首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Significance of predation by protists in aquatic microbial food webs   总被引:31,自引:0,他引:31  
Predation in aquatic microbial food webs is dominated by phagotrophic protists, yet these microorganisms are still understudied compared to bacteria and phytoplankton. In pelagic ecosystems, predaceous protists are ubiquitous, range in size from 2 μm flagellates to >100 μm ciliates and dinoflagellates, and exhibit a wide array of feeding strategies. Their trophic states run the gamut from strictly phagotrophic, to mixotrophic: partly autotrophic and partly phagotrophic, to primarily autotrophic but capable of phagotrophy. Protists are a major source of mortality for both heterotrophic and autotrophic bacteria. They compete with herbivorous meso- and macro-zooplankton for all size classes of phytoplankton. Protist grazing may affect the rate of organic sinking flux from the euphotic zone. Protist excretions are an important source of remineralized nutrients, and of colloidal and dissolved trace metals such as iron, in aquatic systems. Work on predation by protists is being facilitated by methodological advances, e.g., molecular genetic analysis of protistan diversity and application of flow cytometry to study population growth and feeding rates. Examples of new research areas are studies of impact of protistan predation on the community structure of prey assemblages and of chemical communication between predator and prey in microbial food webs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Temporal dynamics of the microbial food web in the Barents Sea and adjacent water masses in the European Arctic are to a large extent unknown. Seasonal variation in stocks and production rates of heterotrophic bacteria and phototrophic and heterotrophic picoplankton and nanoflagellates was investigated in the upper 50 m of the high-latitude Kongsfjorden, Svalbard, during six field campaigns between March and December 2006. Heterotrophic bacteria, picoplankton and nanoflagellates contributed to ecosystem structure and function in all seasons. Activity within the microbial food web peaked during spring bloom in April, parallel to low abundances of mesozooplankton. In the nutrient-limited post-bloom scenario, an efficient microbial loop, fuelled by dissolved organic carbon from abundant mesozooplankton feeding on phytoplankton and protozooplankton, facilitated maximum integrated primary production rates. A tight microbial food web consisting of heterotrophic bacteria and phototrophic and heterotrophic picoplankton and nanoflagellates was found in the stratified water masses encountered in July and September. Microbial stocks and rates were low but persistent under winter conditions. Seasonal comparisons of microbial biomass and production revealed that structure and function of the microbial food web were fundamentally different during the spring bloom when compared with other seasons. While the microbial food web was in a regenerative mode most of the time, during the spring bloom, a microbial transfer mode represented a trophic link for organic carbon in time and space. The microbial food web’s ability to fill different functional roles in periods dominated by new and regenerated production may enhance the ecological flexibility of pelagic ecosystems in the present era of climate change.  相似文献   

3.
Phytoplankton and heterotrophic prokaryotes are major components of the microbial food web and interact continuously: heterotrophic prokaryotes utilize the dissolved organic carbon derived from phytoplankton exudation or cell lysis (DOCp), and mineralization by heterotrophic prokaryotes provides inorganic nutrients for phytoplankton. For this reason, these communities are expected to be closely linked, although the study of the interactions between them is still a major challenge. Recent studies have presented interactions between phytoplankton and heterotrophic prokaryotes based on coexistence or covariation throughout a time-series. However, a real quantification of the carbon flow within these networks (defined as the interaction strength, IS) has not been achieved yet. This is critical to understand the selectivity degree of bacteria responding to specific algal DOCp. Here we used microautoradiography to quantify the preferences of the major heterotrophic prokaryote phylogenetic groups on DOC derived from several representative phytoplankton species, and expressed these preferences as an IS value. The distribution of the ISs was not random but rather skewed towards weak interactions, in a similar way as the distributions described for stable complex non-microbial ecosystems, indicating that there are some cases of high specificity on the use of specific algal DOCp by some bacterial groups, but weak interactions are more common and may be relevant as well. The variety of IS patterns observed supports the view that the vast range of different resources (different types of organic molecules) available in the sea selects and maintains the high levels of diversity described for marine bacterioplankton.  相似文献   

