首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of topsoiling on the vegetation communities of Abu Dhabi coastal desart rangelands with sand taken from an inland area of rangeland supporting a different vegetation community, was investigated. The study was carried out on ghanada Island, an inshore desert island which had been extensively topsoiled in the previous 5 years. Parts of the island also had been drip irrigated. Perennial vegetation communities on Ghanada were markedly different on topsoiled areas compared to non-topsoiled areas. However not all the species common in the topsoil source area were subsequently found to be common on the topsoiled areas. Zygophyllum hamiense, thought to be a colonizer of disturbed soil in the source areas, was common on the topsoiled areas. Annual plant species richness was greater on topsoiled areas compared to untreated native soil indicating (i) that the source areas had a greater annual species richness than Ghanada, and (ii) annual species propagules successfully survived the processes of topsoiling. Annual and perennial species richness was not significantly different between irrigated and non-irrigated areas. The perennial percentage cover was greatest on drip irrigated areas and the perennial which benefited the most was Heliotropium kotschyi, probably due to its rhizomous growth habit.  相似文献   

2.
Vegetation dynamics were studied from 1940 to 1978 in two grazed pastures and associated exclosures in sand sagebrush (Artemisia filifolia) dominated grassland, western Oklahoma, USA. In both pastures and one exclosure, pattern of vegetation change reflected fluctuation rather than succession. In the other exclosure, the grassland exhibited a directional change from annual grasses and forbs to dominance by perennial grasses. Rate of change was consistent during the 39 year period. Cover of grasses increased more in grazed than ungrazed areas. Grass cover was negatively correlated with high air temperatures early in the growing season. Forb cover remained relatively constant over time and shrub cover peaked during the 1960s. Abundance of annuals and cool season species was positively correlated with rainfall early in the growing season.Species diversity and richness were lowest in the ungrazed areas, as a result of increased dominance by perennial grasses such as Schizachyrium scoparium. In pastures and exclosures, richness was positively correlated with growing season precipitation. Cover of the common species differed among sample areas within years and fluctuated between years. Few general patterns emerged from correlations of environmental variables with cover of individual species. In general, vegetation dynamics in these sand sagebrush grasslands reflect a tradeoff in that total cover changes little over time because the loss of some species is compensated for by increased growth of others. Such trade-offs reflect the individualistic response of the component species within each pasture or exclosure. Although changes in growth form composition were related to climatic fluctuation, broad-scale climatic variables could not successfully predict small-scale patterns of change by individual species over time.  相似文献   

3.
This paper documents changes in the floristic composition of Eucalyptus marginata Donn (jarrah) woodlands over 7 years of recovery from continual, intensive livestock grazing. In remnants of native woodland left after agricultural clearing, which have been subjected to livestock grazing, comparisons were made between the floristics of fenced exclosure plots and open plots that continued to be grazed. The vegetation in nearby remnants, which had not been subjected to livestock grazing, was also surveyed. An initial increase in annual exotic pasture species after grazing relief was only temporary and highly influenced by fluctuations in annual climatic patterns, particularly rainfall distribution and abundance. Subsequent years saw a decrease in exotic annuals in exclosure plots and an increase in native perennials, in a trend towards becoming more floristically similar to the ungrazed sites. Germination of overstorey species was observed in the exclosure plots, however, development of seedlings and saplings was sparse. Results indicate that for jarrah woodland in southwestern Australia, natural regeneration is possible after the removal of livestock, with the return (within 6 years) of native species richness to levels similar to those found in ungrazed vegetation. Re‐establishment of cover, however, appears to take longer. The floristic dynamics are described in terms of a nonequilibrium model. Two vegetation states exist, degraded remnants with an understorey dominated by annual species, and ungrazed vegetation with an understorey dominated by perennial shrubs and herbs. The former state is maintained by continual heavy grazing by livestock. Upon relief from grazing, the vegetation undergoes a transition towards floristic similarity to ungrazed vegetation. After 6 years, vegetation change in the exclosure plots appears to be continuing and therefore it is still in transition.  相似文献   

