共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase
下载免费PDF全文

Haveman SA Brunelle V Voordouw JK Voordouw G Heidelberg JF Rabus R 《Journal of bacteriology》2003,185(15):4345-4353
Comparison of the proteomes of the wild-type and Fe-only hydrogenase mutant strains of Desulfovibrio vulgaris Hildenborough, grown in lactate-sulfate (LS) medium, indicated the near absence of open reading frame 2977 (ORF2977)-coded alcohol dehydrogenase in the hyd mutant. Hybridization of labeled cDNA to a macroarray of 145 PCR-amplified D. vulgaris genes encoding proteins active in energy metabolism indicated that the adh gene was among the most highly expressed in wild-type cells grown in LS medium. Relative to the wild type, expression of the adh gene was strongly downregulated in the hyd mutant, in agreement with the proteomic data. Expression was upregulated in ethanol-grown wild-type cells. An adh mutant was constructed and found to be incapable of growth in media in which ethanol was both the carbon source and electron donor for sulfate reduction or was only the carbon source, with hydrogen serving as electron donor. The hyd mutant also grew poorly on ethanol, in agreement with its low level of adh gene expression. The adh mutant grew to a lower final cell density on LS medium than the wild type. These results, as well as the high level of expression of adh in wild-type cells on media in which lactate, pyruvate, formate, or hydrogen served as the sole electron donor for sulfate reduction, indicate that ORF2977 Adh contributes to the energy metabolism of D. vulgaris under a wide variety of metabolic conditions. A hydrogen cycling mechanism is proposed in which protons and electrons originating from cytoplasmic ethanol oxidation by ORF2977 Adh are converted to hydrogen or hydrogen equivalents, possibly by a putative H(2)-heterodisulfide oxidoreductase complex, which is then oxidized by periplasmic Fe-only hydrogenase to generate a proton gradient. 相似文献
2.
Caffrey SM Park HS Been J Gordon P Sensen CW Voordouw G 《Applied and environmental microbiology》2008,74(8):2404-2413
The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of -1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion. 相似文献
3.
4.
Peculiar attributes revealed by sequencing the genome of Desulfovibrio vulgaris Hildenborough are analyzed, particularly in relation to the presence of a phosphotransferase system (PTS). The PTS is a typical bacterial carbohydrate transport system functioning via group translocation. Novel avenues for investigations are proposed emphasizing the metabolic diversity of D. vulgaris Hildenborough, especially the likely utilization of mannose-type sugars. Comparative analysis with PTS from other Gram-negative and Gram-positive bacteria indicates regulatory functions for the PTS of D. vulgaris Hildenborough, including catabolite repression and inducer exclusion. Chemotaxis towards PTS substrates is considered. Evidence suggests that this organism may not be a strict anaerobic sulfate reducer typical of the ocean, but a versatile organism capable of bidirectional transmigration and adaptation to both water and terrestrial environments. 相似文献
5.
da Silva SM Pimentel C Valente FM Rodrigues-Pousada C Pereira IA 《Journal of bacteriology》2011,193(12):2909-2916
Formate is an important energy substrate for sulfate-reducing bacteria in natural environments, and both molybdenum- and tungsten-containing formate dehydrogenases have been reported in these organisms. In this work, we studied the effect of both metals on the levels of the three formate dehydrogenases encoded in the genome of Desulfovibrio vulgaris Hildenborough, with lactate, formate, or hydrogen as electron donors. Using Western blot analysis, quantitative real-time PCR, activity-stained gels, and protein purification, we show that a metal-dependent regulatory mechanism is present, resulting in the dimeric FdhAB protein being the main enzyme present in cells grown in the presence of tungsten and the trimeric FdhABC3 protein being the main enzyme in cells grown in the presence of molybdenum. The putatively membrane-associated formate dehydrogenase is detected only at low levels after growth with tungsten. Purification of the three enzymes and metal analysis shows that FdhABC3 specifically incorporates Mo, whereas FdhAB can incorporate both metals. The FdhAB enzyme has a much higher catalytic efficiency than the other two. Since sulfate reducers are likely to experience high sulfide concentrations that may result in low Mo bioavailability, the ability to use W is likely to constitute a selective advantage. 相似文献
6.
