首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sphingolipid activator proteins (SAPs), GM2 activator protein (GM2AP) and saposins (Saps) A-D are small, enzymatically inactive glycoproteins of the lysosome. Despite of their sequence homology, these lipid-binding and -transfer proteins show different specificities and varying modes of action. Water-soluble SAPs facilitate the degradation of membrane-bound glycosphingolipids with short oligosaccharide chains by exohydrolases at the membrane-water interface. There is strong evidence that degradation of endocytosed components of the cell membrane takes place at intraendosomal and intralysosomal membranes. The inner membranes of the lysosome differ from the limiting membrane of the organelle in some typical ways: the inner vesicular membranes lack a protecting glycocalix, and they are almost free of cholesterol, but rich in bis(monoacylglycero)phosphate (BMP), the anionic marker lipid of lysosomes. In this study, we prepared glycosylated Sap-B free of other Saps by taking advantage of the Pichia pastoris expression system. We used immobilized liposomes as a model for intralysosomal vesicular membranes to probe their interaction with recombinantly expressed Sap-B. We monitored this interaction using SPR spectroscopy and an independent method based on the release of radioactively labelled lipids from liposomal membranes. We show that, after initial binding, Sap-B disturbs the membrane structure and mobilizes the lipids from it. Lipid mobilization is dependent on an acidic pH and the presence of anionic lipids, whereas cholesterol is able to stabilize the liposomes. We also show for the first time that glycosylation of Sap-B is essential to achieve its full lipid-extraction activity. Removal of the carbohydrate moiety of Sap-B reduces its membrane-destabilizing quality. An unglycosylated Sap-B variant, Asn215His, which causes a fatal sphingolipid storage disease, lost the ability to extract membrane lipids at acidic pH in the presence of BMP.  相似文献   

2.
According to a recent hypothesis, glycosphingolipids originating from the plasma membrane are degraded in the acidic compartments of the cell as components of intraendosomal and intralysosomal vesicles and structures. Since most previous in vitro investigations used micellar ganglioside GM2 as substrate, we studied the degradation of membrane-bound ganglioside GM2 by water-soluble beta-hexosaminidase A in the presence of the GM2 activator protein in a detergent-free, liposomal assay system. Our results show that anionic lipids such as the lysosomal components bis(monoacylglycero)phosphate or phosphatidylinositol stimulate the degradation of GM2 by beta-hexosaminidase A up to 180-fold in the presence of GM2 activator protein. In contrast, the degradation rate of GM2 incorporated into liposomes composed of neutral lysosomal lipids such as dolichol, cholesterol, or phosphatidylcholine was significantly lower than in negatively charged liposomes. This demonstrates that both, the GM2 activator protein and anionic lysosomal phospholipids, are needed to achieve a significant degradation of membrane-bound GM2 under physiological conditions. The interaction of GM2 activator protein with immobilized membranes was studied with surface plasmon resonance spectroscopy at an acidic pH value as it occurs in the lysosomes. Increasing the concentration of bis(monoacylglycero)phosphate in immobilized liposomes led to a significant drop of the resonance signal in the presence of GM2 activator protein. This suggests that in the presence of bis(monoacylglycero)phosphate, which has been shown to occur in inner membranes of the acidic compartment, GM2 activator protein is able to solubilize lipids from the surface of immobilized membrane structures.  相似文献   

3.
Acid sphingomyelinase is a water-soluble, lysosomal glycoprotein that catalyzes the degradation of membrane-bound sphingomyelin into phosphorylcholine and ceramide. Sphingomyelin itself is an important component of the extracellular leaflet of various cellular membranes. The aim of the present investigation was to study sphingomyelin hydrolysis as a membrane-bound process. We analyzed the degradation of sphingomyelin by recombinant, highly purified acid sphingomyelinase in a detergent-free, liposomal assay system. In order to mimic the in vivo intralysosomal conditions as closely as possible a number of negatively charged, lysosomally occuring lipids including bis(monoacylglycero)phosphate and phosphatidylinositol were incorporated into substrate-carrying liposomes. Dolichol and its phosphate ester dolicholphosphate were also included in this study. Bis(monoacylglycero)phosphate and phosphatidylinositol were both effective stimulators of sphingomyelin hydrolysis. Dolichol and dolicholphosphate also significantly increased sphingomyelin hydrolysis. The influence of membrane curvature was investigated by incorporating the substrate into small (SUVs) and large unilamellar vesicles (LUVs) with varying mean diameter. Degradation rates were substantially higher in SUVs than in LUVs. Surface plasmon resonance experiments demonstrated that acid sphingomyelinase binds strongly to lipid bilayers. This interaction is significantly enhanced by anionic lipids such as bis(monoacylglycero)phosphate. Under detergent-free conditions only the sphingolipid activator protein SAP-C had a pronounced influence on sphingomyelin degradation in both neutral and negatively charged liposomes, catalyzed by highly purified acid sphingomyelinase, while SAP-A, -B and -D had no noticeable effect on sphingomyelin degradation.  相似文献   