4.
Katoh  Kazuhiro  Takeuchi  Kazuhiko  Jiang  Deming  Nan  Yinhao  Kou  Zhenwu 《Plant Ecology》1998,139(2):133-144
Grazing control has been reported to be effective for the control of desertification in semi-arid regions. However, economic reasons often make complete inhibition of grazing (complete exclosure) difficult to carry out. Grazing control has been applied to the Kerqin Sandy Lands, Inner Mongolia, China, by means of seasonal exclosure, whereby grazing is allowed from November to April. The harvesting of hay is also allowed once during September - October. The aim of the reported study was to evaluate the effectiveness of this seasonal exclosure on vegetation restoration. Species compositional data were obtained from 356 quadrats and ordinated by Detrended Correspondence Analysis (DCA). Ordination indicated that landform was the most important factor influencing the species composition of the vegetation. Regardless of landform and type of grazing control, however, vegetation coverage, vegetation height and species richness were higher at sites where grazing had been controlled, than at sites lacking any control. Perennial species were dominant at the former while annual species were dominant at the latter. Both shrub and tree species were quite rare at the sites where seasonal exclosure had been carried out. It is concluded that seasonal exclosure is sufficient to restore and maintain grassland vegetation in and around the study area. When shrubby or tree vegetation is needed for reasons such as fixing sands or preventing sand dune remobilization, complete exclosure is recommended.  相似文献   

5.
《农业工程》2020,40(6):425-431
Livestock grazing is one of the main factors of vegetation and soil degradation in arid and semi-arid rangelands of Iran and causes changes in diversity, vegetation, litter and soil characteristics. Therefore, this study has been conducted aimed to examine the effects of exclosure and livestock grazing on vegetation and soil. For this purpose, two grazing areas of medium and high grazing intensity and two exclosure areas (Non-grazing livestock) with duration of 8 and 11 years were selected for sampling. Then, we identified plant species, percentage of coverage of each species, measurement of diversity indices, species similarity and soil chemical properties including electrical conductivity (mho), acidity, organic matter(%), organic carbon (%), nitrogen (%), phosphorus (mg/L) and bulk density (gr/cm3) in each area and they were compared using variance analysis. The results showed that exclosure significantly at 5% level reduced organic matter percentage, electrical conductivity and organic carbon percentage, but it caused a significant increase in soil bulk density at 1% level. Similarity of plant species due to the reduction of livestock grazing intensity and increasing exclosure duration. The results also indicate Livestock grazing increased Coverage of plant family such as Poaceae, Zygophyllacea in the area due to the increase of plant species such as Peganum harmala and Poa bulbosa (non-pleasant species of class III). Based on the results, despite increasing the diversity of plant species in the area over time, increasing diversity does not increase dominant species of the area, as well as companion species increased in the composition of vegetation. It concluded that exclusion has a significant effect on vegetation improvement, vegetation cover percentage, diversity, palatability and litter percentage in the region.  相似文献   

6.
Livestock grazing is one of the main causes of rangeland degradation in Saudi Arabia. Fencing to exclude grazers is one of the main management practices used to restore vegetation and conserve biodiversity. The main objectives of this study were to investigate the changes in plant diversity and abundance, floristic composition and plant groups of the major life forms in response to thirty-five years of grazing exclosure in western Saudi Arabia. These vegetation attributes and palatability were compared in 30 sampling stands located in the excluded and grazed sites. Our results showed that livestock exclusion significantly increased covers, density and species richness of annuals, grasses, perennial forbs, shrubs and trees. Exclosure enhanced the abundance and richness of palatable species and depressed the development of weedy species. About 66.7% of the recorded species at the excluded site were highly palatable compared to 34.5% at the grazed site. In contrary, about 55.2% unpalatable species were found in the grazed site compared to 25.8% in the protected site. Jaccard’s similarity index between the excluded and grazed sites showed lower values of 0.39%, 0.40% and 0.31% at levels of families, genus and species, respectively. The results suggest that establishing livestock exclusion may be a useful sustainable management tool for vegetation restoration and conservation of plant diversity in degraded rangelands of arid regions.  相似文献   

