首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult male hamsters were given transplants of 1/2, 1, 2, 3 or 4 pituitaries under the kidney capsule and were killed 4 weeks later. Pituitary transplants produced a significant, dose-related increase in plasma prolactin levels, no changes in plasma LH and an increase in plasma FSH. Concentration of LH/hCG receptors in the testes was significantly increased in animals with 2 or 3 transplants and concentration of testicular prolactin receptors was significantly increased in those given 2 transplants. The apparent stimulatory effects of 1/2, 1 or 4 transplants on testicular LH/hCG and prolactin binding were not statistically significant. Some of the animals were injected with 0.3 i.u. hCG/g body weight 24 h before being killed. This produced a significant reduction in the levels of prolactin receptors and an apparent reduction in the levels of LH/hCG receptors in the testes. Elevation of plasma testosterone concentrations in response to hCG was significantly greater in animals given 3 or 4 pituitary transplants than in the remaining groups. These results provide further evidence that prolactin increases the number of LH/hCG and prolactin receptors in the hamster testis and suggest that changing the number of ectopic pituitary transplants may result in biphasic effects on the testis, with 2 or 3 transplants being maximally stimulatory.  相似文献   

2.
The effects of artificial photoperiod, temperature, and long-term testosterone treatment on testicular luteinizing hormone (LH) binding were studied in adult male Djungarian hamsters. In hamsters transferred to long-day (LD; 16 hr light, 8 hr dark) photoperiod 8 weeks after adaptation in short-day (SD; 8 hr light, 16 hr dark) photoperiod of 25 degrees C, testicular growth was associated with an increase in the total LH binding per two testes and a decrease in LH binding per unit testicular weight. Plasma testosterone levels reached a peak 47 days after transfer to LD and tended to decrease thereafter, while the testes continued growing. In contrast, when hamsters reared under LD conditions at 25 degrees C for 12 weeks were transferred to SD, testicular regression was associated with a decrease in plasma testosterone and the total LH binding per two testes and an increase in LH binding per unit testicular weight. A significant decrease in LH binding per unit weight compared to SD controls was observed in those hamsters exposed to SD with continuous testosterone treatment. The testosterone treatment tended to induce decrease in the total LH binding. Scatchard plot analyses of the binding suggested that changes in LH binding were due to changes in the number of binding sites. When sexually mature male hamsters were subjected for 8 weeks to two different ambient temperatures (7 degrees C and 25 degrees C) and photoperiods (LD and SD), the difference between the two temperature groups was statistically not significant regarding the weights of testes, epididymides, and prostates; plasma testosterone levels; and LH binding in either LD or SD group. These results suggest that photoperiod is a more important environmental factor than temperature for the regulation of testicular activity and LH receptors and that testosterone reduces the number of LH receptors per unit testicular weight in adult male Djungarian hamsters.  相似文献   

3.
Aging exerts profound influences on the function of the hypothalamic-pituitary-testicular-axis. This work has been performed in order to verify whether, in male rats, the decreased secretion of LH and testosterone (T) occurring in old animals is reflected by modifications of luteinizing hormone-releasing hormone (LHRH) receptors at the level of the anterior pituitary and of the testes. To this purpose, the affinity constant (Ka) and the maximal binding capacity (Bmax) for the LHRH analog [D-Ser(tBu)6]des-Gly10-LHRH-N-ethylamide were evaluated, by means of a receptor binding assay, in membrane preparations derived from the anterior pituitary and testicular Leydig cells of male rats of 3 and 19 months of age. Serum levels of LH and T were measured by specific RIAs. The results obtained show that, in aged male rats, the concentration of pituitary LHRH receptors is significantly lower than that found in young animals. On the other hand, the concentration of LHRH binding sites is significantly increased on the membranes of Leydig cells of old rats. In no instance the Ka for the LHRH analog is significantly affected. Serum levels of LH and T are significantly lower in old than in young male rats. In conclusion, these results suggest that the reduced secretion of LH in old male rats may be linked, at least partially, to a decrease of the number of pituitary LHRH receptors. The impaired production of testosterone occurring in aged rats is accompanied by a significant increase of the number of testicular LHRH receptors, indicating that also the intratesticular mechanisms controlling testosterone release undergo significant alterations with aging.  相似文献   