4.
We report here two genome-wide CRISPR screens performed to identify genes that, when knocked out, alter levels of lysosomal cholesterol or bis(monoacylglycero)phosphate. In addition, these screens were also performed under conditions of NPC1 inhibition to identify modifiers of NPC1 function in lysosomal cholesterol export. The screens confirm tight coregulation of cholesterol and bis(monoacylglycero)phosphate in cells and reveal an unexpected role for the ER-localized SNX13 protein as a negative regulator of lysosomal cholesterol export and contributor to ER–lysosome membrane contact sites. In the absence of NPC1 function, SNX13 knockdown redistributes lysosomal cholesterol and is accompanied by triacylglycerol-rich lipid droplet accumulation and increased lysosomal bis(monoacylglycero)phosphate. These experiments provide unexpected insight into the regulation of lysosomal lipids and modification of these processes by novel gene products.  相似文献   

5.
We examined the effect of Niemann-Pick disease type 2 (NPC2) protein and some late endosomal lipids [sphingomyelin, ceramide and bis(monoacylglycero)phosphate (BMP)] on cholesterol transfer and membrane fusion. Of all lipid-binding proteins tested, only NPC2 transferred cholesterol at a substantial rate, with no transfer of ceramide, GM3, galactosylceramide, sulfatide, phosphatidylethanolamine, or phosphatidylserine. Cholesterol transfer was greatly stimulated by BMP, little by ceramide, and strongly inhibited by sphingomyelin. Cholesterol and ceramide were also significantly transferred in the absence of protein. This spontaneous transfer of cholesterol was greatly enhanced by ceramide, slightly by BMP, and strongly inhibited by sphingomyelin. In our transfer assay, biotinylated donor liposomes were separated from fluorescent acceptor liposomes by streptavidin-coated magnetic beads. Thus, the loss of fluorescence indicated membrane fusion. Ceramide induced spontaneous fusion of lipid vesicles even at very low concentrations, while BMP and sphingomyelin did so at about 20 mol% and 10 mol% concentrations, respectively. In addition to transfer of cholesterol, NPC2 induced membrane fusion, although less than saposin-C. In this process, BMP and ceramide had a strong and mild stimulating effect, and sphingomyelin an inhibiting effect, respectively. Note that the effects of the lipids on cholesterol transfer mediated by NPC2 were similar to their effect on membrane fusion induced by NPC2 and saposin-C.  相似文献   

6.
The morphology and size of hydrated lipid dispersions of bis(monoacylglycero)phosphate (BMP) mixed with varying mole percentages of the ganglioside GM1 were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Electron paramagnetic resonance (EPR) spectroscopy of these same mixtures, doped at 0.5 mol% with doxyl labeled lipids, was used to investigate acyl-chain packing. Results show that for 20-30% GM1, hydrated BMP:GM1 mixtures spontaneously form small spherical vesicles with diameters ∼100 nm and a narrow size distribution profile. For other concentrations of GM1, hydrated dispersions with BMP have non-spherical shapes and heterogeneous size profiles, with average vesicle diameters >400 nm. All samples were prepared at pH 5.5 to mimic the lumen acidity of the late endosome where BMP is an essential component of intraendosomal vesicle budding, lipid sorting and trafficking. These findings indicate that GM1 and BMP under a limited concentration range spontaneously form small vesicles of homogeneous size in an energy independent manner without the need of protein templating. Because BMP is essential for intraendosomal vesicle formation, these results imply that lipid-lipid interactions may play a critical role in the endosomal process of lipid sorting and trafficking.  相似文献   

