首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfate-reducing bacteria, like Desulfovibrio vulgaris Hildenborough, use the reduction of sulfate as a sink for electrons liberated in oxidation reactions of organic substrates. The rate of the latter exceeds that of sulfate reduction at the onset of growth, causing a temporary accumulation of hydrogen and other fermentation products (the hydrogen or fermentation burst). In addition to hydrogen, D. vulgaris was found to produce significant amounts of carbon monoxide during the fermentation burst. With excess sulfate, the hyd mutant (lacking periplasmic Fe-only hydrogenase) and hmc mutant (lacking the membrane-bound, electron-transporting Hmc complex) strains produced increased amounts of hydrogen from lactate and formate compared to wild-type D. vulgaris during the fermentation burst. Both hydrogen and CO were produced from pyruvate, with the hyd mutant producing the largest transient amounts of CO. When grown with lactate and excess sulfate, the hyd mutant also exhibited a temporary pause in sulfate reduction at the start of stationary phase, resulting in production of 600 ppm of headspace hydrogen and 6,000 ppm of CO, which disappeared when sulfate reduction resumed. Cultures with an excess of the organic electron donor showed production of large amounts of hydrogen, but no CO, from lactate. Pyruvate fermentation was diverse, with the hmc mutant producing 75,000 ppm of hydrogen, the hyd mutant producing 4,000 ppm of CO, and the wild-type strain producing no significant amount of either as a fermentation end product. The wild type was most active in transient production of an organic acid intermediate, tentatively identified as fumarate, indicating increased formation of organic fermentation end products in the wild-type strain. These results suggest that alternative routes for pyruvate fermentation resulting in production of hydrogen or CO exist in D. vulgaris. The CO produced can be reoxidized through a CO dehydrogenase, the presence of which is indicated in the genome sequence.  相似文献   

2.
Comparison of the proteomes of the wild-type and Fe-only hydrogenase mutant strains of Desulfovibrio vulgaris Hildenborough, grown in lactate-sulfate (LS) medium, indicated the near absence of open reading frame 2977 (ORF2977)-coded alcohol dehydrogenase in the hyd mutant. Hybridization of labeled cDNA to a macroarray of 145 PCR-amplified D. vulgaris genes encoding proteins active in energy metabolism indicated that the adh gene was among the most highly expressed in wild-type cells grown in LS medium. Relative to the wild type, expression of the adh gene was strongly downregulated in the hyd mutant, in agreement with the proteomic data. Expression was upregulated in ethanol-grown wild-type cells. An adh mutant was constructed and found to be incapable of growth in media in which ethanol was both the carbon source and electron donor for sulfate reduction or was only the carbon source, with hydrogen serving as electron donor. The hyd mutant also grew poorly on ethanol, in agreement with its low level of adh gene expression. The adh mutant grew to a lower final cell density on LS medium than the wild type. These results, as well as the high level of expression of adh in wild-type cells on media in which lactate, pyruvate, formate, or hydrogen served as the sole electron donor for sulfate reduction, indicate that ORF2977 Adh contributes to the energy metabolism of D. vulgaris under a wide variety of metabolic conditions. A hydrogen cycling mechanism is proposed in which protons and electrons originating from cytoplasmic ethanol oxidation by ORF2977 Adh are converted to hydrogen or hydrogen equivalents, possibly by a putative H(2)-heterodisulfide oxidoreductase complex, which is then oxidized by periplasmic Fe-only hydrogenase to generate a proton gradient.  相似文献   

3.
脱氮除硫菌株的分离鉴定和功能确认   总被引:2,自引:0,他引:2  
从长期稳定运行的脱氮除硫反应器污泥中,分离获得两株具有脱氮除硫功能的芽孢杆菌。经形态观察、生理试验和16SrDNA序列比对,将两菌株归入芽孢杆菌属,菌株CB归类于Bacillus pseudofirmus,菌株CS则与Bacillus hemicellulosilytus和Bacillus halodurans最为接近。以Biolog板检测,菌株CB的基质多样性不明显,菌株CS则可利用Biolog板中多种碳源。菌株CB和菌株CS都能以硝酸盐氧化硫化物,其中菌株CB对硝酸盐、硫化物的转化能力大于CS,菌株CB对硝酸盐的亲和力也大于菌株CS。  相似文献   

4.
The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of -1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion.  相似文献   