Meng-Hsin Phoebe Lee Sean M. Caffrey Johanna K. Voordouw Gerrit Voordouw 《Applied microbiology and biotechnology》2010,87(3):1109-1118
Although sulfate-reducing bacteria (SRB), such as Desulfovibrio vulgaris Hildenborough (DvH) are often eradicated in oil and gas operations with biocides, such as glutaraldehyde (Glut), tetrakis
(hydroxymethyl) phosphonium sulfate (THPS), and benzalkonium chloride (BAC), their response to these agents is not well known.
Whole genome microarrays of D. vulgaris treated with biocides well below the minimum inhibitory concentration showed that 256, 96, and 198 genes were responsive
to Glut, THPS, and BAC, respectively, and that these three commonly used biocides affect the physiology of the cell quite
differently. Glut induces expression of genes required to degrade or refold proteins inactivated by either chemical modification
or heat shock, whereas BAC appears to target ribosomal structure. THPS appears to primarily affect energy metabolism of SRB.
Mutants constructed for genes strongly up-regulated by Glut, were killed by Glut to a similar degree as the wild type. Hence,
it is difficult to achieve increased sensitivity to this biocide by single gene mutations, because Glut affects so many targets.
Our results increase understanding of the biocide's mode of action, allowing a more intelligent combination of mechanistically
different agents. This can reduce stress on budgets for chemicals and on the environment. 相似文献
7.
Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris hildenborough by nitrite
下载免费PDF全文

Haveman SA Greene EA Stilwell CP Voordouw JK Voordouw G 《Journal of bacteriology》2004,186(23):7944-7950
A Desulfovibrio vulgaris Hildenborough mutant lacking the nrfA gene for the catalytic subunit of periplasmic cytochrome c nitrite reductase (NrfHA) was constructed. In mid-log phase, growth of the wild type in medium containing lactate and sulfate was inhibited by 10 mM nitrite, whereas 0.6 mM nitrite inhibited the nrfA mutant. Lower concentrations (0.04 mM) inhibited the growth of both mutant and wild-type cells on plates. Macroarray hybridization indicated that nitrite upregulates the nrfHA genes and downregulates genes for sulfate reduction enzymes catalyzing steps preceding the reduction of sulfite to sulfide by dissimilatory sulfite reductase (DsrAB), for two membrane-bound electron transport complexes (qmoABC and dsrMKJOP) and for ATP synthase (atp). DsrAB is known to bind and slowly reduce nitrite. The data support a model in which nitrite inhibits DsrAB (apparent dissociation constant K(m) for nitrite = 0.03 mM), and in which NrfHA (K(m) for nitrite = 1.4 mM) limits nitrite entry by reducing it to ammonia when nitrite concentrations are at millimolar levels. The gene expression data and consideration of relative gene locations suggest that QmoABC and DsrMKJOP donate electrons to adenosine phosphosulfate reductase and DsrAB, respectively. Downregulation of atp genes, as well as the recorded cell death following addition of inhibitory nitrite concentrations, suggests that the proton gradient collapses when electrons are diverted from cytoplasmic sulfate to periplasmic nitrite reduction. 相似文献
8.
9.