4.
Omnivory has been implicated in both diffusing and intensifying the effects of consumer control in food chains. Some have postulated that the strong, community level, top-down control apparent in lakes is not expressed in terrestrial systems because terrestrial food webs are reticulate, with high degrees of omnivory and diverse plant communities. In contrast, lake food webs are depicted as simple linear chains based on phytoplankton-derived energy. Here, we explore the dynamic implications of recent evidence showing that attached algal (periphyton) carbon contributes substantially to lake primary and secondary productivity, including fish production. Periphyton production represents a cryptic energy source in oligotrophic and mesotrophic lakes that is overlooked by previous theoretical treatment of trophic control in lakes. Literature data demonstrate that many fish are multi-chain omnivores, exploiting food chains based on both littoral and pelagic primary producers. Using consumer-resource models, we examine how multiple food chains affect fourth-level trophic control across nutrient gradients in lakes. The models predict that the stabilizing effects of linked food chains are strongest in lakes where both phytoplankton and periphyton contribute substantially to production of higher trophic levels. This stabilization enables a strong and persistent top down control on the pelagic food chain in mesotrophic lakes. The extension of classical trophic cascade theory to incorporate more complex food web structures driven by multi-chain predators provides a conceptual framework for analysis of reticulate food webs in ecosystems.  相似文献   

5.
The abundance and biomass of the main components of the microbial plankton food web (“microbial loop”)—heterotrophic bacteria, phototrophic picoplankton and nanoplankton, heterotrophic nanoflagellates, ciliates and viruses, production of phytoplankton and bacterioplankton, bacterivory of nanoflagellates, bacterial lysis by viruses, and the species composition of protists—have been determined in summer time in the Sheksna Reservoir (the Upper Volga basin). A total of 34 species of heterotrophic nanoflagellates from 15 taxa and 15 species of ciliates from 4 classes are identified. In different parts of the reservoir, the biomass of the microbial community varies from 26.2 to 64.3% (on average 45.5%) of the total plankton biomass. Heterotrophic bacteria are the main component of the microbial community, averaging 63.9% of the total microbial biomass. They are the second (after the phytoplankton) component of the plankton and contribute on average 28.6% to the plankton biomass. The high ratio of the production of heterotrophic bacteria to the production of phytoplankton indicates the important role of bacteria, which transfer carbon of allochthonous dissolved organic substances to a food web of the reservoir.  相似文献   

6.
This paper addresses the river heterotrophy paradox, “How can animal biomass within riverine food webs be fueled primarily by autochthonous autotrophic production if the ecosystem as a whole is heterotrophic?”. Reviewed, stable isotope data from tropical, temperate, and arctic rivers provide evidence consistent with the revised riverine productivity model (RPM): “The primary, annual energy source supporting overall metazoan production and species diversity in mid‐ to higher‐trophic levels of most rivers (≥4th order) is autochthonous primary production entering food webs via algal‐grazer and decomposer pathways”. The revised RPM does not conflict with the heterotrophy paradox because: (a) the decomposer (microbial loop) food pathway processes most of the transported, allochthonous and autochthonous carbon and, with algal respiration in some cases, is primarily responsible for a river's heterotrophic state (P/R<1); but (b) biomass production of mid‐ to higher‐trophic levels is principally supported by an algal‐grazer (phytoplankton and benthic microalgae) pathway that is only weakly linked to the decomposer pathway. The reason the algal‐grazer pathway supports the majority of metazoan biomass is that allochthonous carbon is mostly recalcitrant, whereas carbon from autochthonous primary production, though much less plentiful, is commonly more labile (easier to assimilate), contains more energy per unit mass, and is typically preferred by metazoa.  相似文献   