4.
The differential mechanisms reducing androgen secretion by LHRH agonists are discussed with relevance to clinical therapy. LH secretion can be desensitised by exposure to agonists using high doses, frequent injections or sustained release/constant infusion. The desensitized pituitary is refractory to hypothalamic stimulation. Pituitary receptor suppression is associated with depletion of pituitary gonadotrophin content, and a decline of LH and FSH secretion to a basal rate. Recovery of LH responsiveness to endogenous LHRH stimulation requires restitution of gonadotrophin content (about 7 days in rats). After long-term infusions in normal men, testosterone secretion recovers within 7-10 days. The binding capacity of testicular LH/hCG receptors is reduced in rats after supraphysiological gonadotrophin stimulation, by agonists or directly by hCG, concomitantly the steroidogenic capacity of the testis in vitro is impaired. Qualitative changes in androgen biosynthesis are a marked fall in testosterone production and dose-dependent enhancement of progesterone production. After 12 months of buserelin injections, the changes in hCG-stimulated rat testes are an increased ratio of progesterone/17-OH-progesterone (inhibition of 17-hydroxylase), a reduced capacity for secretion of androstenedione and testosterone (block of 17,20-desmolase), and increased 5 alpha-pregnane-3,20-dione (this steroid inhibits the 17,20-desmolase, similarly to progesterone). After treatment, Leydig cell function recovers completely. Leydig cell hyperplasia is observed as a result of the steroidogenic changes. These findings in rats have not been observed in dogs, monkeys or in humans.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Adult rats were made bilaterally cryptorchid and studied at intervals of 3, 7, 14 or 21 days to study temporal changes in Leydig cell function. Serum FSH and LH levels were measured and the cross-sectional area of the Leydig cells assessed by morphometry. The function of the Leydig cells was judged by the binding of 125I-labelled hCG to testicular tissue in vitro and the testosterone response of the testis to hCG stimulation in vitro. By 3 days after cryptorchidism, the binding of labelled hCG to testicular tissue was significantly decreased compared to that of controls, but the testes were able to respond to hCG stimulation in vitro. At 7, 14 and 21 days after cryptorchidism, an enhanced testosterone response was observed and the size of the Leydig cells was significantly greater than that of the controls, which indicated increased secretory activity by the cryptorchid testis. Although serum FSH levels were significantly elevated after 3 days of cryptorchidism, serum LH levels did not rise until 7 days, thereby suggesting that the loss of receptors is unlikely to result from down-regulation by LH. The reduced testosterone response of the cryptorchid testis in vivo to low doses of hCG and the enhanced response at high doses are probably related to the reduced blood flow to the cryptorchid testis and the decreased sensitivity of the Leydig cells induced by LH/hCG receptor loss.  相似文献   

6.
Male rhesus monkeys were given 100 micrograms [(imBzl)-D-His6,Pro9-NEt]-LHRH (LHRH-A), a potent LHRH agonist, s.c. daily for 40 weeks. The first dose of LHRH-A caused acute increases (2-4 h after injection) in serum LH (50-fold), FSH (2 X 5-fold) and testosterone (15-fold) concentrations. Chronic treatment led to a 95% decrease in LH and FSH responses. In spite of a marked decrease in LH response the effect on testosterone response was less evident. Administration of 50 i.u. hCG to control and LHRH-A-treated animals showed that the testicular steroidogenic response was unimpaired by the chronic treatment. Evaluation of the electroejaculated semen at regular intervals showed that there was no consistent reduction in the sperm count of LHRH-A-treated monkeys. Testicular biopsies showed that normal spermatogenesis was occurring in all treated animals, but testicular volume was significantly decreased. These results suggest that, in rhesus monkeys, the pituitary is more susceptible to desensitization by chronic LHRH agonist treatment than are the testes, and that LHRH agonists do not have direct antitesticular effect in rhesus monkeys.  相似文献   