Dissimilatory sulfite reductase (DsrAB) of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough is an 22 tetramer of 180 kDa, encoded by the dsr operon. In addition to the dsrA and dsrB genes, this operon contains a gene (dsrD) encoding a protein of only 78 amino acids. Although, the function of DsrD is currently unknown, the presence of a dsrD gene has been demonstrated in a variety of sulfate-reducing bacteria and archaea. DsrD was expressed in Escherichia coli at a very high level and purified to homogeneity. Protein blotting experiments, using antisera raised against purified DsrD, demonstrated that it is expressed constitutively in D. vulgaris and does not copurify with DsrAB. Spectroscopic analysis of DsrD indicated that it does not bind either sulfite or sulfide, the substrate and product, respectively of the reaction catalyzed by DsrAB. Thus, although the conservation of this protein and its demonstrated presence in D. vulgaris, suggest an essential function in dissimilatory sulfite reduction, this function remains to be elucidated. 相似文献
10.
Cloning, nucleotide sequence, and expression of the flavodoxin gene from Desulfovibrio vulgaris (Hildenborough) 总被引:3,自引:0,他引:3
The gene coding for the flavodoxin protein from Desulfovibrio vulgaris (Hildenborough) has been identified, cloned, and sequenced. DNA fragments containing the flavodoxin gene were identified by hybridization of a mixed synthetic heptadecanucleotide probe to Southern blots of SalI-digested genomic DNA. The nucleotide sequences of the probe were derived from the published protein primary structure (Dubourdieu, M., LeGall, J., and Fox, J. L. (1973) Biochem. Biophys. Res. Commun. 52, 1418-1425). The same oligonucleotide probe was used to screen libraries (in pUC19) containing size-selected SalI fragments. One recombinant, carrying a 1.6-kilobase (kb) insert which strongly hybridizes to the probe, was found to contain a nucleotide sequence which codes for the first 104 residues of the amino-terminal portion of the flavodoxin protein sequence but lacked the remainder of the gene. Therefore, a PstI restriction fragment from this clone was used as a probe to isolate the entire gene from a partial Sau3AI library in Charon 35. Of the plaques which continued to hybridize strongly to this probe through repeated screenings, one recombinant, containing a 16-kb insert, was further characterized. The entire flavodoxin gene was localized within a 1.4-kb XhoI-SacI fragment of this clone. The complete nucleotide sequence of the structural gene for the flavodoxin protein from Desulfovibrio vulgaris and flanking sequences which may include promoter and regulatory sequences are reported here. The cloned flavodoxin gene was placed behind the hybrid tac promoter for overexpression of the protein in Escherichia coli. Modification to the 5'-end of the gene, including substitutions at the second codon, were required to obtain high levels of expression. The expressed recombinant flavodoxin protein is isolated from E. coli cells as the holoprotein with physical and spectral properties similar to the protein isolated from D. vulgaris. To our knowledge, this is the first example of the expression of a foreign flavodoxin gene in E. coli using recombinant DNA methods. 相似文献
11.
Heidelberg JF Seshadri R Haveman SA Hemme CL Paulsen IT Kolonay JF Eisen JA Ward N Methe B Brinkac LM Daugherty SC Deboy RT Dodson RJ Durkin AS Madupu R Nelson WC Sullivan SA Fouts D Haft DH Selengut J Peterson JD Davidsen TM Zafar N Zhou L Radune D Dimitrov G Hance M Tran K Khouri H Gill J Utterback TR Feldblyum TV Wall JD Voordouw G Fraser CM 《Nature biotechnology》2004,22(5):554-559
Desulfovibrio vulgaris Hildenborough is a model organism for studying the energy metabolism of sulfate-reducing bacteria (SRB) and for understanding the economic impacts of SRB, including biocorrosion of metal infrastructure and bioremediation of toxic metal ions. The 3,570,858 base pair (bp) genome sequence reveals a network of novel c-type cytochromes, connecting multiple periplasmic hydrogenases and formate dehydrogenases, as a key feature of its energy metabolism. The relative arrangement of genes encoding enzymes for energy transduction, together with inferred cellular location of the enzymes, provides a basis for proposing an expansion to the 'hydrogen-cycling' model for increasing energy efficiency in this bacterium. Plasmid-encoded functions include modification of cell surface components, nitrogen fixation and a type-III protein secretion system. This genome sequence represents a substantial step toward the elucidation of pathways for reduction (and bioremediation) of pollutants such as uranium and chromium and offers a new starting point for defining this organism's complex anaerobic respiration. 相似文献
12.