7.
在干旱风沙区宁夏盐池县,选择典型放牧柠条锦鸡儿灌丛林地为研究样地,以邻近长期围栏封育灌丛林地为对照,调查了春季、夏季和秋季放牧和封育2种类型样地的地表植被、土壤性状和地面节肢动物分布特征,分析了灌丛林地地面节肢动物群落组成及多样性对放牧管理的响应规律.结果表明:1)放牧导致植被高度、土壤细砂粒含量和土壤电导率显著降低,而土壤容重和粗砂粒含量显著升高.2)调查共获得地面节肢动物13目40科,其中优势类群为蚁科和拟步甲科,其个体数占总个体数的68.75%;常见类群4类,其个体数占总个体数的20.82%;其余34类为稀有类群,其个体数占总个体数的10.44%.在春季、夏季和秋季,放牧和封育样地间地面节肢动物群落组成均差别较大,反映了地面节肢动物对包括放牧管理和季节变化双重作用下环境变化的敏感性和适应性.3)放牧导致地面节肢动物多度显著升高.但放牧样地和封育样地间地面节肢动物类群数、Shannon指数、均匀度指数和优势度指数在3个季节中均无显著差异.4)相关分析表明,地面节肢动物多度、均匀度指数、优势度指数均与植被高度、植物多度、土壤水分、土壤pH值和电导率存在相关性,而地面节肢动物Shannon指数与植被高度、土壤水分和土壤细砂粒存在相关性.偏冗余分析(RDA)表明,土壤pH值、植物多度、土壤含水量和温度是影响地面节肢动物群落个体数分布的关键驱动因子.研究表明,放牧管理条件下植被高度、土壤pH、土壤水分和土壤温度差异导致不同地面节肢动物类群表现出了不同的响应模式.灌丛对地面节肢动物多样性的保育效应能够削弱放牧干扰的负向影响.但放牧干扰下春季灌丛林地植食性地面节肢动物多度增加,需注重放牧易导致灌丛林病虫害发生和进行防控.  相似文献   

8.
Green walls (GWs) have been increasingly recognized as an important restoration technique for steep slopes resulting from quarrying activities or major infrastructure construction projects. In practice, GW irrigation is considered essential, although studies evaluating vegetation establishment under different irrigation regimes are lacking. Besides taxonomic metrics, functional diversity measures were used to compare the diversity and composition of plant communities of two hydroseeded GWs, with different irrigation regimes (irrigated vs. low‐irrigated). The studied GWs were installed in Peneda‐Gerês National Park (NW Portugal) to minimize the visual impact of shotcrete walls, along a road infrastructure, and promote their ecological restoration. Species' cover was recorded 3 years after installation. Species were classified according to their growth form, life form, and life strategy. Despite hydroseeding approximately 57 species, GW vegetation was dominated by spontaneous species, particularly acrocarpous mosses, regardless of irrigation regime. Species and functional richness were higher under irrigated conditions, while no differences were observed for species diversity and functional dispersion. Functional trait composition did not differ between GWs, indicating that both systems potentially provide the same ecosystem functions and services. Our results also suggest that spontaneous species colonizing GWs are highly adapted to local environmental conditions, given their dominance in both irrigated and low‐irrigated communities. Overall, irrigation did not affect the structure and functioning of GW communities, only their redundancy, since more species exhibiting similar traits were established in the irrigated GW. Therefore, our findings suggest that low‐irrigated GWs, hydroseeded with native species, represent a more cost‐effective solution to reduce the ecological impacts of steep slopes.  相似文献   

9.
Questions: Is plant species richness, diversity and above‐ground standing biomass enhanced after establishing exclosures on communal grazing lands? What factors influence the effectiveness of exclosures to restore degraded native vegetation in Tigray, Ethiopia? Location: Northern Ethiopia. Methods: We used a space‐for‐time substitution approach to detect changes in plant species richness, diversity and above‐ground standing biomass after conversion of communal grazing lands to exclosures. We selected replicated (n=3) 5‐, 10‐, 15‐ and 20‐year‐old exclosures and paired each exclosure with an adjacent communal grazing land to ensure that soil and terrain conditions were as similar as possible among each pair. Results: All exclosures displayed higher plant species richness, diversity and biomass than the communal grazing lands. Differences in plant species richness and biomass between an exclosure age and adjacent communal grazing land were higher in oldest than in youngest exclosures. In exclosures, much of the variability in plant species composition and biomass was explained by a combination of edaphic (total nitrogen, phosphorus, texture and soil pH) and site (precipitation and altitude) variables (R2=0.72–0.82). Edaphic and site variables also explained much of the variability in plant species composition in communal grazing lands (R2=0.76–0.82). Our study shows that all exclosures are at an early stage of succession. The increase in economically important indigenous shrub and tree species with exclosure age suggests that, with time, a valuable afromontane forest may develop. Conclusions: Establishment of exclosures on communal grazing lands is a viable option to restore degraded native vegetation. However, before expanding exclosures, the ecological consequences of additional exclosures should be investigated as further expansion of exclosures could increase grazing pressure on remaining grazing areas. Furthermore, consideration of edaphic and site variables will help optimize selection of areas for establishment of exclosures and enhance natural regeneration in exclosures in the future.  相似文献   