7.
The testosterone responses to a single injection of hCG (100 i.u.) in hypophysectomized (hypox.), cryptorchid or sham-operated rats were followed over a 5-day period. In sham-operated rats, hCG induced a biphasic rise in serum testosterone, peaks being observed at 2 and 72 h. Reduced testis weights, elevated FSH and LH levels and reduced serum testosterone levels were found after 4 weeks of cryptorchidism, but hCG stimulation resulted in a normal 2 h peak in serum testosterone. However, the secondary rise at 72 h in cryptorchid rats was significantly lower than sham-operated rats. Reduced testis weight and undetectable serum FSH and LH levels together with decreased testosterone levels were found 4 weeks after hypophysectomy. Serum testosterone levels rose 2 h after hCG in comparison to hypox. controls but this peak was significantly reduced compared with sham-operated rats. The second rise in serum testosterone began on day 2, peaking on day 4 at levels comparable to that seen in sham-operated rats after hCG. The in vitro basal and hCG stimulated secretion of testosterone by cryptorchid testes was greater than that secreted by normal rat testes (518.0 +/- 45.9 and 3337.6 +/- 304.1 pmol per testis per 4 h compared with 223.6 +/- 24.9 and 1312.9 +/- 141.4 pmol per testis per 4 h for normal rat testes). In cryptorchid animals a single injection of 100 i.u. hCG resulted in a pattern of in vitro refractoriness similar to normal rats, lasting from 12 h to 2 days, during which testosterone secretion was reduced to near basal levels. The in vitro basal and hCG-stimulated secretion of testosterone by hypox. rat testes was severely diminished compared with normal rat testes. The temporal pattern of in vitro secretion of testosterone from hypox. rat testes mimicked the in vivo serum testosterone pattern seen in these animals. This study demonstrates important differences in the in vivo and in vitro testosterone response to hCG after testicular damage.  相似文献   

8.
The effects of an LHRH agonist (LHRHa), [D-Ser (tBu)]6 des-Gly-NH210) ethylamide, on endocrine function and the LHRH and LH/hCG receptors in the pituitary-gonadal axis were examined. The LHRHa was injected at 100 ng/100 g body weight into male rats once a day for 4 weeks and its effects were observed until 2 weeks after the end of treatment. Due to LHRHa treatment, the plasma LH concentration began to increase on day 3, reached a peak on day 7, and then decreased, although it remained above the control level during the treatment. The pituitary LH content decreased on day 1, reached a minimum (about 40% of the control) between days 3 and 7, and then was maintained at 60% of the control level until week 4. In contrast, the pituitary LHRH receptor concentration increased only on day 3, and the association constant (Ka) remained unchanged during the observation period. The testis weight and plasma testosterone concentration began to decrease on day 3, reached the minimum on day 7 and remained at this level until week 4, and their levels were not completely restored to normal 2 weeks after cessation of treatment. The testicular LH/hCG receptor concentration was decreased on day 1, and markedly decreased to 10-15% of the control value between day 7 and week 4, but the Ka value was slightly increased during the treatment. However, these values had completely recovered 2 weeks after the cessation of treatment. The testicular LHRH receptor concentration increased between days 1 and 7, returned to the control level in weeks 2 and 4, and then decreased 2 weeks after cessation of treatment. Its Ka value was reduced in weeks 2 and 4. These data suggest that the inhibitory effect of LHRHa on the gonad in male rats is not due to reduced pituitary LH release, but to changes in the number and Ka values of gonadal receptors for LH/hCG and LHRH.  相似文献   

9.
Juvenile hamsters were injected daily with melatonin and some were also given transplants of 2 pituitaries under the kidney capsule. Weights of the testes and the accessory reproductive glands were reduced after 8 and after 12 weeks of melatonin treatment, but remained unaltered in animals treated with ectopic pituitary transplants. Levels of testicular LH/hCG receptors were significantly reduced by daily melatonin injections for 8 and 12 weeks. The presence of pituitary transplants in melatonin-injected hamsters prevented these reductions, and increased LH/hCG receptors above control levels. These changes in testicular LH/hCG receptors were closely related to alterations in serum prolactin concentration induced by melatonin and pituitary transplants. After 8, but not after 12 weeks of treatment, testicular prolactin receptor levels were reduced by melatonin and maintained by the presence of pituitary transplants. We conclude that: juvenile male hamsters become sensitive to the effects of daily melatonin injections when they reach maturity; daily melatonin injections can reduce the levels of testicular LH/hCG and prolactin receptors; and the effects of melatonin on LH/hCG and prolactin receptors are probably due to suppression of endogenous prolactin release.  相似文献   