5.
6.
Peculiar attributes revealed by sequencing the genome of Desulfovibrio vulgaris Hildenborough are analyzed, particularly in relation to the presence of a phosphotransferase system (PTS). The PTS is a typical bacterial carbohydrate transport system functioning via group translocation. Novel avenues for investigations are proposed emphasizing the metabolic diversity of D. vulgaris Hildenborough, especially the likely utilization of mannose-type sugars. Comparative analysis with PTS from other Gram-negative and Gram-positive bacteria indicates regulatory functions for the PTS of D. vulgaris Hildenborough, including catabolite repression and inducer exclusion. Chemotaxis towards PTS substrates is considered. Evidence suggests that this organism may not be a strict anaerobic sulfate reducer typical of the ocean, but a versatile organism capable of bidirectional transmigration and adaptation to both water and terrestrial environments.  相似文献   

7.
Formate is an important energy substrate for sulfate-reducing bacteria in natural environments, and both molybdenum- and tungsten-containing formate dehydrogenases have been reported in these organisms. In this work, we studied the effect of both metals on the levels of the three formate dehydrogenases encoded in the genome of Desulfovibrio vulgaris Hildenborough, with lactate, formate, or hydrogen as electron donors. Using Western blot analysis, quantitative real-time PCR, activity-stained gels, and protein purification, we show that a metal-dependent regulatory mechanism is present, resulting in the dimeric FdhAB protein being the main enzyme present in cells grown in the presence of tungsten and the trimeric FdhABC3 protein being the main enzyme in cells grown in the presence of molybdenum. The putatively membrane-associated formate dehydrogenase is detected only at low levels after growth with tungsten. Purification of the three enzymes and metal analysis shows that FdhABC3 specifically incorporates Mo, whereas FdhAB can incorporate both metals. The FdhAB enzyme has a much higher catalytic efficiency than the other two. Since sulfate reducers are likely to experience high sulfide concentrations that may result in low Mo bioavailability, the ability to use W is likely to constitute a selective advantage.  相似文献   

8.
Although sulfate-reducing bacteria (SRB), such as Desulfovibrio vulgaris Hildenborough (DvH) are often eradicated in oil and gas operations with biocides, such as glutaraldehyde (Glut), tetrakis (hydroxymethyl) phosphonium sulfate (THPS), and benzalkonium chloride (BAC), their response to these agents is not well known. Whole genome microarrays of D. vulgaris treated with biocides well below the minimum inhibitory concentration showed that 256, 96, and 198 genes were responsive to Glut, THPS, and BAC, respectively, and that these three commonly used biocides affect the physiology of the cell quite differently. Glut induces expression of genes required to degrade or refold proteins inactivated by either chemical modification or heat shock, whereas BAC appears to target ribosomal structure. THPS appears to primarily affect energy metabolism of SRB. Mutants constructed for genes strongly up-regulated by Glut, were killed by Glut to a similar degree as the wild type. Hence, it is difficult to achieve increased sensitivity to this biocide by single gene mutations, because Glut affects so many targets. Our results increase understanding of the biocide's mode of action, allowing a more intelligent combination of mechanistically different agents. This can reduce stress on budgets for chemicals and on the environment.  相似文献   

9.
10.
A Desulfovibrio vulgaris Hildenborough mutant lacking the nrfA gene for the catalytic subunit of periplasmic cytochrome c nitrite reductase (NrfHA) was constructed. In mid-log phase, growth of the wild type in medium containing lactate and sulfate was inhibited by 10 mM nitrite, whereas 0.6 mM nitrite inhibited the nrfA mutant. Lower concentrations (0.04 mM) inhibited the growth of both mutant and wild-type cells on plates. Macroarray hybridization indicated that nitrite upregulates the nrfHA genes and downregulates genes for sulfate reduction enzymes catalyzing steps preceding the reduction of sulfite to sulfide by dissimilatory sulfite reductase (DsrAB), for two membrane-bound electron transport complexes (qmoABC and dsrMKJOP) and for ATP synthase (atp). DsrAB is known to bind and slowly reduce nitrite. The data support a model in which nitrite inhibits DsrAB (apparent dissociation constant K(m) for nitrite = 0.03 mM), and in which NrfHA (K(m) for nitrite = 1.4 mM) limits nitrite entry by reducing it to ammonia when nitrite concentrations are at millimolar levels. The gene expression data and consideration of relative gene locations suggest that QmoABC and DsrMKJOP donate electrons to adenosine phosphosulfate reductase and DsrAB, respectively. Downregulation of atp genes, as well as the recorded cell death following addition of inhibitory nitrite concentrations, suggests that the proton gradient collapses when electrons are diverted from cytoplasmic sulfate to periplasmic nitrite reduction.  相似文献   

