首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The first systematic observation of a general flowering, a phenomenon unique to lowland mixed-dipterocarp forests in Southeast Asia, is presented. During general flowering, which occurs at irregular intervals of 3–10 yr, nearly all dipterocarp species together with species of other families come heavily into flower. We monitored reproductive phenology of 576 individual plants representing 305 species in 56 families in Sarawak, Malaysia. Observations continued for 53 mo from August 1992 and covered one episode of a general flowering cycle. Among 527 effective reproductive events during 43 mo, 57% were concentrated in the general flowering period (GFP) of 10 mo in 1996. We classified 257 species into flowering types based on timing and frequency of flowering. The most abundant type was “general flowering” (35%), which flowered only during GFP. The others were “supra-annual” (19%), “annual” (13%), and “sub-annual” (5%) types. General flowering type and temporal aggregation in reproductive events were commonly found among species in various categories of taxonomic groups, life forms, pollination systems, and fruit types. Possible causes for general flowering, such as promotion of pollination brought about by interspecific synchronization and paucity of climatic cues suitable for flowering trigger, are proposed, in addition to the predator satiation hypothesis of Janzen (1974) .  相似文献   

3.
Western flower thrips (WFTs), Frankliniella occidentalis Pergrande, and onion thrips (OTs), Thrips tabaci Lindeman, are two cosmopolitan insect pests of agricultural and horticultural plants. Understanding the occurrence and development of thrips on plants is crucial for identifying suitable plants that can be used for developing a “push-pull” strategy against thrips. In this study, the dynamics of WFTs and OTs on plants (Allium fistulosum L., Medicago sativa L., Luffa cylindrica (L.) Roem., Ocimum basilicum L., and Schizonepeta tenuifolia (Benth.) Briq.) were investigated for two consecutive years (2018–2019). Throughout the survey, the abundances of both thrips species were strongly associated with plant species and plant phenology; both thrips species were present at relatively high densities on M. sativa but very low densities on O. basilicum and S. tenuifolia. Populations of both thrips species greatly increased during plant flowering. A Y-tube olfactory test was used to study the effects of plant volatiles in mediating thrips behaviour and showed that volatiles of M. sativa were attractive to both thrips species whether emitted by the plant in the vegetative or flowering stage, while volatiles of O. basilicum and S. tenuifolia were repellent to thrips. Additionally, because of the presence of a high number of floral chemicals, both thrips species exhibited a greater preference for volatiles emitted by plants in the flowering period over those emitted by plants in the vegetative period. Our observations indicate that plant species and flowering status play an important role in the abundance dynamics of thrips and that the volatiles of flowering plants attract thrips more strongly than volatiles emitted by vegetative plants. These findings can facilitate the screening of attractive/unattractive plants for developing push-pull strategies to control thrips.  相似文献   

4.
5.
6.
Pollination ecology of an emergent tree species, Shorea (section Mutica) parvifolia (Dipterocarpaceae), was studied using the canopy observation system in a lowland dipterocarp forest in Sarawak, Malaysia, during a general flowering period in 1996. Although the species has been reported to be pollinated by thrips in Peninsular Malaysia, our observations of flower visitors and pollination experiments indicated that beetles (Chrysomelidae and Curculionidae, Coleoptera) contributed to pollination of S. parvifolia in Sarawak. Beetles accounted for 74% of the flower visitors collected by net-sweeping, and 30% of the beetles carried pollen, while thrips accounted for 16% of the visitors, and 12% of the thrips carried pollen. The apical parts of the petals and pollen served as a reward for the beetles. Thrips stayed inside the flower almost continuously after arrival, and movements among flowers were rare. Fruit set was significantly increased by introduction of beetles to bagged flowers, but not by introduction of thrips. Hand-pollination experiments and comparison of fruit set in untreated, bagged, and open flowers suggested that S. parvifolia was mainly outbreeding.  相似文献   