10.
In the longitudinal continuum of the Kupa River the vegetation cover and substrate type were the important environmental factors influencing the spatial differences in the biomass and community composition. Of total macroinvertebrate biomass, a significantly greater percentage of trichopterans was found on boulder and cobble substrata covered with moss (54.3% on boulders, 55.8% on cobbles) than on substrata covered with periphyton (9.9% on boulders, 14.8% on cobbles). In the potamal, trichopterans were markedly reduced (<2.5% of total macroinvertebrate biomass) on gravel substrata. A comparison of the Shannon diversity index values suggested that for trichopteran species diversity the substrate type was a more influential factor than vegetation cover. On the other hand, multidimensional scaling analysis showed that trichopteran community composition was related more significantly to vegetation cover and river area than to substrate type. In the rhithral the vegetation cover was an important factor influencing the functional feeding group composition of trichopterans. The spatial distribution of scrapers and filtering collectors depended significantly on the vegetation cover associated with substrate type, and shredder trichopterans were related to vegetation cover only. Predatory trichopterans made up 17–65% of total predator biomass, and in the rhithron area they were correlated significantly only with vegetation cover. On gravel substrata in the potamal, vegetation cover did not affect the spatial distribution of shredder and collector‐filterer trichopterans significantly.  相似文献   

11.
Questions: Does the diversity of heathland vegetation change when subjected to experimental disturbances such as cutting and nitrogen fertilization? Do changes in the vegetation structure negatively affect the regeneration of the dominant species Calluna vulgaris? Is cutting an alternative method of conserving the diversity and maintaining the structure of heathlands in the Cantabrian Mountains? Location: Calluna vulgaris heathlands on the southern slopes of the Cantabrian Mountain range, NW Spain. Methods: A total of 60 plots were treated with different combinations of cutting and twice the estimated atmospheric deposition of nitrogen (56 kg‐N.ha?1.yr?1). The changes in the cover values of the species present were monitored over a five year study period. The cover values were used to calculate abundance and species richness. Results: Fertilizing with nitrogen allows biodiversity to increase over time. However, the greatest biodiversity is associated with the cutting plus fertilization treatment, since cutting allows gaps to be opened that are easily colonized by pioneer annual species, while fertilization mainly favours an increase in the mean number of perennial herbs (graminoids and forbs). Increased perennial herb richness also corresponds to a rise in their cover values. The recovery of the dominant woody species in these communities, Calluna vulgaris, is not impeded by the increase in perennial herbs species' cover values. Conclusions: In the Calluna vulgaris heathlands studied, cutting plus fertilization allowed an increase in biodiversity over time. No displacement of the dominant woody species, Calluna vulgaris, is observed due to the presence of the perennial herbs. Cutting patches of heathland is recommended as a mechanism for maintaining high vegetation diversity, when grazing is not possible.  相似文献   

12.
Questions: How long may it take for desert perennial vegetation to recover from prolonged human disturbance and how do different plant community variables (i.e. diversity, density and cover) change during the recovery process? Location: Sonoran Desert, Arizona, USA. Methods: Since protection from grazing from 1907 onwards, plant diversity, density and cover of perennial species were monitored intermittently on ten 10 m × 10 m permanent plots on Tumamoc Hill, Tucson, Arizona, USA. Results: The study shows an exceptionally slow recovery of perennial vegetation from prolonged heavy grazing and other human impacts. Since protection, overall species richness and habitat heterogeneity at the study site continued to increase until the 1960s when diversity, density and cover had been stabilized. During the same period, overall plant density and cover also increased. Species turnover increased gradually with time but no significant relation between any of the three community variables and precipitation or Palmer Drought Severity Index (PDSI) was detected. Conclusions: It took more than 50 yr for the perennial vegetation to recover from prolonged human disturbance. The increases in plant species richness, density, and cover of the perennial vegetation were mostly due to the increase of herbaceous species, especially palatable species. The lack of a clear relationship between environment (e.g. precipitation) and community variables suggests that site history and plant life history must be taken into account in examining the nature of vegetation recovery processes after disturbance.  相似文献   

13.