7.
The nutritional versatility of dinoflagellates is a complicating factor in identifying potential links between nutrient enrichment and the proliferation of harmful algal blooms. For example, although dinoflagellates associated with harmful algal blooms (e.g. red tides) are generally considered to be phototrophic and use inorganic nutrients such as nitrate or phosphate, many of these species also have pronounced heterotrophic capabilities either as osmotrophs or phagotrophs. Recently, the widespread occurrence of the heterotrophic toxic dinoflagellate, Pfiesteria piscicida Steidinger et Burkholder, has been documented in turbid estuarine waters. Pfiesteria piscicida has a relatively proficient grazing ability, but also has an ability to function as a phototroph by acquiring chloroplasts from algal prey, a process termed kleptoplastidy. We tested the ability of kleptoplastidic P. piscicida to take up 15N-labeled NH     , NO     , urea, or glutamate. The photosynthetic activity of these cultures was verified, in part, by use of the fluorochrome, primulin, which indicated a positive relationship between photosynthetic starch production and growth irradiance. All four N substrates were taken up by P. piscicida , and the highest uptake rates were in the range cited for phytoplankton and were similar to N uptake estimates for phagotrophic P. piscicida . The demonstration of direct nutrient acquisition by kleptoplastidic P. piscicida suggests that the response of the dinoflagellate to nutrient enrichment is complex, and that the specific pathway of nutrient stimulation (e.g. indirect stimulation through enhancement of phytoplankton prey abundance vs. direct stimulation by saprotrophic nutrient uptake) may depend on P. piscicida 's nutritional state (phagotrophy vs. phototrophy).  相似文献   

8.
SUMMARY 1. Biomass and production of picophytoplankton, phytoplankton and heterotrophic bacterioplankton were measured in seven lakes, exhibiting a broad range in water colour because of humic substances. The aim of the study was to identify environmental variables explaining the absolute and relative importance of picophytoplankton. In addition, two dystrophic lakes were fertilised with inorganic phosphorus and nitrogen, to test eventual nutrient limitation of picophytoplankton in these systems.
2. Picophytoplankton biomass and production were highest in lakes with low concentrations of dissolved organic carbon (DOC), and DOC proved the factor explaining most variation in picophytoplankton biomass and production. The relationship between picophytoplankton and lake trophy was negative, most likely because much P was bound in humic complexes. Picophytoplankton biomass decreased after the additions of P and N.
3. Compared with heterotrophic bacterioplankton, picophytoplankton were most successful at the clearwater end of the lake water colour gradient. Phytoplankton dominated over heterotrophic bacteria in the clearwater systems possibly because heterotrophic bacteria in such lakes are dependent on organic carbon produced by phytoplankton.
4. Compared with other phytoplankton, picophytoplankton did best at intermediate DOC concentrations; flagellates dominated in the humic lakes and large autotrophic phytoplankton in the clearwater lakes.
5. Picophytoplankton were not better competitors than large phytoplankton in situations when heterotrophic bacteria had access to a non-algal carbon source. Neither did their small size lead to picophytoplankton dominance over large phytoplankton in the clearwater lakes. Possible reasons include the ability of larger phytoplankton to float or swim to reduce sedimentation losses and to acquire nutrients by phagotrophy.  相似文献   

9.
《Harmful algae》2009,8(1):77-93
Historically most harmful algal species (HAS) have been thought to be strictly phototrophic. Mixotrophy, the use of phototrophy and heterotrophy in combination, has been emphasized as operative mainly in nutrient-poor habitats as a mechanism for augmenting nutrient supplies. Here we examine an alternate premise, that many harmful algae which thrive in eutrophic habitats are mixotrophs that respond both directly to nutrient inputs, and indirectly through high abundance of bacterial and algal prey that are stimulated by the elevated nutrients. From review and synthesis of the available data, mixotrophy occurs in all HAS examined thus far in the organic substrate- and prey-rich habitats of eutrophic estuarine and marine coastal waters. Where data are available comparing phototrophy versus mixotrophy, mixotrophy in eutrophic habitats generally is significant in nutrient acquisition and growth of HAS and, therefore, likely important in the development and maintenance of their blooms. In eutrophic habitats phagotrophic mixotrophs, in particular, have been shown to attain higher growth than when in phototrophic mode. Yet for many HAS, quantitative data about the role of mixotrophy in nutrition, growth, and blooms are lacking, especially relating laboratory information to natural field assemblages, so that the relative importance of photosynthesis, dissolved organic nutrients, and ingestion of prey largely remain unknown. Research is needed to assess simultaneously the roles of phototrophy, osmotrophy and phagotrophy in the nutritional ecology of HAS in eutrophic habitats, spanning bloom initiation, development and senescence. From these data, models that include the role of mixotrophy can be developed to gain more realistic insights about the nutritional factors that control harmful algae in eutrophic waters, and to strengthen predictive capability in predicting their blooms. An overall forecast that can be tested, as well, is that harmful mixotrophic algae will become more abundant as their food supplies increase in many estuaries and coastal waters that are sustaining chronic, increasing cultural eutrophication.  相似文献   

