首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《The Journal of cell biology》1990,111(5):2089-2096
During development of the rat central nervous system, neural cell adhesion molecule (NCAM) mRNAs containing in the extracellular domain a 30-bp alternative exon, here named VASE, replace RNAs that lack this exon. The presence of this alternative exon between previously described exons 7 and 8 changes the predicted loop structure of the derived polypeptide from one resembling an immunoglobulin constant region domain to one resembling an immunoglobulin variable domain. This change could have significant effects on NCAM polypeptide function and cell-cell interaction. In this report we test multiple rat tissues for the presence of additional alternative exons at this position and also examine the regulation of splicing of the previously described exon. To sensitively examine alternative splicing, polymerase chain reactions (PCRs) with primers flanking the exon 7/exon 8 alternative splicing site were performed. Four categories of RNA samples were tested for new exons: whole brain from embryonic day 11 to adult, specific brain regions dissected from adult brain, clonal lines of neural cells in vitro, and muscle cells and tissues cultured in vitro and obtained by dissection. Within the limits of the PCR methodology, no evidence for any alternative exon other than the previously identified VASE was obtained. The regulation of expression of this exon was found to be complex and tissue specific. Expression of the 30-bp exon in the heart and nervous system was found to be regulated independently; a significant proportion of embryonic day 15 heart NCAM mRNAs contain VASE while only a very small amount of day 15 nervous system mRNAs contain VASE. Some adult central nervous system regions, notably the olfactory bulb and the peripheral nervous system structures adrenal gland and dorsal root ganglia, express NCAM which contains very little VASE. VASE is undetectable in NCAM PCR products from the olfactory epithelium. Other nervous system regions express significant quantities of NCAM both with and without VASE. Clonal cell lines in culture generally expressed very little VASE. These results indicate that a single alternative exon, VASE, is found in NCAM immunoglobulin-like loop 4 and that distinct tissues and nervous system regions regulate expression of VASE independently both during development and in adult animals.  相似文献   

4.
5.
6.
Recent studies suggest that ribosome-binding protein 1 (RRBP1) is involved in multiple diseases such as tumorigenesis and cardiomyopathies. However, its function during embryonic development remains largely unknown. We searched Xenopus laevis database with human RRBP1 protein sequence and identified two cDNA sequences encoding Xenopus orthologs of RRBP1 including rrbp1a (NM_001089623) and rrbp1b (NM_001092468). Both genes were firstly detected at blastula stage 8 with weak signals in animal hemisphere by whole mount in situ hybridization. Evident expression of rrbp1 was mainly detected in cement gland and notochord at neurula and tailbud stages. Heart expression of rrbp1 was detected at stage 36. RT-PCR results indicated that very weak expression of rrbp1a was firstly detected in oocytes, followed by increasing expression until stage 39. Differently, very weak expression of rrbp1b was firstly observed at stage 2, and then maintained at a lower level to stage 17 followed by an intense expression from stages 19–39. Moreover, both expression profiles were also different in adult tissues. This study reports Xenopus rrbp1 expression during early embryonic development and in adult tissues. Our study will facilitate the functional analysis of Rrbp1 family during embryonic development.  相似文献   

7.
Sex determination in mammals is controlled by the SRY gene located on the Y chromosome. It encodes a protein containing a DNA-binding and DNA-bending domain. In spite of recent advances in the identification of the mechanisms that regulate male sex determination in mammals, the expression profile of the SRY protein in normal and sex-reversed human tissues is not well established. In order to localize the SRY protein and determine its cellular distribution and expression at different stages of development, we prepared monoclonal antibodies (mAb) against the recombinant SRY protein. One of these antibodies, LSRY1.1, recognizes a protein of 27 kDa in total lysates of HeLa SRYB3, a human cell line transfected with the SRY gene under the control of the SV40 promoter. Immunocytochemical analysis in the cell lines shows nuclear localization of the SRY protein. We have studied SRY protein expression in human tissues at different stage of fetal development until adult life and have demonstrated that the SRY protein is located in the nuclei of somatic cells and germ cells in the genital ridge during testis development. After testis determination, it can be detected until the adult stage in both germ cells and Sertoli cells. The presence of the SRY protein was also analyzed in biopsies of gonadal tissues of sex-reversal patients such as SRY-positive 46,XX males or SRY-positive 46,XX true hermaphrodites. SRY protein is detected in the nuclei of Sertoli cells of the testis and in the nuclei of granulosa cells in the ovotestis in these patients and in the nuclei of germ cells of both tissue types. These results suggest a common cellular origin for both Sertoli cells and granulosa cells.  相似文献   

8.
The c-fos proto-oncogene is the cellular homologue of v-fos identified as the bone transforming gene of the FBJ and the FBR murine osteosarcoma viruses. We show here, using a sensitive in situ hybridization method, that the c-fos proto-oncogene is expressed in the cartilage, bone and tooth forming tissues during mouse development. This result suggests that the tumors observed after infection by the FBJ viral complex and c-fos overexpression in transgenic mice occur in those tissues in which c-fos is expressed during development.  相似文献   