7.
Many species of Eucalyptus in Australia provide copious amounts of nectar during their reproductive seasons. The nectar is used by many animal species but especially by birds, insects and some bats, which act as pollinators. One of the major features of eucalypt flowering in southern Australia is the patchy, asynchronous flowering of different species, which appears to drive mass nomadism of nectarivorous birds among regions and among habitats. Here we explore whether flowering asynchrony or climate is primarily responsible for the influxes and effluxes of vast numbers of nectarivorous birds in central Victoria, Australia. By using a structured sampling program, we show that winter flowering by red ironbark Eucalyptus tricarpa is the most likely agent controlling avian-nectarivore dynamics rather than climatic differences among regions. Densities and species richness of nectarivores, and numbers of nectarivory events, are all closely related to measures of flowering intensity. However, nonnectarivores, such as insectivores and granivores, show no relationships with either habitat or region. We discuss how dependence on a patchily distributed but highly rewarding resource such as nectar influences population densities and community structure in birds.  相似文献   

8.
9.
Flowerings and flower visitors were observed continuously in alowland dipterocarp forest in Sarawak, Malaysia, for 53 mo in1992-1996. Flower visitors of 270 plant species were observed orcollected, and pollinators were assessed by observing body contact tostigmas and anthers. We recognized 12 categories of pollination systems.Among them, plants pollinated by social bees included the largest numberof species (32%) and were followed by beetle-pollinated species(20%). Pollination systems were significantly related with somefloral characters (flowering time of day, reward, and floral shape), butnot with floral color. Based on the relationships between pollinatorsand floral characters, we described pollination syndromes found in alowland dipterocarp forest. The dominance of social bees and beetlesamong pollinators is discussed in relation to the general floweringobserved in dipterocarp forests of West Malesia. In spite of high plantspecies diversity and consequent low population densities of lowlanddipterocarp forests, long-distance-specific pollinators were uncommoncompared with theNeotropics.  相似文献   

10.
'Big Bang' flowering is common among geophyte plants and is a strategy particularly important in arid areas. Griffinia is a genus whose species have very ephemeral flowering. Not surprisingly, there is so far no information on the reproductive biology and pollination ecology of any Griffinia species. Here, we highlight an amazing phenomenon of massive flowering in Griffinia gardneriana, a species that blooms for only one or two nights and emits a remarkable odor plume in the Caatinga night. The flowering event of the species varied depending on the locality, but it was always associated with the rainy season. The high number of white tubular flowers produce a strong sweet perfume dominated by (E)-nerolidol (42%), linalool (33%) and (E)-β-ocimene (15%). Agrius cingulata (Sphingidae) was the only pollinator recorded. Because G. gardneriana set only a few fruits by self-pollination, in contrast to a high number of fruits under natural conditions, this hawkmoth pollination system seems to be very efficient.  相似文献   

11.
Dwarf bamboos in the genus Sasa are believed to be long-lived, synchronously flowering, and monocarpic plants. However, the monocarpy of dwarf bamboo has not been confirmed, because whether all ramets within one genet flower at the same time cannot be determined without differentiating the genetic structure among ramets. This study aims to evaluate the reproductive traits of Sasa pubiculmis by verifying the monocarpy and physiological integration between flowering ramets and non-flowering ramets during a 4-year flowering period. One genotypically identified genet, which covered an area of approximately 3 ha, had both flowering and non-flowering patches of ramets during the 4-year flowering period (2004–2007). A fraction of the flowering genet remained non-flowering during the 4 years of observation, and did not die after mass flowering. Flowering ramets were physically connected to non-flowering ramets via rhizomes, and assimilated 13C was allocated from non-flowering ramets to flowering ramets. Consequently, we clarified that this dwarf bamboo potentially has polycarpic reproductive traits rather than monocarpic, and a genet can keep rhizomes and non-flowering patches alive to sustain the organism after mass flowering.  相似文献   

