proctolin has been further investigated in the locust (Locusta migratoria) mandibular closer muscles. Radioactive calcium uptake measurements were made using protease-dissociated muscle cells. Both the phorbol ester, phorbol-12,13-dibutyrate, and proctolin produce tonic contractions which are associated with the influx of extracellular calcium. The thresholds for proctolin and the phorbol ester to contract the muscle were 1-10 nM and 10-100nM, respectively, while their respective thresholds for evoking measurable calcium influx into the muscle cells were 0.1-1 nM for proctolin, and 0.1-1 pM for phorbol-12,13-dibutyrate. The effect of phorbol-12,13-dibutyrate is blocked by a number of protein kinase inhibitors (at a concentration of 0.1 mM), suggesting that an activation of a protein kinase can lead to calcium influx. These inhibitors, however, do not block the effect of proctolin, indicating that these two compounds work through different pathways, possibly converging on the same final target. In light of this finding, a number of other compounds have been tested to try to ascertain how proctolin mediates an increased calcium influx.  相似文献   

10.
Clark L  Zhang JR  Tobe S  Lange AB 《Peptides》2006,27(3):559-566
The corpus cardiacum (CC) and corpus allatum (CA) of the locust, Locusta migratoria, contain intense proctolin-like immunoreactivity (PLI) within processes and varicosities. In contrast, in the cockroach, Diploptera punctata, although a similar staining pattern occurs within the CC, PLI appears absent within the CA. The possible role of proctolin as a releasing factor for adipokinetic hormone (AKH) and juvenile hormone (JH) was investigated in the locust. Proctolin caused a dose-dependent increase in AKH I release (determined by RP-HPLC) from the locust CC over a range of doses with threshold above 10(-8)M and maximal release at about 10(-7)M proctolin. Isolated glandular lobes of the CC released greater amounts of AKH I following treatment with proctolin and in these studies AKH II was also released. Confirmation of AKH I release was obtained by injecting perfusate from incubated CCs into locusts and measuring hemolymph lipid concentration. Perfusate from CC incubated in proctolin contained material with similar biological activity to AKH. Proctolin was also found to significantly increase the synthesis and release of JH from locust CA, with the increase being greatest from CAs that had a relatively low basal rate of JH biosynthesis (<35 pmol h(-1) per CA). In contrast, proctolin did not alter the synthesis and release of JH from the cockroach CA. These results suggest that proctolin may act as a releasing factor for AKHs and JH in the locust but does not act as a releasing factor for JH in the cockroach.  相似文献   

11.
Several cardioactive peptides have been identified in insects and most of them are likely to act on the heart as neurohormones. Here we have investigated the cardioactive properties of members of a family of insect tachykinin-related peptides (TRPs) in heterologous bioassays with two coleopteran insects, Tenebrio molitor and Zophobas atratus. Their effects were compared with the action of the pentapeptide proctolin. We tested the cardiotropic activity of LemTRP-4 isolated from the midgut of the cockroach Leucophaea maderae, CavTK-I and CavTK-II isolated from the blowfly Calliphora vomitoria. The semi-isolated hearts of the two coleopteran species were strongly stimulated by proctolin. We observed a dose dependent increase in heartbeat frequency (a positive chronotropic effect) and a decrease in amplitude of contractions (a negative inotropic effect). In both beetles the TRPs are less potent cardiostimulators and exert lower maximal frequency responses than proctolin. LemTRP-4 applied at 10(-9)-10(-6) M was cardiostimulatory in both species inducing an increase of heart beat frequency. The amplitude of contractions was stimulated only in Z. atratus. CavTK-I and CavTK-II also exerted cardiostimulatory effects in Z. atratus at 10(-9)-10(-6) M. Both peptides stimulated the frequency, but only CavTK-II increased the amplitude of the heart beat. In T. molitor, however, the CavTKs induced no significant effect on the heart.Immunocytochemistry with antisera to the locust TRPs LomTK-I and LomTK-II was employed to identify the source of TRPs acting on the heart. No innervation of the heart by TRP immunoreactive axons could detected, instead it is possible that TRPs reach the heart by route of the circulation. The likely sources of circulating TRPs in these insects are TRP-immunoreactive neurosecretory cells of the median neurosecretory cell group in the brain with terminations in the corpora cardiaca and endocrine cells in the midgut.In conclusion, LemTRP-4, CavTK-I and CavTK-II are less potent cardiostimulators than proctolin and also exert stimulatory rather than inhibitory action on amplitude of contractions. The differences in the responses to proctolin and TRPs suggest that the peptides regulate heart activity by different mechanisms.  相似文献   

