首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine proteinase subtilisin 72 was covalently attached to the beads of poly(vinyl alcohol)-cryogel, a macroporous hydrogel prepared by the freeze-thaw technique. The immobilized enzyme was examined as a catalyst in the synthesis of protected peptides Z-Ala-Ala-Xaa-Phe-pNA (Xaa = Leu, Glu, Lys) in acetonitrile/dimethylformamide mixtures. Immobilized subtilisin catalyzed with high yield the formation of peptide bonds between Phe-pNA and acyl donors including those with free carboxylic group and non-protected C-terminal basic and acidic amino acid residues.  相似文献   

2.
PVA-cryogels entrapping about 109 cells of Acidithiobacillus ferrooxidans per ml of gel were prepared by freezing-thawing procedure, and the biooxidation of Fe2+ by immobilized cells was investigated in a 0.365 l packed-bed bioreactor. Fe2+ oxidation fits a plug-flow reaction model well. A maximum oxidation rate of 3.1 g Fe2+ l–1 h–1 was achieved at the dilution rate of 0.4 h–1 or higher, while no obvious precipitate was determined at this time. In addition, cell-immobilized PVA-cryogels packed in bioreactor maintained their oxidative ability for more than two months under non-sterile conditions. Nomenclature: C A0 – Concentration of Fe2+ in feed stream (g l–1) C A – Concentration of Fe2 + in outlet stream (g l– 1) D – Dilution rate of the packed-bed bioreactor (h–1) F – Volumetric flow rate of iron solution (l h–1) F A0 – Mass flow rate of Fe2+ in the feed stream (g h–1) K – Kinetic constant (l l–1 h–1) r A – Oxidation rate of Fe2+ (g l–1 h–1) V – Volume of packed-bed bioreactor (l) X A – Conversion ratio of Fe2+ (%)  相似文献   

3.
Organophosphate hydrolase, covalently attached to the beads of poly(vinyl alcohol) cryogel in the presence of Polybrene, was fivefold more stable in 15% (v/v) ethanol solution than the free enzyme. Immobilized biocatalyst, prepared with an addition of Polybrene, retained a half of its initial activity in 50% (v/v) aqueous ethanol solution, 90% of activity during 10 working cycles of Paraoxon hydrolysis and 85% of activity after storage in the 50 mM CHES buffer (pH 9.0) at room temperature for 2 months.  相似文献   

4.
5.
6.
K Bryl  G Varo  R Drabent 《FEBS letters》1991,285(1):66-70
The kinetics of photoelectric and optical signals were measured on samples containing oriented purple membranes immobilized in a poly(vinyl alcohol) film and on purple membranes introduced into a PVA-H2O mixture. The bacteriorhodopsin photocycle in the PVA-H2O mixture was complete. The only observed changes were the slowing down of the optical and electrical signals in relation to the M412-O640 and O640-bRall-trans steps. In the PVA film the O640 intermediate disappeared and a negative photoelectric signal appeared.  相似文献   

7.
The effect of cell storage at ?18°C for 18–24 months on reproductive capacity was investigated for various microorganisms (gram-positive and gram-negative bacteria, yeasts, and filamentous fungi) immobilized in poly(vinyl alcohol) cryogel. To examine the viability of immobilized cells after defrosting, the bioluminescent method of intracellular ATP determination was used. A high level of metabolic activity of immobilized cells after various periods of storage was recorded for Streptomyces anulatus, Rhizopus oryzae, and Escherichia coli, which are producers of the antibiotic aurantin, L(+)-lactic acid, and the recombinant enzyme organophosphate hydrolase, respectively. It was shown that the initial concentration of immobilized cells in cryogel granules plays an important role in the survival of Str. anulatus and Pseudomonas putida after 1.5 years of storage. It was found that, after slow defrosting in the storage medium at 5°C for 18 h of immobilized cells of the yeast Saccharomyces cerevisiae that had been stored for nine months, the number of reproductive cells increased due to the formation of ascospores.  相似文献   

8.
The effect of cell storage at -18 degrees C for 18-24 months on reproductive capacity was investigated for various microorganisms (gram-positive and gram-negative bacteria, yeasts, and filamentous fungi) immobilized in poly(vinyl alcohol) cryogel. To examine the viability of immobilized cells after defrosting, the bioluminescent method of intracellular ATP determination was used. A high level of metabolic activity of immobilized cells after various periods of storage was recorded for Streptomyces anulatus, Rhizopus orvzae, and Escherichia coli, which are producers of the antibiotic aurantin, L(+)-lactic acid, and the recombinant enzyme organophosphate hydrolase, respectively. It was shown that the initial concentration of immobilized cells in cryogel granules plays an important role in the survival of Str. anulatus and Pseudomonas putida after 1.5 years of storage. It was found that, after slow defrosting in the storage medium at 50C for 18 h of immobilized cells of the yeast Saccharomvces cerevisiae that had been stored for nine months, the number of reproductive cells increased due to the formation of ascospores.  相似文献   