9.
1. Taurine levels have been determined in eight rat organs. 2. During postnatal growth the taurine content in retina, heart, small intestine, spleen and lung increases with advancing age, although adult values are not reached at the same time. 3. In contrast the taurine content decreases with age in brain cortex, liver and kidney. 4. The taurine in subcellular fractions of adult, 20-day-old and 5-day-old rat tissues exists predominantly in the cytosol of the cell. Taurine content in particulate fractions shows marked variations during development in the different organs. 5. Taurine distribution in the subcellular fractions suggests that some of the cellular taurine in the tissues is not freely mobile in cytosol.  相似文献   

10.
Abscisic acid plays a crucial role in the regulation of fruit development and ripening, however, its role in the floral development and the fruit set is still unclear. In the present study, the ABA accumulation and the expression patterns of genes related to ABA metabolism and signalling in sweet cherry were investigated. The results showed that ABA accumulation increased and peaked at stage V in ovary, at stage VI in stamen, and in young fruit it peaked at 7 days after full bloom. The expression pattern of ABA synthetase PaNCED1 was consistent with the changes of ABA accumulation. Among four ABA degradation enzymes PaCYP707As, PaCYP707A4 was highly expressed in ovary, PaCYP707A1 was mainly in stamen, and PaCYP707A2 was in young fruit, and their expressions were reversed to the trend of PaNCED1. With regard to ABA signalling genes, among three ABA receptors PaPYLs, PaPYL2 and PaPYL3 were high expression genes in ovary and in young fruit with similar expression patterns, while PaPYL3 was the high expression gene in stamen. Within six PaPP2Cs, PaPP2C1/2/3 were highly expressed in ovary and young fruit, while PaPP2C3/4 were mainly in stamen. The six PaSnRK2s showed different expression patterns: PaSnRK2.1/2.2/2.4 were highly expressed in ovary and young fruit, while PaSnRK2.1/2.3 were highly expressed in stamen. In situ hybridization results showed that PaPYL3, PaPP2C3 and PaSnRK2.4 were expressed in seed, pulp and fruit peel during fruit set. In conclusion, ABA and its signaling may play an important role in the regulation of floral development and fruit set.  相似文献   

11.
The expression of cathepsin B- and L-specific mRNAs as well as active forms of the enzymes was determined in mouse placenta and visceral yolk sac from 7.5 through 17.5 days postconception, a period marked by major anatomic transitions in the mouse conceptus. The level of specific mRNA was determined relative to the 28S ribosomal RNA in a series of multiprobe ribonuclease protection assays using high-specific-activity antisense cathepsin B and L riboprobes. The molecular forms of active cysteine proteases present in the tissues at the time of extraction were detected using a membrane-permeant radiolabeled active site-specific inhibitor, Fmoc-[(125)I(2)]Tyr-Ala-CHN(2). The results of this study show that the expression of active cathepsin L relative to active cathepsin B is significantly higher in visceral yolk sac than in placenta, consistent with a higher proteolytic requirement for the former tissue. Active cathepsin L was highest at Day 9.5 in visceral yolk sac, a stage at which it has been shown that proteolysis in this organ is required for production of amino acids for embryonic protein synthesis. Cathepsin L mRNA was also elevated in the Day 9.5 placenta, but paradoxically this did not result in an increase in cellular active enzyme. An unknown protein, termed p14, highly expressed in placenta, also reacted with the inhibitor. Expression of this protein was highest early during gestation in the ectoplacental cone, suggesting that p14 may be important in the implantation process.  相似文献   

12.
Mouse embryos of the NMRI strain between the 7th and 9th day of gestation were isolated from the uterus and dissected into the various tissue derivatives in order to investigate newly synthesized proteins during morphogenesis. The day 7 embryo was fragmented into trophoblast and ectoplacental cone, distal and proximal endoderm, extraembryonic and embryonic ectoderm. The day 8 and day 9 embryos were divided into trophoblast and placental anlage, yolk sac, amnion, and allantois, as well as cranial, central, and caudal embryonic tissue. The intact embryos were incubated in Dulbecco's minimum essential medium in the presence of 35S-methionine for 4 h, then dissected into the various fragments, and further processed for two-dimensional gel electrophoresis. Protein synthesis of the isolated tissue derivatives was analyzed and compared for the three developmental stages. Concerning the proteins with isoelectric points in the range of 4.5 to 8.0 and molecular weight ratio (M(r)) values between 20,000 and 200,000, we found several significant quantitative and qualitative differences in the various tissue fragments. In addition, we observed further quantitative and qualitative differences in protein synthesis during the postimplantation period investigated. We propose that the differences reflect some of the cell lineage- and developmental stage-specific changes in gene expression during early mammalian differentiation.  相似文献   