7.
To further elucidate the role of bis(monoacylglycero)phosphate in lysosomes, its metabolism was assessed by incubation of intact and disrupted macrophages in the presence of labeled lipid precursors. In rabbit pulmonary macrophages bis(monoacylglycero)P accounted for 17.9% and acylphosphatidylglycerol for 2.6% of phospholipid phosphorus. Major fatty acids in bis(monoacylglycero)P were oleic (47%), linoleic (29%), and arachidonic (6.4%); those in acylphosphatidylglycerol were of similar distribution except for a high content of palmitic acid (20%). When homogenates of rabbit pulmonary and peritoneal macrophages, rat pulmonary macrophages, and human blood leukocytes were incubated with sn[(14)C]glycerol-3-phosphate and CDP-diacylglycerol at pH 7.4, there was labeling of bis(monoacylglycero)P and acylphosphatidylglycerol that correlated with content of bis(monoacylglycero)P. When intact rabbit pulmonary macrophages were incubated for 60 min with [(3)H]glucose and [(32)P]orthophosphate, small amounts of label appeared in bis(monoacylglycero)P and only traces in acylphosphatidylglycerol. In contrast, incubation of intact cells with the (14)C-labeled fatty acid precursors palmitic, oleic, and arachidonic acids resulted in much greater labeling of the two lipids. Labeling of phospholipids was greatest with arachidonate as precursor and least with palmitate; after 60 min, labeling of bis(monoacylglycero)P with arachidonate was 10- and 50-fold greater than with oleate and palmitate, respectively, and was exceeded only by that of phosphatidylcholine. Calculated ratios of labeling of fatty acid to P, particularly those for arachidonate, were much greater for bis(monoacylglycero)P and for acylphosphatidylglycerol than for other phospholipids. This suggests a uniquely high turnover of fatty acids in bis(monoacylglycero)P and acylphosphatidylglycerol and thus a more specific role for these compounds in metabolism of complex lipids in the lysosome.-Huterer, S., and J. Wherrett. Metabolism of bis(monoacylglycero)phosphate in macrophages.  相似文献   

8.
The GM2 activator protein (GM2AP) is an accessory protein required for the enzymatic conversion of GM2 to GM3 by hydrolases in the lysosomal compartments of cells. Here, GM2AP interactions with lipid vesicles are investigated by sucrose-loaded vesicle sedimentation and gel filtration assays, and the effects of pH and lipid composition on membrane binding and lipid extraction are characterized. The sedimentation experiments allow for facile quantification of the percentage of protein in solution and on the bilayer surface, with detailed analysis of the protein:lipid complex that remains in solution. Optimum binding and ligand extraction is found for pH 4.8 where <15% of the protein remains surface associated regardless of the lipid composition. In addition to extracting GM2, we find that GM2AP readily extracts dansyl-headgroup-labeled lipids as well as other phospholipids from vesicles. The ability of GM2AP to extract dansyl-DHPE from vesicles is altered by pH and the specific ligand GM2. Although the unique endosomal lipid, bis(monoacylglycero)phosphate, is not required for ligand extraction, it does enhance the extraction efficiency of GM2 when cholesterol is present in the vesicles.  相似文献   

9.
Bis(monoacylglycero)phosphate was purified from the livers of chloroquine-treated rats and labeled with tritium by a nonreductive catalytic exchange procedure. The mechanism of its degradation by rat liver lysosomes has been examined. A substantial amount of bis(monoacylglycero)P is degraded to monoglyceride and lysophosphatidic acid by a lysosomal phosphodiesterase having an acid pH optimum. Some bis(monoacylglycero)P is degraded to lysophosphatidylglycerol by lysosomal phospholipase A. In contrast, other phosphoglycerides have been reported to be degraded by sequential deacylation in lysosomes. The initial rate of breakdown of bis(monoacylglycero)P is only 10% of the rate observed for dioleoylphosphatidylcholine. [3H]Lysophosphatidylglycerol conversion to [3H]bis(monoacylglycero)P is stimulated by unlabeled bis(monoacylglycero)P, resulting in a futile cycle which allows the resynthesis of bis(monoacylglycero)P from its breakdown product, lysophosphatidylglycerol. This futile cycle and the unusual sn-1-glycerophospho-sn-1'-glycerol stereoconfiguration of the water-soluble backbone (Joutti, A., Brotherus, J., Renkonen, O., Laine, R., and Fischer, W. (1976) Biochim. Biophys. Acta 450, 206-209) may be important factors in the marked resistance of bis(monoacylglycero)P to degradation by lysosomal acid hydrolases.  相似文献   