13.
The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough consists of six genes (hmcA to hmcF) that encode structural components of the high-molecular-mass cytochrome redox protein complex (the Hmc complex). Two genes
(rrf1 and rrf2) encoding regulatory proteins are present downstream of hmcF. Expression of the hmc operon, monitored by incubating protein blots with HmcA-specific or HmcF-specific antibodies, was found to be highest when
hydrogen was the sole electron donor for sulfate reduction. Use of lactate or pyruvate as electron donor reduced expression
of the hmc operon. A mutant with a deletion of the rrf1 and rrf2 genes was generated with the sacB mutagenesis method. This mutant overexpressed the hmc operon approximately threefold. It grew more rapidly than the wild type when hydrogen was used as the electron donor for
sulfate reduction, but more slowly than the wild type when lactate was used. The results indicate that a physiological function
of the Hmc complex is in electron flow from hydrogen to sulfate. At least one redox carrier is shared competitively by the
hydrogen and lactate oxidation pathways in D. vulgaris.
Received: 9 October 1996 / Accepted: 18 February 1997 相似文献
14.
15.
Desulfovibrio vulgaris Hildenborough genome presents a phosphotransferase system putatively involved in the transport of carbohydrates. However, utilization of sugars by this sulfate-reducing bacterium has never been reported. Herein, we have observed proliferation of D. vulgaris Hildenborough with some carbohydrates, in mutualism with Stenotrophomonas maltophilia, a non-fermentative, gram-negative gammaproteobacterium, or Microbacterium, a gram-positive actinobacterium. These results suggest the importance of feedback interactions between different heterotrophic bacterial species including the alternative for D. vulgaris of exploiting additional organic resources and novel habitats. Thus, D. vulgaris strongly participates in the mineralization of carbohydrates both in complex natural and artificial systems. 相似文献
16.
Corinne Sebban Laurence Blanchard Mireille Bruschi Françoise Guerlesquin 《FEMS microbiology letters》1995,133(1-2):143-149
Abstract Formate dehydrogenase from Desulfovibrio vulgaris Hildenborough, a sulfate-reducing bacterium, has been isolated and characterized. The enzyme is composed of three subunits. A high molecular mass subunit (83 500 Da) is proposed to contain a molybdenum cofactor, a 27 000 Da subunit is found to be similar to the Fe-S subunit of the formate dehydrogenase from Escherichia coli and a low molecular mass subunit (14000 Da) holds a c -type heme. The presence of heme c in formate dehydrogenase is reported for the first time and is correlated to the peculiar low oxidoreduction potential of the metabolism of these strictly anaerobic bacteria. In vitro measurements have shown that a monoheme cytochrome probably acts as a physiological partner of the enzyme in the periplasm. 相似文献
17.
18.