13.
14.
This study attempts to add further light on the development of metabolic pathways in mammalians from fetal to post-natal life, by examining ongoing modifications of carnitine (in terms of total acid soluble, short chain esterified and free carnitine) and glycogen levels in the liver, heart, muscle and brain of rabbit during development.  相似文献   

15.
Arrom L  Munné-Bosch S 《Planta》2012,236(2):343-354
Much effort has been focussed on better understanding the key signals that modulate floral senescence. Although ethylene is one of the most important regulators of floral senescence in several species, Lilium flowers show low sensitivity to ethylene; thus their senescence may be regulated by other hormones. In this study we have examined how (1) endogenous levels of hormones in various floral tissues (outer and inner tepals, androecium and gynoecium) vary throughout flower development, (2) endogenous levels of hormones in such tissues change in cut versus intact flowers at anthesis, and (3) spray applications of abscisic acid and pyrabactin alter flower longevity. Results show that floral tissues behave differently in their hormonal changes during flower development. Cytokinin and auxin levels mostly increased in tepals prior to anthesis and decreased later during senescence. In contrast, levels of abscisic acid increased during senescence, but only in outer tepals and the gynoecium, and during the latest stages. In addition, cut flowers at anthesis differed from intact flowers in the levels of abscisic acid and auxins in outer tepals, salicylic acid in inner tepals, cytokinins, gibberellins and jasmonic acid in the androecium, and abscisic acid and salicylic acid in the gynoecium, thus showing a clear differential response between floral tissues. Furthermore, spray applications of abscisic acid and pyrabactin in combination accelerated the latest stages of tepal senescence, yet only when flower senescence was delayed with Promalin. It is concluded that (1) floral tissues differentially respond in their endogenous variations of hormones during flower development, (2) cut flowers have drastic changes in the hormonal balance not only of outer and inner tepals but also of androecium and gynoecium, and (3) abscisic acid may accelerate the progression of tepal senescence in Lilium.  相似文献   

16.
Expression of matrilins during maturation of mouse skeletal tissues.   总被引:5,自引:0,他引:5  
The matrilins are a recently discovered family of non-collagenous extracellular matrix proteins. During embryogenesis, all matrilins are expressed in skeletal tissues. Additionally, matrilin-2 and -4 are expressed in the dermis and in connective tissues of internal organs, e.g. of the lung and kidney. After birth, the expression of matrilin-1 and -3 remains specific for cartilage and bone whereas matrilin-2 and -4 display a broader tissue distribution and could be detected in epithelial, muscle, and nervous tissue as well as in loose and dense connective tissue. In epiphyseal cartilage of growing long bones, matrilin-1 and -3 are present in all cartilage regions, in contrast to matrilin-2, which is expressed in the proliferative and the upper hypertrophic zones. Similarly matrilin-4 was detected all over the epiphyseal cartilage, with the weakest expression in the hypertrophic zone. Although it was shown that matrilin-1 and -3 can form hetero-oligomers and are often co-localized in tissue, clear differences in their spatial distribution could be demonstrated by double-immunolabelling. During joint development matrilin-2 and matrilin-4 are present at the developing joint surface, while in articular cartilage of 6-week-old mice all matrilins are only weakly expressed.  相似文献   

17.
A high affinity polyclonal antibody specific for phosphotyrosyl residues has been used in immunoblotting experiments to survey developing embryonic chicken tissues for the presence and characteristics of tyrosine phosphorylated proteins. Proteins phosphorylated on tyrosine were found to be present in all the embryonic tissues examined, including heart, thigh, gizzard, intestine, lung, liver, kidney, brain, and lens, from 7 to 21 d of development in ovo, but were greatly reduced or absent in the same tissues taken from adult chickens. A limited number of major tyrosine phosphorylated proteins were seen in all the tissues examined and they ranged in molecular mass from 35 to 220 kD. Most of the tissues contained proteins phosphorylated on tyrosine with apparent molecular masses of 120, 70, 60, and 35 kD, suggesting that the substrates of tyrosine protein kinases in different tissues may be related proteins. One-dimensional peptide mapping of the 120- and 70-kD protein bands indicated a close structural relationship among the phosphotyrosine-containing proteins of 120 kD, and similarly among those of 70 kD, from the different tissues.  相似文献   

18.
Amino acid changes in the retina, vitreous, lens, iris-ciliary body and cornea of the rat eye were determined during postnatal growth. The amino acid concentrations of the ocular tissues showed varying profiles at various developmental stages. These results suggest a different timetable for development of each ocular tissue or indicate a synthesis of specific proteins in the postnatal period. Adult amino acid levels appeared to be fully reached on the 30th day after birth at the latest. Quantitatively the greatest changes were observed in taurine concentrations, which increased in all five ocular tissues during maturation. GABA changes paralleled those of taurine in the retina, whereas in the other ocular tissues GABA changes were very low. The greatest decrease in glutamic acid and aspartic acid concentration during postnatal development was in the lens, where these amino acids probably are needed for the synthesis of the lenticular proteins, the alpha-, beta-, and gamma-crystallines.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号