9.
A bienzymatic sensor for the determination of acetylcholine was prepared by physical coimmobilization of acetylcholinesterase and poly(ethylene glycol)-modified choline oxidase in a poly(vinyl alcohol) cryogel membrane obtained by a cyclic freezing-thawing process. The enzyme-modified polymer was applied on a platinum electrode to form an amperometric sensor, based on the electrochemical detection of enzymatically developed hydrogen peroxide. The analytical characteristics of this sensor, including calibration curves for choline and acetylcholine, pH, and temperature effects, and stability are described.  相似文献   

10.
Subtilisin 72 was immobilized on cryogel of poly(vinyl alcohol), the macroporous carrier prepared by the freeze-thaw-treatment of concentrated aqueous solution of the polymer. The obtained biocatalyst was active and stable in aqueous, aqueous-organic, as well as in low water media. The stability of immobilized biocatalyst was substantially higher than that of native enzyme in all mixtures especially in aqueous buffer containing 5–8 M Urea and in acetonitrile/60–90%DMF mixtures. The ability of native and immobilized subtilisin to catalyze peptide bond formation between Z-Ala-Ala-Leu-OMe and Phe-pNA was studied in non-aqueous media. Considerable enzyme stabilization in acetonitrile/90%DMF mixture, induced by the immobilization, resulted in higher product yield (57%) than in case of native subtilisin suspension (32%). Detailed study of synthesis reaction revealed that notable increase in product yield could be reached using increase in both substrate concentrations up to 200 mM.  相似文献   

11.
l-Histidine as pseudobiospecific ligand was immobilized onto poly(ethylene vinyl alcohol) hollow-fiber membranes to obtain an affinity support for immunoglobulin G (IgG) purification. The interaction of human IgG with the affinity membranes was studied by chromatography and equilibrium binding analysis. Adsorption was possible over a broad pH range and was found to depend strongly on the nature of the buffer ions rather than on ionic strength. With zwitterionic buffers like morpholinopropanesulfonic acid (Mops) and hydroxyethylpiperazineethanesulfonic acid (Hepes), much higher adsorption capacities were obtained than with other buffers like Tris-HCl and phosphate buffers. An inhibition analysis revealed that non-zwitterionic buffers competitively inhibit IgG binding, whereas Mops and Hepes in their zwitterionic form do not. By choosing the appropriate buffer system, it was possible to adsorb specifically different IgG subsets. The IgG molecules were found to adsorb on membrane immobilized histidine via their Fab part. Determination of dissociation constants at different temperatures allowed calculation of thermodynamic adsorption parameters. Decrease in KD with increasing temperature and a positive entropy value between 20 and 35°C (in Mops buffer) indicated that adsorption is partially governed by hydrophobic forces in that temperature range, whereas at lower temperatures, electrostatic forces are more important for adsorption.  相似文献   

12.
The activity and stability of native subtilisin Karlsberg and subtilisin 72 and their complexes with sodium dodecyl sulfate (SDS) in organic solvents were studied. The kinetic constants of the hydrolysis of specific chromogenic peptide substrates Z-Ala-Ala-Leu-pNA and Glp-Ala-Ala-Leu-pNA by the subtilisins were determined. It was found that the subtilisin Karlsberg complex with SDS in anhydrous organic solvents is an effective catalyst of peptide synthesis with multifunctional amino acids in positions P 1 and P 1 (Glu, Arg, and Asp) containing unprotected side ionogenic groups.  相似文献   

13.
The catalytic efficiencies of native subtilisin, its noncovalent complex with polyacrylic acid, and the subtilisin covalently immobilized in a cryogel of polyvinyl alcohol were studied in the reaction of peptide coupling in mixtures of organic solvents with a low water content in dependence on the medium composition, reaction time, and biocatalyst concentration. It was established that, in media with a DMF content > 80%, the synthase activity of modified subtilisins is higher than that of the native subtilisin. The use of N-acylpeptides with a free carboxyl group was found to be possible in organic solvents during the enzymatic synthesis catalyzed by both native and immobilized subtilisin. A series of tetrapeptide p-nitroanilides of the general formula Z-Ala-Ala-Xaa-Yaa-pNA (where Xaa is Leu, or Glu and Yaa is Phe or Asp) was obtained in the presence of immobilized enzyme in yields of 70-98% in DMF-MeCN without any activation of the carboxyl component and without protection of side ionogenic groups of polyfunctional amino acids.  相似文献   