10.
Male voles were raised from birth to 100 days of age in photoperiods of 16L:8D or 6L:18D. In the long photoperiod testes increased in size between 15 and 80 days of age, and there was an increase in seminal vesicle weight from 60 days of age. Spermatozoa were present in the testes at 60 days of age. In the short photoperiod testicular growth did not begin until 50 days of age with the seminal vesicles beginning to increase at 80 days of age. Spermatozoa were present in testes at 100 days of age. Pituitary secretion in vitro of LH and FSH in response to 1 pmol GnRH, as well as hypothalamic GnRH content, rose to peaks at 50 and 80 days of age respectively in animals exposed to long photoperiods. There was no change in pituitary secretion of FSH in response to GnRH stimulation in animals from the short photoperiod. However, pituitary release of LH in response to 1 pmol GnRH rose to a peak at 80 days of age. Hypothalamic GnRH content rose to a peak at 50 days of age and then declined. The relationship between the hypothalamic GnRH and the sensitivity of the pituitary to GnRH stimulation is compatible with the idea that GnRH can mediate its own receptor numbers.  相似文献   

11.
The regulation of testicular LH/hCG receptors was studied in Syrian (golden) hamsters with testicular atrophy induced by exposure to short photoperiod (5L:19D) and in gonadally active hamsters kept in a long photoperiod (14L:10D). By 24 h after injection of hCG, long-photoperiod hamsters showed a dose-related decrease in the number of testicular LH/hCG receptors. At 48 and 72 h, there was a recovery from this 'down-regulation'. The recovery was much faster than has been reported for the rat and mouse, and it resulted in elevation of testicular LH/hCG receptor concentrations above basal values. Hamsters with short photoperiod-induced testicular atrophy showed an increase in testicular LH/hCG receptors after injection of hCG, except for animals injected with a very high dose. The hCG-induced increase in testicular LH/hCG binding in these animals was associated with reappearance of testosterone responses to subsequent hCG stimulation. Response of testicular LH/hCG receptors to hCG in prepubertal hamsters resembled that measured in animals with short photoperiod-induced gonadal atrophy.  相似文献   

12.
Treatment of adult male rats with oestradiol benzoate (OB) for 21 days significantly decreased the body, testicular and accessory sex organ weights but increased anterior pituitary weight. OB treatment also significantly suppressed circulating FSH and LH levels as well as plasma and testicular concentrations of testosterone. The seminiferous tubules and interstitial cells were partly atrophied, and there was some effect on spermatogenesis, with step 14 to 19 spermatids being fewer than normal. Rats treated with OB for 21 days were then treated daily with LH-RH analogue ((D-Leu6, des-Gly-NH2(10))-LH-RH-ethylamide), to see if testicular function could be recovered. Circulating gonadotrophins were significantly elevated, testicular histology was normal and testicular and plasma testosterone concentrations and the accessory sex organ weights remained suppressed. These results suggest possible extra-pituitary effects of the LH-RH analogue, including a direct action on the testes and/or accessory sex organs.  相似文献   

13.
Adult male Syrian hamsters of the inbred LSH/Ss Lak strain were maintained under a 14L:10D light cycle until 13 weeks of age. At this point, they were implanted s.c. with elastomer capsules that were either empty or packed with 30-40 mg of 6-methoxybenzoxazolinone (6-MBOA), a compound found naturally in some monocotyledonous plants; half of the animals from each treatment group were then kept in long days (14L:10D) or transferred to short days (9L:15D). Testicular size was measured and blood samples collected from each hamster immediately before capsule implantation and again 2, 4, 6 and 8 weeks later. Within just 2 weeks of exposure to short days the mean plasma levels of LH and FSH had significantly declined, in both the control and 6-MBOA-treated animals, and were basal within 4 weeks. Testicular size closely followed these gonadotrophin changes; within 4-6 weeks the testes from all of the short-day hamsters had completely regressed to a prepubertal size. At the end of the experiment, at Week 8, the animals were killed and various components of the hypothalamo-pituitary-testicular axis were compared between the treatment groups. The pituitary content of FSH and LH, testicular weight, mean serum level of testosterone, but not hypothalamic LHRH content or pituitary gland weight, were considerably lower in the short-day than in the long-day hamsters, regardless of whether or not they had been chronically treated with 6-MBOA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To determine the etiology of male hypogonadism in a newly found mutant rat (hgn/hgn, with a single autosomal recessive trait), concentrations of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were measured, and the responsiveness of the urogenital organs, hypothalamus, and pituitary gland to testosterone (1 mg/kg s.c. for 7 days), FSH (0.3 AU/kg s.c. for 7 days), human chorionic gonadotropin (hCG) (40 IU/kg s.c. for 7 days), and luteinizing hormone-releasing hormone (LHRH) (0.5 or 5.0 micrograms/kg s.c. for 7 days) were tested. Treatment with testosterone only increased the weights of all of the accessory sex organs, whereas treatment with FSH, hCG, or LHRH did not. Levels of serum FSH and LH were extremely higher and testosterone was lower in hgn/hgn males than in normal males. Serum FSH and LH decreased to levels found in intact animals after treatment with testosterone, suggesting that hypothalamic responsiveness to exogenous testosterone is present in the hgn/hgn males. Thus, the status of the hgn/hgn males was indicated to be due to primary Leydig cell dysfunction.  相似文献   