Questions

Do livestock grazing and seasonal precipitation structure species composition in montane vernal pools? Which grazing and precipitation variables best predict cover of vernal pool specialists and species with broader habitat requirements? Is vernal pool species diversity correlated with livestock exclosure, and at what spatial scales?

Location

Montane vernal pools, northeast California, USA.

Methods

Vegetation was sampled in 20 vernal pools, including pools where livestock had been excluded for up to 20 years We compared plant species composition, functional group composition and species diversity among sites that varied in grazing history and seasonal precipitation using CCA and LMM.

Results

Although vernal pool specialists were dominant in montane vernal pools, over a third of plant cover was comprised of species that occur over a broad range of wetland or upland environments. The species composition of vernal pool plant communities was influenced by both livestock grazing and precipitation patterns, however the relative effects of these environmental variables differed by functional group. Livestock exclosures favoured perennial vernal pool specialists over annual vernal pool specialists. In contrast, the cover of habitat generalists was more strongly influenced by seasonal precipitation than livestock grazing. At small spatial scales, species richness and diversity decreased as the number of years a pool had been fenced increased, but this relationship was not significant at a larger spatial scale.

Conclusions

Both livestock grazing and seasonal precipitation structure the montane vernal pool plant community. We found that livestock grazing promotes the cover of annual vernal pool specialists, but at the expense of perennial vernal pool specialists. Wetter vernal pools, however, support higher cover of wetland generalist species regardless of whether pools are grazed.  相似文献   

14.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   

15.
Failure of perennial species to regenerate is a significant threat to semi‐arid woodlands across south‐eastern Australia. High grazing pressure eliminates the recruitment of many perennial species in semi‐arid woodlands, but little is known about requirements for regeneration under low grazing pressure. We tested the effects of addition of water (irrigation to match the largest rainfall events of the last century), seed, soil disturbance and fire within a grazing exclosure in Belah (Casuarina pauper) woodland in the Murray‐Sunset National Park, Victoria. Recruitment was observed in 13 perennial species and was dominated by chenopods. Addition of water, seed and soil disturbance increased abundance of juvenile perennial species above the low‐level background recruitment that occurred in the prevailing drought conditions. This supports the view that continuous recruitment occurs for many semi‐arid perennials. Low seed availability and an inability to maintain soil moisture conditions matching that of regeneration events are likely factors in the lack of recruitment for tree species and limited response of shrubs in this experiment.  相似文献   

16.
The response of semiarid grasslands to small, non‐colonial herbivores has received little attention, focusing primarily on the effects of granivore assemblages on annual plant communities. We studied the long‐term effects of both small and large herbivores on vegetation structure and species diversity of shortgrass steppe, a perennial semiarid grassland considered marginal habitat for small mammalian herbivores. We hypothesized that 1) large generalist herbivores would affect more abundant species and proportions of litter‐bare ground‐vegetation cover through non‐selective herbivory, 2) small herbivores would affect less common species through selective but limited consumption, and 3) herbivore effects on plant richness would increase with increasing aboveground net primary production (ANPP). Plant community composition was assessed over a 14‐year period in pastures grazed at moderate intensities by cattle and in exclosures for large (cattle) and large‐plus‐small herbivores (additional exclusion of rabbits and rodents). Exclusion of large herbivores affected litter and bare ground and basal cover of abundant, common and uncommon species. Additional exclusion of small herbivores did not affect uncommon components of the plant community, but had indirect effects on abundant species, decreased the cover of the dominant grass Bouteloua gracilis and total vegetation, and increased litter and species diversity. There was no relationship between ANPP and the intensity of effects of either herbivore body size on richness. Exclusion of herbivores of both body sizes had complementary and additive effects which promoted changes in vegetation composition and physiognomy that were linked to increased abundance of tall and decreased abundance of short species. Our findings show that small mammalian herbivores had disproportionately large effects on plant communities relative to their small consumption of biomass. Even in small‐seeded perennial grasslands with a long history of intensive grazing by large herbivores, non‐colonial small mammalian herbivores should be recognized as an important driver of grassland structure and diversity.  相似文献   