10.
Lysosomal degradation of membrane lipids   总被引:1,自引:0,他引:1  
Thomas Kolter 《FEBS letters》2010,584(9):1700-6422
The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes.  相似文献   

11.
Cationic cell-penetrating peptides (CPPs) are a promising vehicle for the delivery of macromolecular drugs. Although many studies have indicated that CPPs enter cells by endocytosis, the mechanisms by which they cross endosomal membranes remain elusive. On the basis of experiments with liposomes, we propose that CPP escape into the cytosol is based on leaky fusion (i.e., fusion associated with the permeabilization of membranes) of the bis(monoacylglycero)phosphate (BMP)-enriched membranes of late endosomes. In our experiments, prototypic CPP HIV-1 TAT peptide did not interact with liposomes mimicking the outer leaflet of the plasma membrane, but it did induce lipid mixing and membrane leakage as it translocated into liposomes mimicking the lipid composition of late endosome. Both membrane leakage and lipid mixing depended on the BMP content and were promoted at acidic pH, which is characteristic of late endosomes. Substitution of BMP with its structural isomer, phosphatidylglycerol (PG), significantly reduced both leakage of the aqueous probe from liposomes and lipid mixing between liposomes. Although affinity of binding to TAT was similar for BMP and PG, BMP exhibited a higher tendency to support the inverted hexagonal phase than PG. Finally, membrane leakage and peptide translocation were both inhibited by inhibitors of lipid mixing, further substantiating the hypothesis that cationic peptides cross BMP-enriched membranes by inducing leaky fusion between them.  相似文献   

12.
A hybridoma secreting a monoclonal IgM 'anti-liposome' antibody was produced after injecting a mouse with liposomes containing dipalmitoylphosphatidylcholine, cholesterol, dicetyl phosphate, and lipid A. The antibody was selected by assaying for complement-dependent damage to liposomes lacking lipid A. The monoclonal antibody reacted best with liposomes containing the original immunizing mixture of lipids. Deletion of individual lipid constituents from liposomes diminished the ability of the liposomes to bind (adsorb) the antibody. Binding of the antibody was enhanced by including lipid A or galactosylceramide in the lipid bilayer, or by substituting egg phosphatidylcholine for dimyristoyl- (or dipalmitoyl-) phosphatidylcholine. Sphingomyelin could be substituted for dimyristoylphosphatidylcholine without altering the adsorption of antibody. Although the monoclonal anti-liposome antibody was completely inhibited by phosphocholine, it was probably not a conventional anti-phosphocholine antibody. The antibody apparently had a partial specificity for phosphate, and was inhibited by glycerophosphocholine, glycerophosphate, sodium phosphate, sodium sulfate, and inositol hexaphosphate, but not by choline or inositol.  相似文献   

13.
Anthrax toxin action requires triggering of natural endocytic transport mechanisms whereby the binding component of the toxin forms channels (PA63) within endosomal limiting and intraluminal vesicle membranes to deliver the toxin's enzymatic components into the cytosol. Membrane lipid composition varies at different stages of anthrax toxin internalization, with intraluminal vesicle membranes containing ~70% of anionic bis(monoacylglycero)phosphate lipid. Using model bilayer measurements, we show that membrane lipids can have a strong effect on the anthrax toxin channel properties, including the channel-forming activity, voltage-gating, conductance, selectivity, and enzymatic factor binding. Interestingly, the highest PA63 insertion rate was observed in bis(monoacylglycero)phosphate membranes. The molecular dynamics simulation data show that the conformational properties of the channel are different in bis(monoacylglycero)phosphate compared to PC, PE, and PS lipids. The anthrax toxin protein/lipid bilayer system can be advanced as a novel robust model to directly investigate lipid influence on membrane protein properties and protein/protein interactions.  相似文献   

14.
Many phleboviruses (family Bunyaviridae) are emerging as medically important viruses. These viruses enter target cells by endocytosis and low pH-dependent membrane fusion in late endosomes. However, the necessary and sufficient factors for fusion have not been fully characterized. We have studied the minimal fusion requirements of a prototypic phlebovirus, Uukuniemi virus, in an in vitro virus-liposome assay. We show that efficient lipid mixing between viral and liposome membranes requires close to physiological temperatures and phospholipids with negatively charged headgroups, such as the late endosomal phospholipid bis(monoacylglycero)phosphate. We further demonstrate that bis(monoacylglycero)phosphate increases Uukuniemi virus fusion beyond the lipid mixing stage. By using electron cryotomography of viral particles in the presence or absence of liposomes, we observed that the conformation of phlebovirus glycoprotein capsomers changes from the native conformation toward a more elongated conformation at a fusion permissive pH. Our results suggest a rationale for phlebovirus entry in late endosomes.  相似文献   

