共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Spm (En) transposable element controls the excision of a 2-kb DNA insert at the wx allele of Zea mays 总被引:3,自引:0,他引:3
下载免费PDF全文

Schwarz-Sommer Z Gierl A Klösgen RB Wienand U Peterson PA Saedler H 《The EMBO journal》1984,3(5):1021-1028
The waxy (Wx) locus of Zea mays was cloned from strains carrying the wild-type and wxm-8 mutant alleles. The receptor component of the Suppressor-Mutator (Spm) controlling element system in the wxm-8 allele was shown to be a 2 kb long insertion within the transcribed region of the Wx gene. The insertion, termed Spm-I8, is excised during somatic reversion events induced by the autonomous controlling element Enhancer (En), which is an equivalent to Spm. Integration of Spm-I8 into the Wx gene generates a 3-bp target site duplication. Spm-I8 has a 13 bp long inverted repeat at its termini. The ends of the element can be further folded to build a large double-stranded structure consisting of five perfectly matching double-stranded regions of 9–13 bp in length, interrupted by single-stranded loops. A comparison of the wild-type and wxm-8 alleles revealed two additional insertions 6 (insert-1) and 0.25 (insert-2) kb in length. No En-induced excision of insert-1 and insert-2 could be detected so far. There is remarkable structure and sequence homology between Spm-I8 and the transposable elements Tam1 and Tam2 of Antirrhinum majus at their termini, reflecting a possible evolutionary and/or functional relationship between transposons in different plant species. 相似文献
4.
The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene 总被引:11,自引:1,他引:11
下载免费PDF全文

A Menssen S H?hmann W Martin P S Schnable P A Peterson H Saedler A Gierl 《The EMBO journal》1990,9(10):3051-3057
The A2 locus of Zea mays, identified as one of the genes affecting anthocyanin biosynthesis, was cloned using the transposable elements rcy and dSpm as gene tags. The A2 gene encodes a putative protein of 395 amino acids and is devoid of introns. Two a2-m1 alleles, containing dSpm insertions of different sizes, were characterized. The dSpm element from the original state allele has perfect termini and undergoes frequent transposition. The element from the class II state allele is no longer competent to transpose. It has retained the 13 bp terminal inverted repeat but has lost all subterminal sites at the 5' end, which are recognized by tnpA protein, the most abundant product of the En/Spm transposable element system. The relatively high A2 gene expression of one a2-m1 allele is due to removal of almost all dSpm sequences by splicing. The slightly altered A2 enzyme is still functional as shown by complementation of an a2 mutant with the corresponding cDNA. The 5' and 3' splice sites are constituted by the termini of the dSpm element; it therefore represents a novel intron of the A2 gene. 相似文献
5.
6.
Genetic and molecular analysis of the Enhancer (En) transposable element system of Zea mays 总被引:8,自引:7,他引:8
下载免费PDF全文