10.
Human impacts such as eutrophication, overexploitation and climate change currently threaten future global food and drinking water supplies. Consequently, it is important that we understand how anthropogenic resource (bottom–up) and consumer (top–down) manipulations affect aquatic food web structure and production. Future climate changes are predicted to increase the inputs of terrestrial dissolved organic carbon to lakes. These carbon subsidies can either increase or decrease total basal production in aquatic food webs, depending on bacterial competition with phytoplankton for nutrients. This study examines the effects of carbon subsidies (bottom–up) on a pelagic community exposed to different levels of top–down predation. We conducted a large scale mesocosm experiment in an oligotrophic clear water lake in northern Sweden, using a natural plankton community exposed to three levels of glucose addition (0, 420 and 2100 μg C l?1 total added glucose) and three levels of young‐of‐the‐year perch Perca fluviatilis density (0, 0.56 and 2 individuals m?3). Bacterioplankton production doubled with glucose addition, but phytoplankton production was unaffected, in contrast to previous studies that have manipulated carbon, nutrients or light simultaneously. This suggests that carbon addition alone is not sufficient to reduce autotrophic production, at least in an oligotrophic lake dominated by mixotrophic phytoplankton. Larval perch grazing did not produce a classical trophic cascade, but substantially altered the species composition of crustacean zooplankton and ciliate trophic levels. Glucose addition increased the biomass of rotifers, thus potentially increasing energy transfer through the heterotrophic pathway, but only when fish were absent. This study illustrates that changes in community structure due to selective feeding by top‐predators can determine the influence of bottom–up carbon subsidies.  相似文献   

11.
Mixotrophic organisms combine light, mineral nutrients, and prey as supplementary resources. Based on theoretical assumptions and field observations, we tested experimentally the hypothesis that mixotrophs may invade established plankton communities depending on the trophic status of the system, and investigated possible effects on food web structure, species diversity, and nutrient dynamics. To test our hypothesis, we inoculated the mixotrophic nanoflagellate Ochromonas tuberculata into established planktonic food webs, consisting of specialist phototrophs, specialist phagotrophs, and bacteria at different supplies of soluble inorganic nutrients and dissolved organic carbon. Oligotrophic systems facilitated the invasion of O. tuberculata in two different ways. First, the combination of photosynthesis and phagotrophy gave mixotrophs a competitive advantage over specialist phototrophs and specialist phagotrophs. Second, low nutrient supplies supported the growth of small plankton organisms that fell into the food size spectrum of mixotrophs. Conversely, high nutrient supplies prevented O. tuberculata from successfully invading the food webs. Two important conclusions were derived from our experiments. First, in contrast to a paradigm of ecology, specialization may not necessarily be the most successful strategy for survival under stable conditions. Indeed, the use of several resources with lower efficiency can be an equally, or even more, successful strategy in nature. Second, when limiting nutrients promote the growth of bacterio- and picophytoplankton, invading mixotrophs may have a habitat-ameliorating effect for higher trophic levels, gauged in terms of food quantity and quality. Using given resources more efficiently, O. tuberculata generated higher biomasses and expressed an increased nutritional value for potential planktivores, due to decreased cellular carbon to phosphorus (C:P) ratios compared to specialized plankton taxa. Our findings may help to explain why energy transfer efficiency between phytoplankton and higher trophic levels is generally higher in oligotrophic systems than in nutrient rich environments.  相似文献   