12.
The ultrastructure of nerve endings in the oviduct visceral muscles of Locusta migratoria was studied by electron microscopy and by immunogold labeling for two kinds of neuromodulators, the pentapeptide proctolin and FMRFamide-related peptides. Nerve endings contained electron-lucent round vesicles and two kinds of granules (round and avoid), and formed two types of synapses or release sites with the muscle. The morphologically distinct nerve endings were classified into three different categories based on the composition of synaptic vesicles and granules. Type-I nerve endings were dominated by electron-lucent round vesicles and contained only a few round electron-dense granules. Type-II nerve endings contained mostly electron-dense round granules and electron-lucent round vesicles. A few electron-dense ovoid granules were also present. Electron-dense ovoid granules dominated the type-III nerve endings, which usually contained less electron-lucent vesicles than either type-I or II nerve endings. Both proctolin and FMRFamide-like immunoreactivity was associated with electron-dense round granules. However, FMRFamide-like immunoreactivity was only found in the type-II nerve endings, while proctolin immunoreactivity was found within type-I nerve endings as well as in some type-II nerve endings. Immunological results therefore allow us to further divide type-II nerve endings into type-IIa (immunonegative for proctolin) and type-IIb (immunopositive for proctolin). Type-III nerve endings show no immunolabeling to either proctolin or FMRFamide.  相似文献   

13.
The formation of inositol phosphates in response to the neuropeptide proctolin was studied in locust oviducts. Glycerophosphoinositol, inositol 1-phosphate, inositol 1,4-bisphosphate, and inositol 1,4,5-trisphosphate were identified in the locust oviducts using anion-exchange chromatography. Proctolin stimulated the release of inositol 1-phosphate, inositol 1,4-bisphosphate, and inositol 1,4,5-trisphosphate during a 5-min incubation. In the presence of lithium ions the effects of proctolin were enhanced, with elevations of 98%, 42%, and 45% of inositol 1-phosphate, inositol 1,4-bisphosphate, and inositol 1,4,5-trisphosphate, respectively. Physiologically the effects of proctolin upon muscular contraction of locust oviducts were mimicked by the active phorbol ester, phorbol 12-myristate 13-acetate, and by the diacylglycerol analogue, 1-oleoyl-2-acetylglycerol. The inactive phorbol ester, 12-myristate 13-acetate 4-O-methyl ether, was without effect. The effects of the active phorbol ester and the diacylglycerol analogue were calcium-dependent requiring micromolar concentrations of calcium. The results indicate that the locust oviducts possess proctolin receptors that are linked to phosphatidylinositol metabolism and that inositol phospholipid hydrolysis may mediate the physiological action of proctolin.  相似文献   

14.
The locust oviduct bioassay system was used to assess the ability of a variety of peptides to induce oviducal contractions. Proctolin analogues were three orders of magnitude less potent than proctolin. Proctolin supra-analogue and Arg-Tyr-Leu-Ala-Thr demonstrated high activity. Perhaps the most significant finding was the discrepancy between the high binding capacity of the proctolin analogue Arg-Tyr-Ser-Pro-Thr and its relatively low myotropic activity. This observation argues for a crucial role for the leucine residue in activating the proctolin receptor. Several other myotropic peptides were tested for their effect on oviduct contractions. FMRFamide caused contractions at doses several orders of magnitude higher than proctolin. The FLRFamide leucomyosuppressin inhibited proctolin-induced contractions. In addition, myomodulin and catch relaxing peptide caused oviducal contractions at low concentrations. The enkephalins had no effect when applied alone but potentiated proctolin-induced oviduct contractions. The mechanism of the potentiation is not known. The data argue for the presence of several binding sites on the oviduct membrane.  相似文献   