12.
Summary Effects of variation in fire season on flowering of forbs and shrubs were studied experimentally in two longleaf pine forest habitats in northern Florida, USA. Large, replicated plots were burned at different times of the year, and flowering on each plot was measured over the twelve months following fire. While fire season had little effect on the number of species flowering during the year following fire, fires during the growing season decreased average flowering duration per species and increased synchronization of peak flowering times within species relative to fires between growing seasons. Fires during the growing season also increased the dominance of fall flowering forbs and delayed peak fall flowering. Differences in flowering resulting from variation in fire season were related to seasonal changes in the morphology of clonal forbs, especially fall-flowering composites. Community level differences in flowering phenologies indicated that timing of fire relative to environmental cues that induced flowering was important in determining flowering synchrony among species within the ground cover of longleaf pine forests. Differences in fire season produced qualitatively similar effects on flowering phenologies in both habitats, indicating plant responses to variation in the timing of fires were not habitat specific.  相似文献   

13.

Background and Aims

Knowledge of pollen dispersal patterns and variation of fecundity is essential to understanding plant evolutionary processes and to formulating strategies to conserve forest genetic resources. Nevertheless, the pollen dispersal pattern of dipterocarp, main canopy tree species in palaeo-tropical forest remains unclear, and flowering intensity variation in the field suggests heterogeneity of fecundity.

Methods

Pollen dispersal patterns and male fecundity variation of Shorea leprosula and Shorea parvifolia ssp. parvifolia on Peninsular Malaysian were investigated during two general flowering seasons (2001 and 2002), using a neighbourhood model modified by including terms accounting for variation in male fecundity among individual trees to express heterogeneity in flowering.

Key Results

The pollen dispersal patterns of the two dipterocarp species were affected by differences in conspecific tree flowering density, and reductions in conspecific tree flowering density led to an increased selfing rate. Active pollen dispersal and a larger number of effective paternal parents were observed for both species in the season of greater magnitude of general flowering (2002).

Conclusions

The magnitude of general flowering, male fecundity variation, and distance between pollen donors and mother trees should be taken into account when attempting to predict the effects of management practices on the self-fertilization and genetic structure of key tree species in tropical forest, and also the sustainability of possible management strategies, especially selective logging regimes.  相似文献   

14.
Although it has been widely asserted that plants mate assortatively by flowering time, there is virtually no published information on the strength or causes of phenological assortment in natural populations. When strong, assortative mating can accelerate the evolution of plant reproductive phenology through its inflationary effect on genetic variance. We estimated potential assortative mating for flowering date in 31 old‐field species in Ontario, Canada. For each species, we constructed a matrix of pairwise mating probabilities from the individual flowering schedules, that is the number of flower deployed on successive dates. The matrix was used to estimate the phenotypic correlation between mates, ρ, for flowering date. We also developed a measure of flowering synchrony within species, S, based upon the eigenstructure of the mating matrix. The mean correlation between pollen recipients and potential donors for flowering date was  = 0.31 (range: 0.05–0.63). A strong potential for assortative mating was found among species with high variance in flowering date, flowering schedules of short duration and skew towards early flower deployment. Flowering synchrony, S, was negatively correlated with potential assortment (= ?0.49), but we go on to show that although low synchrony is a necessary condition for phenological assortative mating, it may not be sufficient to induce assortment for a given phenological trait. The potential correlation between mates showed no seasonal trend; thus, as climate change imposes selection on phenology through longer growing seasons, spring‐flowering species are no more likely to experience an accelerated evolutionary response than summer species.  相似文献   