17.
The relative importance of monkey beetles (Hopliini, Scarabeidae) as pollinators of Asteraceae and Aizoaceae in the Succulent Karoo as well as the influence of livestock grazing on their abundance and diversity was investigated. Hopliine beetles proved to be the, or among the, most abundant flower visitors of 12 investigated plant species. However, during single flower observations at three Aizoaceae species, bees (Apoidea), bee flies (Bombyliidae) and pollen wasps (Masaridae) were the most frequent flower visitors. However, monkey beetles carried the highest Asteraceae and Aizoaceae pollen loads, and are therefore considered to play a vital role in the pollination of these two families. Abundance, species richness and diversity of Hopliini did not appear to be heavily affected by livestock grazing. Annual variation in the composition of monkey beetle populations was more dramatic. Still, some species showed higher abundances on heavily grazed rangeland while others only occurred under low grazing pressure. It is presumed that changes in the composition of the vegetation, especially the observed decrease of perennial plants in favour of annuals and geophytes (Todd and Hoffman 1999) could in turn affect the composition of monkey beetle assemblages.  相似文献   

18.
Question: How does grazing intensity affect plant density, cover and species richness in an Patagonian arid ecosystem? Location: Monte steppe ecoregion, SW Argentina. Methods: I analysed the effect of grazing on plant density, cover and species richness using a stocking rate gradient within the same habitat. Six paddocks were used with stocking rates ranging between 0.002 – 0.038 livestock/ha. Plant density, species richness, plant cover and percentage of grazed branches were determined by sampling plots within each paddock. The percentage of grazed branches was used as an independent measurement of grazing intensity. Results: Higher stocking rates were related to lower plant density, species richness and plant cover. The paddock with the lowest grazing intensity had 86% more plants per unit area, 63% more plant cover and 48% higher species richness. The percentage of grazed branches and the quantity of dung increased with stocking rate. Conclusions: Introduced livestock seriously affect native vegetation in the Patagonian Monte. The damage observed in this xerophytic plant community suggests that plant adaptations to aridity do not provide an advantage to tolerate or avoid grazing by vertebrate herbivores in this region. Plant degradation in this arid environment is comparable to the degradation found in more humid ecosystems.  相似文献   

19.
Earthworms have significant effect on vegetation and soil physical and chemical properties. The relationship between earthworms and biodiversity is important in ecological researches. Therefore, the effects of earthworm on plant diversity and various indices of diversity and richness, as well as physical and chemical properties of soil in shrub, grass and bare vegetation types on exclosure and grazing sites of Miankaleh Mazandaran biosphere reserve is investigated in this work. Accordingly, sampling was carried out randomly-systematically in three different vegetative types (shrubs, grass and bare soil) at 0 to 20 cm depth. Each vegetative types was placed on three transects of 100 m, 10 plots at a distance of 30 m. Earthworm and soil were sampled from the center of each plot of 25 cm × 25 cm. The Simpson and Shannon-Wiener indexes and Margalef and Menhinick richness indices were used to evaluate diversity and richness of species at different grazing intensities. Stepwise regression was used to study the relationship between diversity and richness indices with different earthworm parameters. The results showed that there was significant difference of potassium and nitrogen in vegetation types of both exclosure and grazing sites at P ≤ .01. Furthermore, the organic carbon, organic matter and potassium in the exclosure site and nitrogen and soil moisture in the grazing site are increased by earthworm abundance.  相似文献   

20.
Abstract. Grazing by domestic livestock in native woodlands can have major effects on ecosystem functioning by the removal of plant species that form important functional groups. This paper documents the changes in floristics in a large group of remnants of native woodland left after agricultural clearing in southwestern Australia. Species richness and diversity were significantly reduced in remnants and the proportion of exotic species increased. Detrended Correspondence Analysis (DCA) was used to identify floristic and environmental patterns among plots and identified two distinct groups based on grazing intensity. This indicated that the significance of the relationship between grazing effects and DCA floristic axes was greater than edaphic characteristics that normally influence floristic patterns. Floristic characteristics of sites that were influencing the position of plots on the ordination diagram included proportion of exotic species and proportion of native perennial shrubs and herbs. Numbers of species of native shrubs and perennial herbs were significantly reduced in grazed plots and numbers of exotic annual grasses and herbs were significantly higher. Other life form groups such as native perennial grasses and geophytes were not significantly affected by grazing. Reproductive strategies of perennial species showed a significant decrease in numbers of resprouters and a significant increase in numbers of facultative seeder/sprouters. Exclosure plots showed increases in number and cover of perennial shrubs and herbs after three years whereas number and cover of exotic species did not change. Time series DCA showed that the floristic composition of exclosure plots in grazed sites became closer to that of the ungrazed sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号