Pereira A Schwarz-Sommer Z Gierl A Bertram I Peterson PA Saedler H 《The EMBO journal》1985,4(1):17-23
A newly isolated, unstable mutation wx-844::En-1 of Zea mays was proven to be caused by the insertion of the autonomous transposable element En into the Waxy (Wx) gene. Molecular analysis revealed that En-1 is 8.4 kb long, has a 13-bp long perfect inverted repeat at its termini and generates a 3-bp target site duplication. En-1 is integrated into an intron located approximately in the middle of the transcribed region of the Wx gene. Structural evidence is presented indicating that a receptor component (Inhibitor) can arise by internal deletion of an autonomous En element. 相似文献
7.
Detlef Michel Hans Hartings Simona Lanzini Manuela Michel Mario Motto Giorgia Romina Riboldi Francesco Salamini Hans-Peter Döring 《Molecular genetics and genomics : MGG》1995,248(3):287-292
Eight independently isolated unstable alleles of theOpaque2 (O2) locus were analysed genetically and at the DNA level. The whole series of mutations was isolated from a maize strain carrying a wild-typeO2 allele and the transposable elementActivator (Ac) at thewx-m7 allele. Previous work with another unstable allele of the same series has shown that it was indeed caused by the insertion of anAc element. Unexpectedly, the remaining eight mutations were not caused by the designatedAc element, but by other insertions that are structurally similar or identical to one of two different autonomous transposable elements. Six mutations were caused by the insertion of a transposable element of theEnhancer/Suppressor-Mutator (En/Spm) family. Two mutations were the result of the insertion of a transposable element of theBergamo (Bg) family. Genetic tests carried out with plants carrying the unstable mutations demonstrated that all were caused by the insertion of an autonomous transposable element. 相似文献
8.
9.
10.
Sarah R. Grant Sabine Hardenack Stefan Trentmann Heinz Saedler 《Molecular genetics and genomics : MGG》1993,241(1-2):153-160
TNPA, one of the two transposition proteins encoded by the En/Spm transposable elements of Zea mays, suppresses the expression of genes that contain an appropriate cis element. Suppression can be monitored in tobacco protoplasts in a transient expression assay as follows. The plant promoter-driven expression of the Escherichia coli-glucuronidase (GUS)-encoding gene, uidA, is repressed in the presence of TNPA if the GUS gene contains a functional cis element in the untranslated RNA leader sequence. Earlier, we found that the minimal cis element is composed of two 12 by sequences in a tail-to-tail inverted orientation. Each 12 by sequence is sufficient to bind TNPA in vitro and can be thought of as a half-site in the cis element. Here, we investigated the sequence requirements of the minimal cis element. Our observations support our expectations that a functional cis element must provide a template to which two TNPA molecules can bind in the correct orientation. Sequences within the half-sites can be altered as long as the eight bases that make up the consensus binding sites are not changed. However, we found the following unexpected sequence specificities. Firstly, some changes to the consensus binding sequence can be tolerated in one half-site, as long as the other site matches the consensus. Secondly, although the region between the half-sites can vary in sequence and in length between two and four bases, a thymidine residue is not tolerated directly 5′ preceding the second half-site. Since many variants of the cis element sequence remain functional, the suppressor response element provides a flexible tool for artificially manipulating the expression of genes. 相似文献
11.
12.
A. G. Pisabarro W. F. Martin P. A. Peterson H. Saedler A. Gierl 《Molecular & general genetics : MGG》1991,230(1-2):201-208
Summary The Uq transposable element of maize is the most widely dispersed among different maize populations and genetic testerstrains. Despite intensive genetic characterization, little is known about its molecular structure. In order to obtain information relevant to this topic, we have cloned and sequenced three ruq receptors. Surprisingly, they are all Ds1-like receptor types of the Ac-Ds transposon family. Based on our molecular data, we present a model to explain the functional differences associated with the differential expression of the Uq and Ac transposon systems. 相似文献
13.
14.
15.
B.-S. Seo P. A. Peterson 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2000,101(1-2):37-45
Transposition studies of the transposon, En/Spm, have dealt with general aspects of the timing of the excision event with regard to DNA replication and plant development, but without describing details of the process. By following the excision events of an En transposon inserted at the a1 locus [a1-m(Au)], several features of this process can be elucidated. In progenies from reciprocal crosses between the a1-m(Au) allele containing an En insert, and a nonautonomous En allele, [a1-m(r) is a deficiency derivative of En], several features of the En at the a1-m(Au) allele can be observed taking place during ear development and during microsporogenesis. First, it has long been known that the distribution of mutant kernel phenotypes on an ear indicates that En transposes late in most of the events during ear development. Second, the phase change of En (presence and absence of activity) is observed during cob development. Third, discordant kernel phenotypes of two ears, reported herein, resulting from a reciprocal cross with the parental phenotype can be deduced to arise from the transposition of En during microsporogenesis and subsequent fertilization, leading to a discordant genotype between endosperm and embryo. The phase change and discordance lead us to conclude that these events can arise from transposition after host DNA replication. It can also be concluded that the activity of the En inserted in this a1-m(Au) allele is not limited to a specific stage or timing during plant development. Further, this study illustrates the power of genetic analysis in the determination of cellular events. Received: 26 May 1999 / Accepted: 11 November 1999 相似文献
16.
17.
The bz-rcy allele of the Cy transposable element system of Zea mays contains a Mu-like element insertion 总被引:7,自引:0,他引:7
Patrick S. Schnable Peter A. Peterson Heinz Saedler 《Molecular & general genetics : MGG》1989,217(2-3):459-463
Summary The receptive component of theCy transposable element system (rcy: Mu7) at theBz locus ofZea mays L. is 2.2 kb and has long terminal inverted repeats. The insertion is flanked by a 9 bp duplication. In the presence of an autonomousCy element in the genome,rcy: Mu7 is excised frombz-rcy in a manner consistent with a model suggested previously. The termini ofrcy: Mu7 have 85% sequence similarity with theMu1 element ofZ. mays. This is consistent with the observation thatMu1 can behave genetically like a receptive component of theCy system. 相似文献
18.
Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1 总被引:29,自引:7,他引:29
下载免费PDF全文

O'Reilly C Shepherd NS Pereira A Schwarz-Sommer Z Bertram I Robertson DS Peterson PA Saedler H 《The EMBO journal》1985,4(4):877-882
The a1 locus of Zea mays has been cloned using transposable elements as gene tags. The strategy was to make genomic libraries from maize stocks with a1 mutations induced either by En(Spm) or by Robertson's Mutator-system. These libraries were then screened with either Spm-I8 and En1, for the En-containing mutant, or with Mu1 for the Mu-induced mutation. There are many En and Mu1 hybridizing sequences present in the maize genome, however, by a process of cross-screening of the positives from the two libraries and by molecular analysis of the En-positive clones it was possible to identify clones in both libraries carrying all or part of the a1 gene. 相似文献
19.
Transposition depends on DNA sequences located at or near the termini of the transposon. In the maize transposable element Ds, these sequences were studied by site-directed mutagenesis followed by a transient excision assay in Petunia protoplasts. The transposase-binding AAACGG motifs found in large numbers in the element are important, but none of them is in itself indispensable, for excision. However, mutation of an isolated motif at the 3′ end considerably reduced excisability. The inverted termini were confirmed to be indispensable. Point mutations in regions outside the inverted termini of Ds and not located in the transposase-binding motifs had, in some cases, a pronounced effect on excision frequency. The implications of these findings are discussed. 相似文献