15.
Proctolin increases the frequency and amplitude of myogenic contractions and results in a sustained contraction of the oviducts of Locusta migratoria. The possible mode of action of proctolin receptors on this visceral muscle has been investigated. Calcium-free saline, containing either 20 mM magnesium ions or 100 μM EGTA, inhibited myogenic contractions, lowered basal tension, and abolished all the effects of proctolin following a 20 min incubation. These effects were reversible upon washing with normal saline. Similar results were obtained with normal saline containing 10 mM cobalt ions. Nifedipine at 50 μM lowered basal tension, abolished myogenic contractions, and reduced the proctolin-induced sustained contraction by 42-62% at 0.5 nM proctolin and by 33-37% at 5 nM proctolin. Similar results were obtained with 100 μM verapamil. Proctolin was still capable of eliciting considerable contractions (25-67% of controls) in preparations depolarized with 100 mM potassium saline. The removal of calcium from the high-potassium saline reversibly abolished the potassium-induced contraction and reversibly blocked the action of proctolin. Nifedipine was ineffective in blocking the action of proctolin in high-potassium saline. Neither cyclic AMP levels nor cyclic GMP levels of the lateral oviducts were elevated by proctolin in the presence of a phosphodiesterase inhibitor. The results indicate that proctolin mediates its effects via an influx of external calcium ions. This calcium appears to enter through two channels, a voltage-dependent channel and a receptor-operated channel. Cyclic nucleotides do not appear to be involved in the action of proctolin in this visceral muscle.  相似文献   

16.
Summary Evidence is presented that neurons in the adult Colorado potato beetle contain a proctolin-like substance. By use of immunocytochemical methods the location of immunoreactive neurons in the central and stomatogastric nervous systems is described. No such neurons were found in the proto- and deutocerebrum or optic lobe. Few immunoreactive neurons are present in the tritocerebrum and numerous proctolin-immunoreactive neurons occur in all ventral ganglia and in the frontal ganglion. Two groups of neurosecretory cells in the suboesophageal ganglion contain a proctolin-immunoreactive substance. In these cells this material is co-localized with a bovine pancreatic polypeptide/FMRF amide-like substance and with a vasopressin/vasotocin/oxytocin-like substance. Proctolin-immunoreactive axon terminals were found on the musculature of the fore- and hindgut and of the vas deferens, and on some segmental muscles. Furthermore, proctolin-immunoreactive neurosecretory axon terminals were found in the corpus cardiacum. The proctolin-like substance may therefore function both as a neurotransmitter/neuromodulator and as a neurohormone. The presence of a proctolin-like substance was also demonstrated with a sensitive bioassay. On fractionation of extracts of the nervous systems of Leptinotarsa decemlineata with high performance liquid chromatography most of the proctolin-like bioactive material comigrated with authentic proctolin. This shows that a proctolin-like substance in this insect is very similar to, if not identical with, the known pentapeptide proctolin.  相似文献   

17.
The largest series of position-2 modified proctolin analogues to have been examined to date were tested for their ability to mimic the basal contraction induced by proctolin on hindgut of the cockroach, Periplaneta americana, and oviduct of the locust, Locusta migratoria. Twelve analogues of proctolin (Arg-Tyr-Leu-Pro-Thr), differing in the substituent (H, OMe, OEt, OPr, F, Cl, Br, I, NO(2), NH(2), N(3), Me) located at the para-position of the aromatic amino acid, caused dose-dependent contractions of both tissues at concentrations quite similar to proctolin. Seven showed greater or equal potency on the hindgut but, with one exception, they were less active on the oviduct than proctolin. The rank order of potency of the analogues depends on the tissue, lending more support to the notion that insects have more than one type of proctolin receptor. No relationship was observed between myoactivity and lipophilic, steric, electron donating or electron withdrawing properties of the substituents at the para-position of the aromatic amino acid. This may be the result of more than one sub-type of proctolin receptor on the specific tissue with differing structural requirements for optimum activity.  相似文献   