15.
A floristic analysis of the lowland dipterocarp forests of Borneo   总被引:4,自引:0,他引:4  
Aim To (1) identify floristic regions in the lowland (below 500 m a.s.l.) tropical dipterocarp rain forest of Borneo based on tree genera, (2) determine the characteristic taxa of these regions, (3) study tree diversity patterns within Borneo, and (4) relate the floristic and diversity patterns to abiotic factors such as mean annual rainfall and geographical distance between plots. Location Lowland tropical dipterocarp rain forest of Borneo. Methods We used tree (diameter at breast height ≥ 9.8 cm) inventory data from 28 lowland dipterocarp rain forest locations throughout Borneo. From each location six samples of 640 individuals were drawn randomly. With these data we calculated a Sørensen and Steinhaus similarity matrix for the locations. These matrices were then used in an UPGMA clustering algorithm to determine the floristic relations between the locations (dendrogram). Principal coordinate analysis was used to ordinate the locations. Characteristic taxa for the identified floristic clusters were determined with the use of the INDVAL method of Dufrene & Legendre (1997) . Finally, Mantel analysis was applied to determine the influence of mean annual rainfall and geographical distance between plots on floristic composition. Results A total of 77 families and 363 genera were included in the analysis. On average a random sample of 640 trees from a lowland dipterocarp forest in Borneo contains 41.6 ± 3.8 families and 103.0 ± 12.7 genera. Diversity varied strongly on local scales. On a regional scale, diversity was found to be highest in south‐east Borneo and central Sarawak. The most common families were Dipterocarpaceae (21.9% of trees) and Euphorbiaceae (12.2% of trees). The most common genera were Shorea (12.3% of trees) and Syzygium (5.0% of trees). The 28 locations were clustered in geographically distinct floristic regions. This was related to the fact that floristic similarity depended strongly on the geographical distance between plots and similarity in mean annual rainfall. Conclusions We identified five main floristic regions within the lowland dipterocarp rain forests of Borneo, each of which had its own set of characteristic genera. Mean annual rainfall is an important factor in explaining differences in floristic composition between locations. The influence of geographical distance on floristic similarity between locations is probably related to the fact that abiotic factors change with distance between plots. Borneo's central mountain range generally forms an effective dispersal barrier for the lowland tree flora. Diversity patterns in Borneo are influenced by the mid‐domain effect, habitat size and the influence of past climatic changes (ice ages during the Pleistocene).  相似文献   

16.
Aim We analyse the proximate causes of the large variation in flowering periodicity among four tropical dry forests (TDF) and ask whether climatic periodicity or biotic interactions are the ultimate causes of flowering periodicity. Location The four TDFs in Guanacaste (Costa Rica), Yucatan, Jalisco and Sonora (Mexico) are characterized by a 5–7 month long dry season and are located along a gradient of increasing latitude (10–30°N). Methods To dissect the differences in flowering periodicity observed at the community level, individual tree species were assigned to ‘flowering types’, i.e. groups of species with characteristic flowering periods determined by similar combinations of environmental flowering cues and vegetative phenology. Results Large variation in the fraction of species and flowering types blooming during the dry and wet season, respectively, indicates large differences in the severity of seasonal drought among the four forests. In the dry upland forests of Jalisco, flowering of leafless trees remains suppressed during severe seasonal drought and is triggered by the first rains of the wet season. In the other forests, leaf shedding, exceptional rainfall or increasing daylength cause flowering of many deciduous species at various times during the dry season, well before the summer rains. The fraction of deciduous species leafing out during the summer rains and flowering when leafless during the dry season is largest in the Sonoran TDF. Main conclusions In many wide‐ranging species the phenotypic plasticity of flowering periodicity is large. The distinct temporal separation of spring flowering on leafless shoots and subsequent summer flushing represents a unique adaptation of tree development to climates with a relatively short rainy season and a long dry season. Seasonal variation in rainfall and soil water availability apparently constitutes not only the proximate, but also the ultimate cause of flowering periodicity, which is unlikely to have evolved in response to biotic adaptive pressures.  相似文献   