11.
The gene coding for the flavodoxin protein from Desulfovibrio vulgaris (Hildenborough) has been identified, cloned, and sequenced. DNA fragments containing the flavodoxin gene were identified by hybridization of a mixed synthetic heptadecanucleotide probe to Southern blots of SalI-digested genomic DNA. The nucleotide sequences of the probe were derived from the published protein primary structure (Dubourdieu, M., LeGall, J., and Fox, J. L. (1973) Biochem. Biophys. Res. Commun. 52, 1418-1425). The same oligonucleotide probe was used to screen libraries (in pUC19) containing size-selected SalI fragments. One recombinant, carrying a 1.6-kilobase (kb) insert which strongly hybridizes to the probe, was found to contain a nucleotide sequence which codes for the first 104 residues of the amino-terminal portion of the flavodoxin protein sequence but lacked the remainder of the gene. Therefore, a PstI restriction fragment from this clone was used as a probe to isolate the entire gene from a partial Sau3AI library in Charon 35. Of the plaques which continued to hybridize strongly to this probe through repeated screenings, one recombinant, containing a 16-kb insert, was further characterized. The entire flavodoxin gene was localized within a 1.4-kb XhoI-SacI fragment of this clone. The complete nucleotide sequence of the structural gene for the flavodoxin protein from Desulfovibrio vulgaris and flanking sequences which may include promoter and regulatory sequences are reported here. The cloned flavodoxin gene was placed behind the hybrid tac promoter for overexpression of the protein in Escherichia coli. Modification to the 5'-end of the gene, including substitutions at the second codon, were required to obtain high levels of expression. The expressed recombinant flavodoxin protein is isolated from E. coli cells as the holoprotein with physical and spectral properties similar to the protein isolated from D. vulgaris. To our knowledge, this is the first example of the expression of a foreign flavodoxin gene in E. coli using recombinant DNA methods.  相似文献   

12.
The rbo gene of Desulfovibrio vulgaris Hildenborough encodes rubredoxin oxidoreductase (Rbo), a 14-kDa iron sulfur protein; forms an operon with the gene for rubredoxin; and is preceded by the gene for the oxygen-sensing protein DcrA. We have deleted the rbo gene from D. vulgaris with the sacB mutagenesis procedure developed previously (R. Fu and G. Voordouw, Microbiology 143:1815–1826, 1997). The absence of the rbo-gene in the resulting mutant, D. vulgaris L2, was confirmed by PCR and protein blotting with Rbo-specific polyclonal antibodies. D. vulgaris L2 grows like the wild type under anaerobic conditions. Exposure to air for 24 h caused a 100-fold drop in CFU of L2 relative to the wild type. The lag times of liquid cultures of inocula exposed to air were on average also greater for L2 than for the wild type. These results demonstrate that Rbo, which is not homologous with superoxide dismutase or catalase, acts as an oxygen defense protein in the anaerobic, sulfate-reducing bacterium D. vulgaris Hildenborough and likely also in other sulfate-reducing bacteria and anaerobic archaea in which it has been found.  相似文献   

13.
Desulfovibrio vulgaris Hildenborough is a model organism for studying the energy metabolism of sulfate-reducing bacteria (SRB) and for understanding the economic impacts of SRB, including biocorrosion of metal infrastructure and bioremediation of toxic metal ions. The 3,570,858 base pair (bp) genome sequence reveals a network of novel c-type cytochromes, connecting multiple periplasmic hydrogenases and formate dehydrogenases, as a key feature of its energy metabolism. The relative arrangement of genes encoding enzymes for energy transduction, together with inferred cellular location of the enzymes, provides a basis for proposing an expansion to the 'hydrogen-cycling' model for increasing energy efficiency in this bacterium. Plasmid-encoded functions include modification of cell surface components, nitrogen fixation and a type-III protein secretion system. This genome sequence represents a substantial step toward the elucidation of pathways for reduction (and bioremediation) of pollutants such as uranium and chromium and offers a new starting point for defining this organism's complex anaerobic respiration.  相似文献   