18.
The myotropic neuropeptide proctolin is, in additional to its action on proctodaeum and on some other systems, highly effective on the hyperneural muscle of Periplaneta americana and evokes long-term contractions. During this proctolin response the input resistance (Rinput) increases by about 25% accompanied by only slight depolarization. These processes require extracellular Ca2+ but are still present in Na+-free solution.Junction potentials evoked by threshold stimulation of the nerve are not affected by proctolin. Synaptic processes do not seem to be important for the proctolin action on hyperneural muscle. It is more likely that the whole membrane of the muscle fibre serves as target for proctolin. Proctolin reduces the threshold for neurally evoked muscle contractions, the only available route of excitation since the muscle fibres themselves are not electrically excitable.The K+-channel blocker 4-aminopyridine may evoke contraction as well as proctolin, but this is only a transitory response. In contrast to proctolin, 4-aminopyridine is still effective after blocking the Ca2+-channels by Co2+, but the response is smaller. Therefore proctolin seems to be primarily effective via Ca2+-channels, whereas 4-aminopyridine exerts its effects via K+-channels. The decrease in membrane conductance produced by proctolin could result from a Ca2+-dependent reduction of the K+-outward current.  相似文献   

19.
A histochemical technique for the localization of adenylate cyclase activity has been applied to the extensor-tibiae muscle of the hindleg of the locust, Schistocerca gregaria to localise the sites of action of the modulatory compounds octopamine and proctolin. Octopamine-sensitive adenylate cyclase activity can be demonstrated in fast and intermediate type muscle fibres but not in the limited number of purely slow muscle fibres (3-6) in the fan region at the proximal end of the muscle. In contrast the latter fibres are the only ones in the muscle to exhibit proctolin-sensitive adenylate cyclase activity. In both cases the bulk of the reaction product is localised in the sarcoplasmic reticulum component of the dyads, with lesser amounts occurring beneath the sarcolemmal membrane, in the non-dyad sarcoplasmic reticulum and in the T-tubule system. The results are consistent with physiological data suggesting that proctolin, but not octopamine, mediates its effects on the myogenic rhythm of contraction and relaxation in this muscle by changing the levels of cyclic AMP in the small group of slow muscle fibres which act as the pacemaker for this rhythm.  相似文献   

20.
The bundle of tonic fibres situated at the proximal end of the locust metathoracic extensor tibialis muscle is innervated by the dorsal unpaired median neurone (DUMETi) as well as by the slow excitatory (SETi)) and common inhibitor (CI) neurones. It is not innervated by the fast excitatory neurone (FETi).These fibres contract spontaneously and rhythmically. The myogenic rhythm can be modified by neural stimulation.Spontaneous slow depolarizing potentials resembling the pacemaker potentials of insect cardiac muscle were demonstrated in these fibres.The actions of glutamate on the tonic muscle fibres are not compatible with its being a specific excitatory transmitter. Glutamate can stimulate weak contractions of the muscle, but this action is inhibited when chloride ions are removed from the saline.10?6 M Octapamine hyperpolarizes the tonic fibre membrane. Octopamine, GABA and glutamate all inhibit the myogenic contractions and reduce the force of the neurally evoked contractions.The tonic muscle is very responsive to proctolin. At 5 × 10?11 M proctolin enhances the force and increases the frequency of myogenic contractions. At 10?9 M it depolarizes the muscle membrane potential, and at that and higher concentrations it causes the muscle to contract. At 2 × 10?7 M proctolin induces contractures which resemble those evoked by sustained high-frequency neural stimulation. Iontophoretic experiments show that proctolin receptors occur at localized sites on the tonic fibre membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号