15.
The adult male golden hamster will undergo testicular regression when exposed to a short photoperiod, blinding, or late afternoon injections of melatonin. The present study was conducted to compare the effects of all three treatments on serum gonadotropin levels and testicular weights, and to evaluate the effects of these treatments on hypothalamic content of both immunoreactive and bioactive luteinizing hormone-releasing hormone (LHRH) levels. Hamsters were blinded (BL), exposed to a short photoperiod (SP), or received daily injections of melatonin (MEL) for 15 wk. Each treatment (BL, SP, MEL) induced a temporally similar decline in serum luteinizing hormone (LH), serum follicle-stimulating hormone (FSH), and testicular weight. Spontaneous recrudescence occurred earliest in the MEL group, with serum gonadotropins and testicular weight returning to normal by 15 wk. The SP group exhibited recovery of serum gonadotropins but not testicular weight by 15 wk. The BL group demonstrated partial recovery of serum FSH levels by 15 wk, with no recovery in either serum LH or testicular weight. Each treatment group demonstrated increased hypothalamic content of immunoreactive LHRH which was temporally correlated with the decreases of serum gonadotropins. Additionally, the MEL and SP groups demonstrated decreased immunoreactive LHRH levels during spontaneous recrudescence. Extracts of hypothalami from all treatment groups were bioactive on control hamster pituitary cells. These results indicate that there are temporal differences among the three common treatments and that these differences are manifested in serum gonadotropins, testicular weight and hypothalamic LHRH. Hypothalamic LHRH levels determined by radioimmunoassay and bioassay show periods of increase and decrease which coincide with periods of altered serum gonadotropin levels in all groups.  相似文献   

16.
The in vivo effects of short photoperiod (SPP, 6L:18D) for 8 and 12 wk on plasma and testicular levels of testosterone (T) precursors in adult golden hamsters were evaluated. Plasma and testicular progesterone (P), 17 alpha-hydroxyprogesterone (17 alpha-OHP), androstenedione (A-dione), and T were measured after 5 injections of saline or human chorionic gonadotropin (hCG) (5 or 25 IU/day). The basal levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL) in circulation were also determined. There were significant reductions in the weight of the testes in animals exposed to SPP. After 12 wk in SPP, circulating levels and testicular content of 17 alpha-OHP, A-dione, and T were significantly reduced, suggesting that the decrease in T secretion may be associated with the impairment of synthesis and/or action of 17 alpha-steroid hydroxylase, C17-20 steroid lyase, and 17 beta-hydroxysteroid dehydrogenase enzymes in the testes. Exposure to SPP for 8 wk resulted in decreased plasma and testicular content of T. Although there were reductions in testicular content of 17 alpha-OHP and A-dione, this was not reflected in plasma levels of these steroids. After 8 and 12 wk of exposure to SPP, hCG treatment increased the total amounts of T precursors (except P at 8 wk) in the testes, but the values attained in animals exposed to 12 wk of SPP remained below those observed in hamsters kept in a long photoperiod (14L:10D), suggesting that gonadotropin replacement alone may be insufficient to normalize testicular steroidogenesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Tamoxifen was administered i.m. for 9 days to adult male rats in a daily dose of 100 micrograms or 1 mg. The treatment resulted in a significant reduction of the plasma levels of testosterone and LH, without modification of the plasma levels of FSH and of the testes weight. Upon incubation, the testes from the tamoxifen-treated rats produced less testosterone and 7 alpha-hydroxytestosterone, but metabolized [4-14C]testosterone in the same way as the control animals. Small doses of hCG (0.5 i.u. for 9 days) were unable to modify the tamoxifen effect on the testicular function, while tamoxifen significantly inhibited the increase of the plasma levels of testosterone induced by the administration of moderate doses of hCG (1.5 i.u. or 2.5 i.u. for 9 days) to hypophysectomized rats. Tamoxifen treatment, however, did not modify significantly the reactivity of the testes towards high doses of hCG (10 i.u.), administered either 2 h before sacrifice or for 9 days. It is concluded that a prolonged administration of tamoxifen in the rat has, besides an indirect effect resulting from a decrease of the LH levels, a direct inhibitory influence on the testicular testosterone formation, which can be reversed by high doses of hCG.  相似文献   