12.
The effects of global and local environmental changes are transmitted through networks of interacting organisms to shape the structure of communities and the dynamics of ecosystems. We tested the impact of elevated temperature on the top-down and bottom-up forces structuring experimental freshwater pond food webs in western Canada over 16 months. Experimental warming was crossed with treatments manipulating the presence of planktivorous fish and eutrophication through enhanced nutrient supply. We found that higher temperatures produced top-heavy food webs with lower biomass of benthic and pelagic producers, equivalent biomass of zooplankton, zoobenthos and pelagic bacteria, and more pelagic viruses. Eutrophication increased the biomass of all organisms studied, while fish had cascading positive effects on periphyton, phytoplankton and bacteria, and reduced biomass of invertebrates. Surprisingly, virus biomass was reduced in the presence of fish, suggesting the possibility for complex mechanisms of top-down control of the lytic cycle. Warming reduced the effects of eutrophication on periphyton, and magnified the already strong effects of fish on phytoplankton and bacteria. Warming, fish and nutrients all increased whole-system rates of net production despite their distinct impacts on the distribution of biomass between producers and consumers, plankton and benthos, and microbes and macrobes. Our results indicate that warming exerts a host of indirect effects on aquatic food webs mediated through shifts in the magnitudes of top-down and bottom-up forcing.  相似文献   

13.
1. Field data from five unproductive Swedish lakes were used to investigate the occurrence of mixotrophic flagellates in relation to bacterioplankton, autotrophic phytoplankton, heterotrophic flagellates and abiotic environmental factors. Three different sources of data were used: (i) a 3‐year study (1995–97) of the humic Lake Örträsket, (ii) seasonal measurements from five lakes with widely varying dissolved organic carbon (DOC) concentrations, and (iii) whole lake enrichment experiments with inorganic nutrients and organic carbon. 2. Mixotrophic flagellates usually dominated over autotrophic phytoplankton in Lake Örträsket in early summer, when both bacterial production and light levels were high. Comparative data from the five lakes demonstrated that the ratio between the biomasses of mixotrophic flagellates and autotrophic phytoplankton (the M/A‐ratio) was positively correlated to bacterioplankton production, but not to the light regime. Whole lake carbon addition (white sugar) increased bacterial biomass, and production, reduced the biomass of autotrophs by a factor of 16, and increased the M/A‐ratio from 0.03 to 3.4. Collectively, the results indicate that the dominance of mixotrophs among phytoplankton was positively related to bacterioplankton production. 3. Whole lake fertilisation with nitrogen (N) and phosphorus (P) demonstrated that the obligate autotrophic phytoplankton was limited by N. N‐addition increased the biomass of the autotrophic phytoplankton but had no effect on mixotrophic flagellates or bacteria, and the M/A‐ratio decreased from 1.2 to 0.6 after N‐enrichment. Therefore, we suggest that bacteria under natural conditions, by utilising allochthonous DOC as an energy and carbon source, are able to outcompete autotrophs for available inorganic nutrients. Consequently, mixotrophic flagellates can become the dominant phytoplankters when phagotrophy permits them to use nutrients stored in bacterial biomass. 4. In Lake Örträsket, the biomass of mixotrophs was usually higher than the biomass of heterotrophs during the summer. This dominance could not be explained by higher grazing rates among the mixotrophs. Instead, ratios between mixotrophic and heterotrophic biomass (the M/H‐ratio) were positively related to light availability. Therefore, we suggest that photosynthesis can enable mixotrophic flagellates to outcompete heterotrophic flagellates.  相似文献   