Cloning, sequencing, and expression of the gene encoding the high-molecular-weight cytochrome c from Desulfovibrio vulgaris Hildenborough. 总被引:2,自引:6,他引:2
下载免费PDF全文

W B Pollock M Loutfi M Bruschi B J Rapp-Giles J D Wall G Voordouw 《Journal of bacteriology》1991,173(1):220-228
By using a synthetic deoxyoligonucleotide probe designed to recognize the structural gene for cytochrome cc3 from Desulfovibrio vulgaris Hildenborough, a 3.7-kb XhoI genomic DNA fragment containing the cc3 gene was isolated. The gene encodes a precursor polypeptide of 58.9 kDa, with an NH2-terminal signal sequence of 31 residues. The mature polypeptide (55.7 kDa) has 16 heme binding sites of the form C-X-X-C-H. Covalent binding of heme to these 16 sites gives a holoprotein of 65.5 kDa with properties similar to those of the high-molecular-weight cytochrome c (Hmc) isolated from the same strain by Higuchi et al. (Y. Higuchi, K. Inaka, N. Yasuoka, and T. Yagi, Biochim. Biophys. Acta 911:341-348, 1987). Since the data indicate that cytochrome cc3 and Hmc are the same protein, the gene has been named hmc. The Hmc polypeptide contains 31 histidinyl residues, 16 of which are integral to heme binding sites. Thus, only 15 of the 16 hemes can have bis-histidinyl coordination. A comparison of the arrangement of heme binding sites and coordinated histidines in the amino acid sequences of cytochrome c3 and Hmc from D. vulgaris Hildenborough suggests that the latter contains three cytochrome c3-like domains. Cloning of the D. vulgaris Hildenborough hmc gene into the broad-host-range vector pJRD215 and subsequent conjugational transfer of the recombinant plasmid into D. desulfuricans G200 led to expression of a periplasmic Hmc gene product with covalently bound hemes. 相似文献
19.
Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough
下载免费PDF全文

Caffrey SM Park HS Voordouw JK He Z Zhou J Voordouw G 《Journal of bacteriology》2007,189(17):6159-6167
The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe] hydrogenase, an [NiFeSe] hydrogenase, and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1, and hyn2 genes, respectively. In order to understand their cellular functions, we have compared the growth rates of existing (hyd and hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those of the wild type in defined media in which lactate or hydrogen at either 5 or 50% (vol/vol) was used as the sole electron donor for sulfate reduction. Only strains missing the [Fe] hydrogenase were significantly affected during growth with lactate or with 50% (vol/vol) hydrogen as the sole electron donor. When the cells were grown at low (5% [vol/vol]) hydrogen concentrations, those missing the [NiFeSe] hydrogenase suffered the greatest impairment. The growth rate data correlated strongly with gene expression results obtained from microarray hybridizations and real-time PCR using mRNA extracted from cells grown under the three conditions. Expression of the hys genes followed the order 5% hydrogen>50% hydrogen>lactate, whereas expression of the hyd genes followed the reverse order. These results suggest that growth with lactate and 50% hydrogen is associated with high intracellular hydrogen concentrations, which are best captured by the higher activity, lower affinity [Fe] hydrogenase. In contrast, growth with 5% hydrogen is associated with a low intracellular hydrogen concentration, requiring the lower activity, higher affinity [NiFeSe] hydrogenase. 相似文献
20.
Inactivation of PerR by oxidative stress and a corresponding increase in expression of the perR regulon genes is part of the oxidative stress defense in a variety of anaerobic bacteria. Diluted anaerobic, nearly sulfide-free
cultures of mutant and wild-type Desulfovibrio vulgaris (105–106 colony-forming units/ml) were treated with 0 to 2,500 μM H2O2 for only 5 min to prevent readjustment of gene expression. Survivors were then scored by plating. The wild type and perR mutant had 50% survival at 58 and 269 μM H2O2, respectively, indicating the latter to be 4.6-fold more resistant to killing by H2O2 under these conditions. Significantly increased resistance of the wild type (38-fold; 50% killing at 2188 μM H2O2) was observed if cells were pretreated with full air for 30 min, conditions that did not affect cell viability. The resistance
of the perR mutant increased less (4.6-fold; 50% killing at 1230 μM H2O2), when similarly pretreated. Interestingly, no increased resistance of either was achieved by exposure with 10.6 μM H2O2 for 30 min, the highest concentration that could be used without killing the cells. Hence, in environments with low D. vulgaris biomass only the presence of external O2 effectively activates the perR regulon. As a result, mutant strains lacking one of the perR regulon genes ahpC, dvu0772, rbr1 or rbr2 displayed decreased resistance to H2O2 stress only following pretreatment with air. 相似文献