18.
The in vivo and in vitro testicular responsiveness to hCG of hemicastrated lamb fetuses 95-99, 110-118 and 130-141 days of gestational age was studied. Basal plasma testosterone (T) levels were similar at all ages (less than 0.25 ng/ml), while the mean testicular concentrations of dehydroepiandrosterone sulfate (DHA-S), 17 alpha-hydroxyprogesterone (17-OHP) and T were higher in 95- to 99-day-fold fetuses. Plasma T levels and the concentration of T, DHA-S, 17-OHP, androstenedione (A) and cyclic adenosine 3'5'-monophosphate (cAMP) were increased by hCG in the hemicastrated animal at all ages. cAMP and T production by enriched preparations of dispersed interstitial cells from control testes was increased by hCG in all groups. In fetuses pretreated with hCG in vivo the addition of hCG in vitro failed to modify cAMP and T production. 100 micrograms of LHRH to a 130-day-old fetus increased plasma LH and T levels. From these experiments, it is suggested that the low plasma LH and T levels found throughout the last trimester of fetal life reflect a relative lack of endogenous LHRH synthesis and/or release, rather than reduced testicular steroidogenic capacity.  相似文献   

19.
During prepubertal development in the golden hamster, there are major age-related changes in the number of testicular LH/hCG receptors. Between 22 and 35 days of age, there was greater than 10-fold increase in testicular LH/hCG receptors, followed by a decrease at Day 37. Concomitant with, but preceding slightly, the changes in receptors, were increases in plasma LH and FSH and most noticeably prolactin concentrations, between Days 10 and 20 of age. Inhibition of the increases in plasma levels of prolactin by daily injections of bromocriptine, between 14 and 31 days of age, resulted in suppressed testicular and seminal vesicle weights, and decreased content and concentration of testicular LH/hCG receptors. Similarly, the premature increase in plasma prolactin concentrations in prepubertal hamsters between 6 and 20 days of age, by means of ectopic pituitary transplants, resulted in increased testicular and seminal vesicle weights, as well as an increase in the concentration of testicular LH/hCG receptors. These results strongly suggest that increases in plasma prolactin values during development are important in enhancement of the development of testicular LH/hCG receptors.  相似文献   

20.
A study was conducted with hypophysectomized hamsters to determine effects of administration of prolactin (PRL), luteinizing hormone (LH), and follicle-stimulating hormone (FSH)-alone or in combination-on testicular PRL receptors and in vitro testosterone production. Hormonal injections commenced the second day after hypophysectomy, and hamsters were killed on Day 5, approximately 13 h after the last hormonal injection. PRL receptor numbers were reduced by hypophysectomy, and PRL administration alone lessened the extent of this decrease. By themselves, neither LH nor FSH affected PRL receptors, but a combination of PRL + FSH + LH produced the greatest effect on these receptors. Receptor affinity was only modestly affected by any treatments. In vitro testosterone synthesis was measured after addition of 0, 2, 10, and 50 mIU of human chorionic gonadotropin (hCG) to incubations of testicular tissue. Neither PRL nor FSH by themselves in vivo affected basal or hCG-stimulated testosterone production. However, PRL + FSH increased (p less than 0.05) the magnitude of the in vitro testosterone response to hCG, as well as the sensitivity of that response (slope of the dose-response curve). LH alone increased both basal and hCG-stimulated testosterone production. PRL + LH provided no additional increase in the magnitude of the testosterone response, but increased (p less than 0.05) the sensitivity. PRL + FSH + LH in vivo provided for the greatest sensitivity of the testosterone response to hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号