14.
Immobilization of biocatalysts with poly(vinyl alcohol) supports.   总被引:1,自引:0,他引:1  
Two polymer materials, poly(vinyl alcohol) (PVA) superfine fibers and photocrosslinkable PVA bearing styrylpyridinium groups, have been developed to immobilize biocatalysts. The former has a large surface consisting of relatively large-size pores and the fibers can immobilize a large amount of biocatalyst on their surface by ionic interaction. The latter entraps many kinds of biocatalysts by cyclodimerization caused by visible light irradiation. The biocatalysts on/in these supports maintain high activity and thermal stability. These materials can easily be formed into various shapes suitable for various applications. A new bioreactor system was constructed for evaluating a variety of biocatalysts and supports.  相似文献   

15.
16.
Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy   总被引:41,自引:0,他引:41  
Summary Specimens infused with or suspended in a mixture of 10–30% poly(vinylpyrrolidone) and 2.07–1.61m sucrose can often be more easily frozen-sectioned than those infused with sucrose alone. The pH of such a mixture can be efficiently adjusted to neutrality by using Na2CO3. Use of poly(vinylpyrrolidone) causes little or no increase in the background level of immunolabelling. Adsorption staining of ultrathin frozen sections with a mixture of uranyl acetate and poly(vinyl alcohol), i.e. a simple thin-embedding of the sections in such a mixture, produces positive staining effects that are often enough to delineate structures of many organelles. When OsO4-treated frozen sections are stained with uranyl acetate and further adsorption-stained with a mixture of lead citrate and poly(vinyl alcohol), the overall staining effects are similar to those observed in double-stained conventional sections.A large portion of the findings was reported as a part of the author's presentation in the 11th International Congress on Electron Microscopy, held in Kyoto, Japan, in 1986.  相似文献   

17.
Alcaligenes xylosoxidans subsp. xylosoxidans (SH91) capable of biodegradation of thiodiglycol (TDG) were immobilized in poly(vinyl) alcohol (PVA) cryogels. Cryoimmobilized biocatalyst was formed as spherical granules with a diameter of 0.5 mm; the biomass concentration inside the gel matrix was as high as 10% (w/w). The immobilized cells were capable of rapid degradation of TDG in tap water or potassium phosphate buffer (100 mM, pH 8.0) containing only (NH4)2 SO4. The immobilized biocatalyst did not show any substrate inhibition up to 200 mM TDG, and retained 100% activity during three months of continuous use in a repeated-batch bioreactor.  相似文献   

18.
Photochemical reaction of poly(vinyl alcohol) bearing aromatic azido groups was applied for immobilization of beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21.) in poly(vinyl alcohol) film. Photo-crosslinking and immobilization reactions proceeded by light irradiation for 25 min in air. The immobilized enzyme showed approx. 40% of its native enzyme activity with an apparent Michaelis constant of 3.9 mM. The Michaelis constant of the native enzyme was 2.3 mM. Some properties of the immobilized and native enzyme are compared.  相似文献   

19.
The morphology of wheat protein (WG) blends with polyvinyl alcohol (PVA) and respectively with thiolated polyvinyl alcohol (TPVA) was investigated by atomic force (AFM) and transmission electron microscopy (TEM) as well as by modulated dynamic scanning calorimetry (MDSC). Thiolated additives based on PVA and other substrates were previously presented as effective means of improving the strength and toughness of compression molded native WG bars via disulfide-sulfhydryl exchange reactions. Consistent with our earlier results, AFM and TEM imaging clearly indicate that the addition of just a few mole percent of thiol to PVA was sufficient to dramatically change its compatibility with wheat protein. Thus, TPVA is much more compatible with WG and phase separates into much smaller domains than in the case of PVA, although there are still two phases in the blend: one WG-rich phase and another TPVA-rich phase. The WG/TPVA blend has phase domains ranging in size from 0.01 to 0.1 microm, which are roughly 10 times smaller than those of the WG/PVA blend. MDSC further illustrates the compatibilization of the protein with TPVA via the dependence of the transition temperatures on composition.  相似文献   

20.
A multifunctional macromolecular thiol (TPVA) obtained by esterification of poly(vinyl alcohol) (PVA) with 3-mercaptopropionic acid was characterized by a combination of NMR, IR, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC), and was used as a wheat gluten (WG) reactive modifier. The effect of TPVA molecular weight (M(w) = 2000, 9500, 50 000, and 205 000) and blend composition (5, 20, and 40% w/w TPVA/WG) on the mechanical properties of compression-molded bars indicates that TPVA/WG blends increase the fracture strength by up to 76%, the elongation by 80%, and the modulus by 25% above WG. In contrast, typical WG additives such as glycerol and sorbitol improve flexibility but decrease modulus and strength. Preliminary investigations of suspension rheology, water uptake, molecular weight distribution and electron microscopy of TPVA/WG and PVA/WG blends illustrate the different protein interactions with PVA and TPVA. Further work is underway to determine whether TPVA and WG form protein conjugates or microphase-separated morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号