14.
Incubation of unaltered deep-sea water and grazing experiment of nano- and micro- protozooplankton during incubation of deep-sea water were carried out to quantitatively characterize the planktonic structures of lower-trophic organisms and clarify the trophic pathways and controlling mechanisms involved. Phytoplankton biomass increased to 637 mg as carbon weight in a 500-l tank on Day 7 and was dominant in the planktonic structure of lower-trophic organisms. Nitrates in the incubation water was depleted after Day 7 and phytoplankton biomass decreased rapidly. On the other hand, bacteria, heterotrophic nano-flagellates and ciliates increased toward the end of incubation and were dominant in the later days of incubation. In grazing experiments on microbial organisms, bacterivory is more important for the carbon pathway in microbial food webs than herbivory when phytoplankton biomass is less than that of bacteria (low P/B conditions), while herbivory is more important than bacterivory when phytoplankton biomass is more than that of bacteria (high P/B conditions). Deep-sea water exhibited high phytoplankton productivity due to inherent high nutrients values. After depletion of nutrients, phytoplankton decreased (due also to enhanced nano- and micro-zooplankton grazing) and microbial organisms dominated. Thus, nutrients in the incubation water control the planktonic structure of lower-trophic organisms.  相似文献   

15.
1. Five oligotrophic clear‐water lakes on the Faroe Islands were studied during August 2000. Algal and bacterial production rates, community respiration, and CO2 saturation were determined. In addition, we examined the plankton community composition (phytoplankton and heterotrophic nanoflagellates) and measured the grazing pressure exerted by common mixotrophic species on bacteria. 2. High respiration to primary production (6.6–33.2) and supersaturation of CO2 (830–2140 μatm) implied that the lakes were net heterotrophic and that the pelagic heterotrophic plankton were subsidised by allochthonous organic carbon. However, in spite of the apparent high level of net heterotrophy, primary production exceeded bacterial production and the food base for higher trophic levels appeared to be mainly autotrophic. 3. We suggest that the observed net heterotrophy in these lakes was a result of the oligotrophic conditions and hence low primary production in combination with an input of allochthonous C with a relatively high availability. 4. Mixotrophic phytoplankton (Cryptomonas spp., Dinobryon spp. and flagellates cf. Ochromonas spp.) constituted a large percentage of the plankton community (17–83%), possibly as a result of their capacity to exploit bacteria as a means of acquiring nutrients in these nutrient poor systems.  相似文献   

16.
A common and established view is that increased inputs of nutrients to the sea, for example via river flooding, will cause eutrophication and phytoplankton blooms in coastal areas. We here show that this concept may be questioned in certain scenarios. Climate change has been predicted to cause increased inflow of freshwater to coastal areas in northern Europe. River waters in these areas are often brown from the presence of high concentrations of allochthonous dissolved organic carbon (humic carbon), in addition to nitrogen and phosphorus. In this study we investigated whether increased inputs of humic carbon can change the structure and production of the pelagic food web in the recipient seawater. In a mesocosm experiment unfiltered seawater from the northern Baltic Sea was fertilized with inorganic nutrients and humic carbon (CNP), and only with inorganic nutrients (NP). The system responded differently to the humic carbon addition. In NP treatments bacterial, phytoplankton and zooplankton production increased and the systems turned net autotrophic, whereas the CNP-treatment only bacterial and zooplankton production increased driving the system to net heterotrophy. The size-structure of the food web showed large variations in the different treatments. In the enriched NP treatments the phytoplankton community was dominated by filamentous >20 µm algae, while in the CNP treatments the phytoplankton was dominated by picocyanobacteria <5 µm. Our results suggest that climate change scenarios, resulting in increased humic-rich river inflow, may counteract eutrophication in coastal waters, leading to a promotion of the microbial food web and other heterotrophic organisms, driving the recipient coastal waters to net-heterotrophy.  相似文献   