14.
Dissimilatory sulfite reductase (DsrAB) of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough is an 22 tetramer of 180 kDa, encoded by the dsr operon. In addition to the dsrA and dsrB genes, this operon contains a gene (dsrD) encoding a protein of only 78 amino acids. Although, the function of DsrD is currently unknown, the presence of a dsrD gene has been demonstrated in a variety of sulfate-reducing bacteria and archaea. DsrD was expressed in Escherichia coli at a very high level and purified to homogeneity. Protein blotting experiments, using antisera raised against purified DsrD, demonstrated that it is expressed constitutively in D. vulgaris and does not copurify with DsrAB. Spectroscopic analysis of DsrD indicated that it does not bind either sulfite or sulfide, the substrate and product, respectively of the reaction catalyzed by DsrAB. Thus, although the conservation of this protein and its demonstrated presence in D. vulgaris, suggest an essential function in dissimilatory sulfite reduction, this function remains to be elucidated.  相似文献   

15.
16.
The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough consists of six genes (hmcA to hmcF) that encode structural components of the high-molecular-mass cytochrome redox protein complex (the Hmc complex). Two genes (rrf1 and rrf2) encoding regulatory proteins are present downstream of hmcF. Expression of the hmc operon, monitored by incubating protein blots with HmcA-specific or HmcF-specific antibodies, was found to be highest when hydrogen was the sole electron donor for sulfate reduction. Use of lactate or pyruvate as electron donor reduced expression of the hmc operon. A mutant with a deletion of the rrf1 and rrf2 genes was generated with the sacB mutagenesis method. This mutant overexpressed the hmc operon approximately threefold. It grew more rapidly than the wild type when hydrogen was used as the electron donor for sulfate reduction, but more slowly than the wild type when lactate was used. The results indicate that a physiological function of the Hmc complex is in electron flow from hydrogen to sulfate. At least one redox carrier is shared competitively by the hydrogen and lactate oxidation pathways in D. vulgaris. Received: 9 October 1996 / Accepted: 18 February 1997  相似文献   

17.
18.
Desulfovibrio vulgaris Hildenborough is a good model organism to study hydrogen metabolism in sulfate-reducing bacteria. Hydrogen is a key compound for these organisms, since it is one of their major energy sources in natural habitats and also an intermediate in the energy metabolism. The D. vulgaris Hildenborough genome codes for six different hydrogenases, but only three of them, the periplasmic-facing [FeFe], [FeNi]1, and [FeNiSe] hydrogenases, are usually detected. In this work, we studied the synthesis of each of these enzymes in response to different electron donors and acceptors for growth as well as in response to the availability of Ni and Se. The formation of the three hydrogenases was not very strongly affected by the electron donors or acceptors used, but the highest levels were observed after growth with hydrogen as electron donor and lowest with thiosulfate as electron acceptor. The major effect observed was with inclusion of Se in the growth medium, which led to a strong repression of the [FeFe] and [NiFe]1 hydrogenases and a strong increase in the [NiFeSe] hydrogenase that is not detected in the absence of Se. Ni also led to increased formation of the [NiFe]1 hydrogenase, except for growth with H2, where its synthesis is very high even without Ni added to the medium. Growth with H2 results in a strong increase in the soluble forms of the [NiFe]1 and [NiFeSe] hydrogenases. This study is an important contribution to understanding why D. vulgaris Hildenborough has three periplasmic hydrogenases. It supports their similar physiological role in H2 oxidation and reveals that element availability has a strong influence in their relative expression.  相似文献   

19.
Abstract Formate dehydrogenase from Desulfovibrio vulgaris Hildenborough, a sulfate-reducing bacterium, has been isolated and characterized. The enzyme is composed of three subunits. A high molecular mass subunit (83 500 Da) is proposed to contain a molybdenum cofactor, a 27 000 Da subunit is found to be similar to the Fe-S subunit of the formate dehydrogenase from Escherichia coli and a low molecular mass subunit (14000 Da) holds a c -type heme. The presence of heme c in formate dehydrogenase is reported for the first time and is correlated to the peculiar low oxidoreduction potential of the metabolism of these strictly anaerobic bacteria. In vitro measurements have shown that a monoheme cytochrome probably acts as a physiological partner of the enzyme in the periplasm.  相似文献   

20.
Desulfovibrio vulgaris Hildenborough genome presents a phosphotransferase system putatively involved in the transport of carbohydrates. However, utilization of sugars by this sulfate-reducing bacterium has never been reported. Herein, we have observed proliferation of D. vulgaris Hildenborough with some carbohydrates, in mutualism with Stenotrophomonas maltophilia, a non-fermentative, gram-negative gammaproteobacterium, or Microbacterium, a gram-positive actinobacterium. These results suggest the importance of feedback interactions between different heterotrophic bacterial species including the alternative for D. vulgaris of exploiting additional organic resources and novel habitats. Thus, D. vulgaris strongly participates in the mineralization of carbohydrates both in complex natural and artificial systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号