17.
Climate change has affected plant phenology; increasing temperatures are associated with advancing first flowering dates. The impact on flowering duration, however, has rarely been studied. In this study, we analysed first flowering dates and flowering durations from a 27 year dataset of weekly flower observations on 232 plant species from the island of Guernsey in the English Channel. The aim of this study was to explore variation in trends and relationships between first flowering dates, flowering duration and temperature. We specifically looked for evidence that traits, such as life forms and phylogenetic groups, explained variation in sensitivity of first flowering and flowering duration among species. Overall trends revealed significantly earlier flowering over time, by an average of 5.2 days decade?1 since 1985. A highly significant shortening of flowering duration was observed by an average of 10 days decade?1. Correlations between first flowering, flowering duration and year varied between different species, traits and flowering periods. Significant differences among traits were observed for first flowering and to a lesser degree for flowering duration. Overall, in comparison to first flowering, more species had significant trends in flowering duration. Temperature relationships revealed large differences in strength and direction of response. 55% of the species revealed a significant negative relationship of first flowering dates and temperature. In contrast, only 19% of flowering durations had a significant negative temperature relationship. The advance in first flowering date together with a shortening of flowering duration suggests potentially serious impacts on pollinators, which might pose a major threat to biodiversity, agriculture and horticulture. Human health, in terms of pollen allergies, however, might benefit from a shortening of specific plant pollen seasons.  相似文献   

18.
开花时间对植物的繁殖成功至关重要。广泛分布的物种经常发生开花时间的分化, 从而能够更好地适应不同的环境条件。为了探索植物开花行为发生适应性分化的分子机制, 首先要明确调控开花行为的遗传通路。本文梳理了植物各类群调控开花时间的遗传通路, 以期为开花时间适应性分化的分子机制研究提供依据。 植物从营养生长向繁殖转变时, 其开花行为主要受到光照、温度、水分等外界环境因子和赤霉素等内在因素的影响。通过对模式植物拟南芥(Arabidopsis thaliana)和其他类群的研究, 总结出了调控植物开花时间的6条通路, 包括日照长度和光质影响开花的光依赖通路, 长时间冷暴露后促进植物开花的春化通路, 高温或低温环境影响开花的温度通路, 以及赤霉素通路、年龄通路和自主通路3条内部调节过程。植物开花时间调控的6条上游通路信号传递到下游的开花整合基因FT(FLOWERING LOCUS T)和SOC1(SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1), 整合基因将这些复杂的调节因子整合后进一步传递到下游花分生组织, 从而启动开花。此外, 非编码RNA、转座子对开花时间的调控也具有重要作用。部分遗传通路被证实在植物适应环境的过程中起到了重要作用。目前对植物开花调控的研究已经有一百多年历史, 理论相对成熟。然而, 仍然存在许多具有争议和未解决的问题, 如开花基因的表达方式、开花行为的特殊调控机制、开花时间变异的适应性意义等等, 需要更进一步的研究。  相似文献   

19.
Elucidating the physiological mechanisms of the irregular yet concerted flowering rhythm of mass flowering tree species in the tropics requires long‐term monitoring of flowering phenology, exogenous and endogenous environmental factors, as well as identifying interactions and dependencies among these factors. To investigate the proximate factors for floral initiation of mast seeding trees in the tropics, we monitored the expression dynamics of two key flowering genes, meteorological conditions and endogenous resources over two flowering events of Shorea curtisii and Shorea leprosula in the Malay Peninsula. Comparisons of expression dynamics of genes studied indicated functional conservation of FLOWERING LOCUS T (FT) and LEAFY (LFY) in Shorea. The genes were highly expressed at least 1 month before anthesis for both species. A mathematical model considering the synergistic effect of cool temperature and drought on activation of the flowering gene was successful in predicting the observed gene expression patterns. Requirement of both cool temperature and drought for floral transition suggested by the model implies that flowering phenologies of these species are sensitive to climate change. Our molecular phenology approach in the tropics sheds light on the conserved role of flowering genes in plants inhabiting different climate zones and can be widely applied to dissect the flowering processes in other plant species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号