15.
Bis(monoacylglycero)phosphate (BMP) is an endosomal lipid with a unique structure that is implicated in the formation of intraendosomal vesicular bodies. Here we have characterized the effects of dioleoyl-BMP (BMP18:1) at concentrations of 5, 10, 15 and 20 mol% on the thermotropic behavior of dipalmitoyl phosphatidylcholine (DPPC) vesicles, and compared them to those of equimolar concentrations of dioleoyl phosphatidylglycerol (DOPG), a structural isoform of BMP18:1. Because BMP is found in the acidic environments of the late endosome and intralysosomal vesicles, samples were prepared at pH 4.2 to mimic the pH of the lysosome. Both 2H NMR of perdeuterated DPPC and spin-labeled EPR with 16-doxyl phosphatidylcholine were utilized in these investigations. NMR and EPR results show that BMP18:1 induces a lowering in the main phase transition temperature of DPPC similar to that of DOPG. The EPR studies reveal that BMP18:1 induced more disorder in the Lβ phase when compared to equimolar concentrations of DOPG. Analysis from dePaked 2H NMR spectra in the Lα phase reveals that BMP18:1 induces less disorder than equal concentrations of DOPG. Additionally, the results demonstrate that BMP mixes with other phospholipids as a phospholipid and not as a detergent molecule as once speculated.  相似文献   

16.
During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747–1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion.  相似文献   

17.
A delipidated soluble fraction prepared from a mitochondrial-lysosomal fraction of rabbit alveolar macrophages that catalyzes transacylation of lysophosphatidylglycerol to form bis(monoacylglycero)phosphate was also found to transfer oleic acid from [14C]dioleoyl phosphatidylcholine to form acylphosphatidylglycerol. The reaction was dependent on the presence of bis(monoacylglycero)phosphate and was maximal at a concentration of 44 microM when the ratio of fatty acid transferred to fatty acid released was 0.28. Addition of phosphatidylglycerol had only a small effect. Homogenates of rat liver also catalyzed the reaction and after subcellular fractionation the activity was localized to lysosomes. The lysosomal activity was solubilized by delipidation with butanol to give a preparation with a specific activity 2462 times that of the homogenate. Optimal activity of soluble preparations from both macrophages and liver was at pH 4.5, with little activity above 6.0. Release of free fatty acid was also stimulated under conditions of optimal acyl transfer. Both acyl transfer and release of fatty acid were inhibited by Ca2+, detergents, chlorpromazine, lysophosphatidylcholine, and oleic acid. When there was disproportional inhibition, acyl transfer was always more affected. These results suggest that sequential acylation of lysophosphatidylglycerol to form bis(monoacylglycero)phosphate and then acylphosphatidylglycerol constitute a mechanism in the lysosome for the transport and partition of fatty acids released by the lysosomal phospholipases.  相似文献   

18.
Newly formed molecules of bis(monoacylglycero)phosphate (known also as lysobisphosphatidic acid), which were labeled with 32Pi in cultured BHK cells during relatively short pulses, were subjected to stereoanalysis. In contrast to the high proportion of sn-1-glycerophosphate residues in the bulk of the bis(monoacylglycero)phosphate molecules, the newly formed molecules were rich in sn-3-glycerophosphate residues.  相似文献   

19.
Natural polyreactive antibodies can accommodate chemically unrelated epitopes, such as lipids and proteins, in a single antigen binding site. Because liposomes containing lipid A as an adjuvant can induce antibodies directed against specific lipids, we immunized mice with liposomes containing lipid A together with a protein or peptide antigen to determine whether monoclonal antibodies generated after immunization would be specifically directed both to the liposomal lipid (either cholesterol or galactosylceramide) and also to the accompanying liposomal protein or peptide. Monoclonal antibodies were obtained that bound, by ELISA, to cholesterol and to recombinant gp140 envelope protein from HIV-1, or to galactosylceramide and to an HIV-1 envelope peptide. Surface plasmon resonance studies with the former antibody showed that the liposomal cholesterol and liposomal gp140 each contributed to the overall binding energy of the antibody to liposomes containing cholesterol and protein.  相似文献   

20.
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号