17.
Changes in the pelagic microbial food web due to artificial eutrophication   总被引:1,自引:0,他引:1  
The effect of nutrient enrichment on the structure and carbon flow in the pelagic microbial food web was studied in mesocosm experiments using seawater from the northern Baltic Sea. The experiments included food webs of at least four trophic levels; (1) phytoplankton–bacteria, (2) flagellates, (3) ciliates and (4) mesozooplankton. In the enriched treatments high autotrophic growth rates were observed, followed by increased heterotrophic production. The largest growth increase was due to heterotrophic bacteria, indicating that the heterotrophic microbial food web was promoted. This was further supported by increased growth of heterotrophic flagellates and ciliates in the high nutrient treatments. The phytoplankton peak in the middle of the experiments was mainly due to an autotrophic nanoflagellate, Pyramimonas sp. At the end of the experiment, the proportion of heterotrophic organisms was higher in the nutrient enriched than in the nutrient-poor treatment, indicating increased predation control of primary producers. The proportion of potentially mixotrophic plankton, prymnesiophyceans, chrysophyceans and dinophyceans, were significantly higher in the nutrient-poor treatment. Furthermore, the results indicated that the food web efficiency, defined as mesozooplankton production per basal production (primary production + bacterial production − sedimentation), decreased with increasing nutrient status, possibly due to increasing loss processes in the food web. This could be explained by promotion of the heterotrophic microbial food web, causing more trophic levels and respiration steps in the food web.  相似文献   

18.
Rates of oxygenic and anoxygenic photosynthesis, chemoautotrophic and heterotrophic bacterial production and protozoan bacterivory were measured in the pelagic zone of the stratified brackish-water lake with the purpose to determine the vertical distribution of these processes and to estimate their significance in the functioning of planktonic community of the lake. In midsummer, total daily primary productivity was about 1.3 g C m–2, of which 72% was produced by the phytoplankton, 24% by the chemoautotrophic bacteria, and only 4% by the phototrophic sulphur bacteria. Thus anoxygenic photosynthesis is a negligible source of organic matter in the lake. The production of heterotrophic bacteria averaged 1.5 g C m–2 d–1 and exceeded the total photosynthesis of phytoplankton and photosynthetic bacteria by a factor of 1.5. The estimated total primary production was too low to sustain the bacterial production. Probably the carbon cycle in the lake is dependent on the input of allochthonous organic matter. As a rule, the maximal rates of primary production and heterotrophic bacterial production were found in the chemocline or at the upper boundary of the chemocline. Heterotrophic flagellates dominated among the protozoan populations and were the major consumers of the bacterioplankton production in the lake. They showed maximal ingestion rates from 2.3 to 2.9 mg C m–3 h–1 at the upper boundary of the chemocline, where they consumed from 50 to 54% of the production of heterotrophic bacteria. Data obtained indicate that in Lake Shira the oxic-anoxic interface is the site of the most intensive production and mineralization of organic matter.  相似文献   

19.
Microbial food webs are responsible for the main carbon flow in shallow eutrophic estuaries of the Baltic Sea. Bacteria account for respirative use most of the autotrophic production. Bottom-up influences are mainly directed to the phytoplankton. Massive increase of phytoplankton biomass has only little effect on the biomasses of the heterotrophic plankton. The investigated ecosystem obviously differs by its high bacteria/non-bacteria heterotrophs-relation from other aquatic ecosystems.  相似文献   

20.
Mixotrophic protists combine photosynthesis and phagotrophy to obtain energy and nutrients. Because mixotrophs can act as either primary producers or consumers, they have a complex role in marine food webs and biogeochemical cycles. Many mixotrophs are also phenotypically plastic and can adjust their metabolic investments in response to resource availability. Thus, a single species's ecological role may vary with environmental conditions. Here, we quantified how light and food availability impacted the growth rates, energy acquisition rates, and metabolic investment strategies of eight strains of the mixotrophic chrysophyte, Ochromonas. All eight Ochromonas strains photoacclimated by decreasing chlorophyll content as light intensity increased. Some strains were obligate phototrophs that required light for growth, while other strains showed stronger metabolic responses to prey availability. When prey availability was high, all eight strains exhibited accelerated growth rates and decreased their investments in both photosynthesis and phagotrophy. Photosynthesis and phagotrophy generally produced additive benefits: In low-prey environments, Ochromonas growth rates increased to maximum, light-saturated rates with increasing light but increased further with the addition of abundant bacterial prey. The additive benefits observed between photosynthesis and phagotrophy in Ochromonas suggest that the two metabolic modes provide nonsubstitutable resources, which may explain why a tradeoff between phagotrophic and phototrophic investments emerged in some but not all strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号